BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effect...BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.展开更多
BACKGROUND In China banxia xiexin decoction(BXD)has been used in treating gastric cancer(GC)for thousands of years and BXD has a good role in reversing GC histopathology,but its chemical composition and action mechani...BACKGROUND In China banxia xiexin decoction(BXD)has been used in treating gastric cancer(GC)for thousands of years and BXD has a good role in reversing GC histopathology,but its chemical composition and action mechanism are still unknown.AIM To investigate the mechanism of action of BXD against GC based on transcriptomics,network pharmacology,in vivo and in vitro experiments.METHODS The transplanted tumor model was prepared,and the nude mouse were pathologically examined after administration,and hematoxylin-eosin staining was performed.The active ingredients of BXD were quality controlled and identified using ultra-performance liquid chromatography tandem quadrupole electrostatic field orbitrap mass spectrometry(UPLC-Q-Orbitrap MS/MS),and traditional Chinese medicines systems pharmacology platform,drug bank and the Swiss target prediction platform to predict the relevant targets,the differentially expressed genes(DEGs)of GC were screened by RNA-seq sequencing,and the overlapping targets were analyzed to obtain the key targets and pathways.Cell Counting Kit-8,apoptosis assay,cell migration and Realtime fluorescence quantitative polymerase chain reaction were used for in vitro experiments.RESULTS All dosing groups inhibited the growth of transplanted tumors in laboratory-bred strain nude,with the capecitabine group and the BXD medium-dose group being the best.A total of 29 compounds and 859 potential targets in BXD were identified by UPLC-Q-Orbitrap MS/MS and network pharmacology,RNA-seq sequencing found 4767 GC DEGs,which were combined with network pharmacology and analyzed 246 potential therapeutic targets were obtained and pathway results showed that BXD may against GC through the Phosphoinositide 3-kinase(PI3K)/protein kinase B(AKt)signaling pathway.In vitro cellular experiments confirmed that BXDcontaining serum and LY294002 could inhibit the proliferation of GC cells,promote apoptosis,and inhibit the migration of GC cells by decreasing the expression of EGFR,PIK3CA,IL6,BCL2 and AKT1 in the PI3K-Akt pathway in MGC-803 expression.CONCLUSION BXD has the effect of inhibiting tumor growth rate and delaying the development of GC.Its mechanism of action may be related to the regulation of PI3K-Akt signaling pathway.展开更多
Background: Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the po...Background: Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the potential for repairing injured sites and regulating autophagy. This study was to investigate the influence of BM-MSCs on autophagy of macrophages in the oxygen-glucose deprivation/restoration (OGD/R) microenvironment and to explore the potential mechanism.Methods: We established a co-culture system of macrophages (RAW264.7) with BM-MSCs under OGD/R conditionsin vitro. RAW264.7 cells were transfected with recombinant adenovirus (Ad-mCherry-GFP-LC3B) and autophagic status of RAW264.7 cells was observed under a fluorescence microscope. Autophagy-related proteins light chain 3 (LC3)-I, LC3-II, and p62 in RAW264.7 cells were detected by Western blotting. We used microarray expression analysis to identify the differently expressed genes between OGD/R treated macrophages and macrophages co-culture with BM-MSCs. We investigated the gene heme oxygenase-1 (HO-1), which is downstream of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway.Results: The ratio of LC3-II/LC3-I of OGD/R treated RAW264.7 cells was increased (1.27 ± 0.20vs. 0.44 ± 0.08,t = 6.67,P < 0.05), while the expression of p62 was decreased (0.77 ± 0.04vs. 0.95 ± 0.10,t = 2.90,P < 0.05), and PI3K (0.40 ± 0.06vs. 0.63 ± 0.10,t = 3.42,P < 0.05) and p-Akt/Akt ratio was also decreased (0.39 ± 0.02vs. 0.58 ± 0.03,t = 9.13,P < 0.05). BM-MSCs reduced the LC3-II/LC3-I ratio of OGD/R treated RAW264.7 cells (0.68 ± 0.14vs. 1.27 ± 0.20,t = 4.12,P < 0.05), up-regulated p62 expression (1.10 ± 0.20vs. 0.77 ± 0.04,t = 2.80,P < 0.05), and up-regulated PI3K (0.54 ± 0.05vs. 0.40 ± 0.06,t = 3.11,P < 0.05) and p-Akt/Akt ratios (0.52 ± 0.05vs. 0.39 ± 0.02,t = 9.13,P < 0.05). A whole-genome microarray assay screened the differentially expressed geneHO-1, which is downstream of the PI3K/Akt signaling pathway, and the alteration ofHO-1 mRNA and protein expression was consistent with the data on PI3K/Akt pathway.Conclusions: Our results suggest the existence of the PI3K/Akt/HO-1 signaling pathway in RAW264.7 cells under OGD/R circumstancesin vitro, revealing the mechanism underlying BM-MSC-mediated regulation of autophagy and enriching the understanding of potential therapeutic targets for the treatment of ALI.展开更多
Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. Howe...Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. However, NRTI drug therapy can cause peripheral neuropathic pain. In this study, we aimed to investigate the mechanisms ofrapamycin on the pain sensitization of model mice by in vivo experiments to explore the effect of mammalian target of rapamycin (mTOR) in the pathogenesis ofneuropathic pain caused by NRTIs. Methods: Male Kun Ming (KM) mice weighing 20-2 g were divided into control, 2 mg/kg rapamycin, 12 mg/kg stavudine, and CMC-Na groups. Drugs were orally administered to mice for 42 consecutive days. The von Frey filament detection and thermal pain tests were conducted on day 7, 14, 21, 28, 35, and 42 after drug administration. After the last behavioral tests, immunohistochemistry and western blotting assay were used for the measurement of mTOR and other biomarkers. Multivariate analysis of variance was used. Results: The beneficial effects ofrapamycin on neuropathic pain were attributed to a reduction in mammalian target of rapamycin sensitive complex 1 (mTORC1)-positive cells (70.80± 2.41 vs. 112.30 ± 5.66, F = 34.36, P 〈 0.01 ) and mTORC1 activity in the mouse spinal cord. Mechanistic studies revealed that Protein Kinase B (Akt)/mTOR signaling pathway blockade with rapamycin prevented the phosphorylation of mTORC1 in stavudine-intoxicated mice (0.72 ± 0.04 vs. 0.86 ± 0.03, F=4.24, P = 0.045), as well as decreased the expression of phospho-pTOS6K (0.47 ± 0.01 vs. 0.68 ± 0.03, F=6.01, P = 0.022) and phospho-4EBP1 (0.90 ± 0.04 vs. 0.94 ± 0.06, F= 0.28, P = 0.646). Conclusions: Taken together, these results suggest that stavudine elevates the expression and activity of mTORC1 in the spinal cord through activating the Akt/mTOR signaling pathway. The data also provide evidence that rapamycin might be useful for the treatment of peripheral neuropathic pain.展开更多
文摘BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.
基金Supported by the Key Program of Shandong Province,China,No.2016CYJS08A01-6.
文摘BACKGROUND In China banxia xiexin decoction(BXD)has been used in treating gastric cancer(GC)for thousands of years and BXD has a good role in reversing GC histopathology,but its chemical composition and action mechanism are still unknown.AIM To investigate the mechanism of action of BXD against GC based on transcriptomics,network pharmacology,in vivo and in vitro experiments.METHODS The transplanted tumor model was prepared,and the nude mouse were pathologically examined after administration,and hematoxylin-eosin staining was performed.The active ingredients of BXD were quality controlled and identified using ultra-performance liquid chromatography tandem quadrupole electrostatic field orbitrap mass spectrometry(UPLC-Q-Orbitrap MS/MS),and traditional Chinese medicines systems pharmacology platform,drug bank and the Swiss target prediction platform to predict the relevant targets,the differentially expressed genes(DEGs)of GC were screened by RNA-seq sequencing,and the overlapping targets were analyzed to obtain the key targets and pathways.Cell Counting Kit-8,apoptosis assay,cell migration and Realtime fluorescence quantitative polymerase chain reaction were used for in vitro experiments.RESULTS All dosing groups inhibited the growth of transplanted tumors in laboratory-bred strain nude,with the capecitabine group and the BXD medium-dose group being the best.A total of 29 compounds and 859 potential targets in BXD were identified by UPLC-Q-Orbitrap MS/MS and network pharmacology,RNA-seq sequencing found 4767 GC DEGs,which were combined with network pharmacology and analyzed 246 potential therapeutic targets were obtained and pathway results showed that BXD may against GC through the Phosphoinositide 3-kinase(PI3K)/protein kinase B(AKt)signaling pathway.In vitro cellular experiments confirmed that BXDcontaining serum and LY294002 could inhibit the proliferation of GC cells,promote apoptosis,and inhibit the migration of GC cells by decreasing the expression of EGFR,PIK3CA,IL6,BCL2 and AKT1 in the PI3K-Akt pathway in MGC-803 expression.CONCLUSION BXD has the effect of inhibiting tumor growth rate and delaying the development of GC.Its mechanism of action may be related to the regulation of PI3K-Akt signaling pathway.
