Because of its good stability and conductivity,titanium nitride(TiN)is considered to be a very promising alternative support for Pt catalyst;however,the preparation of TiN supports is still challenging.In this work,at...Because of its good stability and conductivity,titanium nitride(TiN)is considered to be a very promising alternative support for Pt catalyst;however,the preparation of TiN supports is still challenging.In this work,atomic layer deposition was facilely adopted to fabricate TiN nanoparticles onto carbon nanotubes(CNTs),and then the prepared TiN/CNTs hybrid was used as a support of Pt catalyst.The resulting TiN/CNTs-supported Pt nanoparticles(Pt@TiN/CNTs)nanocomposite showed higher catalytic activity and long-term stability toward the oxygen reduction reaction than the commercial Pt/C,which should be due to the high conductivity and high stability of TiN support,as well as the favorable Pt-TiN strong interaction.展开更多
The commercialization of proton exchange membrane fuel cells(PEMFCs)could provide a cleaner energy society in the near future.However,the sluggish reaction kinetics and harsh conditions of the oxygen reduction reactio...The commercialization of proton exchange membrane fuel cells(PEMFCs)could provide a cleaner energy society in the near future.However,the sluggish reaction kinetics and harsh conditions of the oxygen reduction reaction affect the durability and cost of PEMFCs.Most previous reports on Pt-based electrocatalyst designs have focused more on improving their activity;however,with the commercialization of PEMFCs,durability has received increasing attention.In-depth insight into the structural evolution of Pt-based electrocatalysts throughout their lifecycle can contribute to further optimization of their activity and durability.The development of in situ electron microscopy and other in situ techniques has promoted the elucidation of the evolution mechanism.This mini review highlights recent advances in the structural evolution of Pt-based electrocatalysts.The mechanisms are adequately discussed,and some methods to inhibit or exploit the structural evolution of the catalysts are also briefly reviewed.展开更多
Carbon supported Pt(Pt/C) electrocatalysts were prepared with glucose as protection agent and NaBH 4 as reductant.The Pt nanoparticles deposited on carbon support presented reduced size and well dispersity attribute...Carbon supported Pt(Pt/C) electrocatalysts were prepared with glucose as protection agent and NaBH 4 as reductant.The Pt nanoparticles deposited on carbon support presented reduced size and well dispersity attributed to the protection effect of glucose.Glucose absorbed on the particle surface was readily removed by water washing without leading to agglomeration of the Pt nanoparticles.The as-prepared Pt/C electrocatalysts showed improved mass activity for methanol electrooxidation compared to the catalyst prepared without glucose protection.The improved performance is attributed to the larger electrochemical active surface area thus increased active sites on the Pt/C elctrocatalysts prepared under the protection of glucose.展开更多
The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte...The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte at 25 ℃ and in a direct methane proton exchange membrane fuel cell at 80 ℃. The electrocatalysts prepared also were characterized by X-ray diffraction( XRD) and transmission electron microscopy( TEM). The diffractograms of the Pt/C and Pt/C-ATO electrocatalysts show four peaks associated with Pt face-centered cubic( fcc) structure,and the diffractograms of Pd/C and Pd/C-ATO show four peaks associated with Pd face-centered cubic( fcc) structure. For Pt/C-ATO and Pd/C-ATO,characteristic peaks of cassiterite( SnO_2) phase are observed,which are associated with Sb-doped SnO_2( ATO) used as supports for electrocatalysts. Cyclic voltammograms( CV) of all electrocatalysts after adsorption of methane show that there is a current increase during the anodic scan. However,this effect is more pronounced for Pt/C-ATO and Pd/C-ATO. This process is related to the oxidation of the adsorbed species through the bifunctional mechanism,where ATO provides oxygenated species for the oxidation of CO or HCO intermediates adsorbed in Pt or Pd sites. From in situ ATR-FTIR( Attenuated Total Reflectance-Fourier Transform Infrared) experiments for all electrocatalysts prepared the formation of HCO or CO intermediates are observed,which indicates the production of carbon dioxide. Polarization curves at 80 ℃in a direct methane fuel cell( DMEFC) show that Pd/C and Pt/C electroacatalysts have superior performance to Pd/C-ATO and Pt/C-ATO in methane oxidation.展开更多
基金financially supported by the Shandong Provincial Natural Science Foundation(Nos.ZR2016JL007 and ZR2014JL010)the National Natural Science Foundation of China(No.21775078)。
文摘Because of its good stability and conductivity,titanium nitride(TiN)is considered to be a very promising alternative support for Pt catalyst;however,the preparation of TiN supports is still challenging.In this work,atomic layer deposition was facilely adopted to fabricate TiN nanoparticles onto carbon nanotubes(CNTs),and then the prepared TiN/CNTs hybrid was used as a support of Pt catalyst.The resulting TiN/CNTs-supported Pt nanoparticles(Pt@TiN/CNTs)nanocomposite showed higher catalytic activity and long-term stability toward the oxygen reduction reaction than the commercial Pt/C,which should be due to the high conductivity and high stability of TiN support,as well as the favorable Pt-TiN strong interaction.