基金National Natural Science Foundation of China(No.81490533)。
文摘Background: Autophagy of alveolar macrophages is a crucial process in ischemia/reperfusion injury-induced acute lung injury (ALI). Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells with the potential for repairing injured sites and regulating autophagy. This study was to investigate the influence of BM-MSCs on autophagy of macrophages in the oxygen-glucose deprivation/restoration (OGD/R) microenvironment and to explore the potential mechanism.Methods: We established a co-culture system of macrophages (RAW264.7) with BM-MSCs under OGD/R conditionsin vitro. RAW264.7 cells were transfected with recombinant adenovirus (Ad-mCherry-GFP-LC3B) and autophagic status of RAW264.7 cells was observed under a fluorescence microscope. Autophagy-related proteins light chain 3 (LC3)-I, LC3-II, and p62 in RAW264.7 cells were detected by Western blotting. We used microarray expression analysis to identify the differently expressed genes between OGD/R treated macrophages and macrophages co-culture with BM-MSCs. We investigated the gene heme oxygenase-1 (HO-1), which is downstream of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway.Results: The ratio of LC3-II/LC3-I of OGD/R treated RAW264.7 cells was increased (1.27 ± 0.20vs. 0.44 ± 0.08,t = 6.67,P < 0.05), while the expression of p62 was decreased (0.77 ± 0.04vs. 0.95 ± 0.10,t = 2.90,P < 0.05), and PI3K (0.40 ± 0.06vs. 0.63 ± 0.10,t = 3.42,P < 0.05) and p-Akt/Akt ratio was also decreased (0.39 ± 0.02vs. 0.58 ± 0.03,t = 9.13,P < 0.05). BM-MSCs reduced the LC3-II/LC3-I ratio of OGD/R treated RAW264.7 cells (0.68 ± 0.14vs. 1.27 ± 0.20,t = 4.12,P < 0.05), up-regulated p62 expression (1.10 ± 0.20vs. 0.77 ± 0.04,t = 2.80,P < 0.05), and up-regulated PI3K (0.54 ± 0.05vs. 0.40 ± 0.06,t = 3.11,P < 0.05) and p-Akt/Akt ratios (0.52 ± 0.05vs. 0.39 ± 0.02,t = 9.13,P < 0.05). A whole-genome microarray assay screened the differentially expressed geneHO-1, which is downstream of the PI3K/Akt signaling pathway, and the alteration ofHO-1 mRNA and protein expression was consistent with the data on PI3K/Akt pathway.Conclusions: Our results suggest the existence of the PI3K/Akt/HO-1 signaling pathway in RAW264.7 cells under OGD/R circumstancesin vitro, revealing the mechanism underlying BM-MSC-mediated regulation of autophagy and enriching the understanding of potential therapeutic targets for the treatment of ALI.
文摘Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the earliest and most commonly used anti-human immunodeficiency virus drugs and play an important role in high active antiretroviral therapy. However, NRTI drug therapy can cause peripheral neuropathic pain. In this study, we aimed to investigate the mechanisms ofrapamycin on the pain sensitization of model mice by in vivo experiments to explore the effect of mammalian target of rapamycin (mTOR) in the pathogenesis ofneuropathic pain caused by NRTIs. Methods: Male Kun Ming (KM) mice weighing 20-2 g were divided into control, 2 mg/kg rapamycin, 12 mg/kg stavudine, and CMC-Na groups. Drugs were orally administered to mice for 42 consecutive days. The von Frey filament detection and thermal pain tests were conducted on day 7, 14, 21, 28, 35, and 42 after drug administration. After the last behavioral tests, immunohistochemistry and western blotting assay were used for the measurement of mTOR and other biomarkers. Multivariate analysis of variance was used. Results: The beneficial effects ofrapamycin on neuropathic pain were attributed to a reduction in mammalian target of rapamycin sensitive complex 1 (mTORC1)-positive cells (70.80± 2.41 vs. 112.30 ± 5.66, F = 34.36, P 〈 0.01 ) and mTORC1 activity in the mouse spinal cord. Mechanistic studies revealed that Protein Kinase B (Akt)/mTOR signaling pathway blockade with rapamycin prevented the phosphorylation of mTORC1 in stavudine-intoxicated mice (0.72 ± 0.04 vs. 0.86 ± 0.03, F=4.24, P = 0.045), as well as decreased the expression of phospho-pTOS6K (0.47 ± 0.01 vs. 0.68 ± 0.03, F=6.01, P = 0.022) and phospho-4EBP1 (0.90 ± 0.04 vs. 0.94 ± 0.06, F= 0.28, P = 0.646). Conclusions: Taken together, these results suggest that stavudine elevates the expression and activity of mTORC1 in the spinal cord through activating the Akt/mTOR signaling pathway. The data also provide evidence that rapamycin might be useful for the treatment of peripheral neuropathic pain.