文摘The commercialization of proton exchange membrane fuel cells(PEMFCs)could provide a cleaner energy society in the near future.However,the sluggish reaction kinetics and harsh conditions of the oxygen reduction reaction affect the durability and cost of PEMFCs.Most previous reports on Pt-based electrocatalyst designs have focused more on improving their activity;however,with the commercialization of PEMFCs,durability has received increasing attention.In-depth insight into the structural evolution of Pt-based electrocatalysts throughout their lifecycle can contribute to further optimization of their activity and durability.The development of in situ electron microscopy and other in situ techniques has promoted the elucidation of the evolution mechanism.This mini review highlights recent advances in the structural evolution of Pt-based electrocatalysts.The mechanisms are adequately discussed,and some methods to inhibit or exploit the structural evolution of the catalysts are also briefly reviewed.
基金Supported by the National Innovative Research Program for Undergraduates,China(No.2010A33039)the Science and Technology Development Program of Jilin Province,China(No.20100420)
文摘Carbon supported Pt(Pt/C) electrocatalysts were prepared with glucose as protection agent and NaBH 4 as reductant.The Pt nanoparticles deposited on carbon support presented reduced size and well dispersity attributed to the protection effect of glucose.Glucose absorbed on the particle surface was readily removed by water washing without leading to agglomeration of the Pt nanoparticles.The as-prepared Pt/C electrocatalysts showed improved mass activity for methanol electrooxidation compared to the catalyst prepared without glucose protection.The improved performance is attributed to the larger electrochemical active surface area thus increased active sites on the Pt/C elctrocatalysts prepared under the protection of glucose.
基金The project was supported by the FAPESP(2014/09087-4,2014/50279-4).
文摘The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte at 25 ℃ and in a direct methane proton exchange membrane fuel cell at 80 ℃. The electrocatalysts prepared also were characterized by X-ray diffraction( XRD) and transmission electron microscopy( TEM). The diffractograms of the Pt/C and Pt/C-ATO electrocatalysts show four peaks associated with Pt face-centered cubic( fcc) structure,and the diffractograms of Pd/C and Pd/C-ATO show four peaks associated with Pd face-centered cubic( fcc) structure. For Pt/C-ATO and Pd/C-ATO,characteristic peaks of cassiterite( SnO_2) phase are observed,which are associated with Sb-doped SnO_2( ATO) used as supports for electrocatalysts. Cyclic voltammograms( CV) of all electrocatalysts after adsorption of methane show that there is a current increase during the anodic scan. However,this effect is more pronounced for Pt/C-ATO and Pd/C-ATO. This process is related to the oxidation of the adsorbed species through the bifunctional mechanism,where ATO provides oxygenated species for the oxidation of CO or HCO intermediates adsorbed in Pt or Pd sites. From in situ ATR-FTIR( Attenuated Total Reflectance-Fourier Transform Infrared) experiments for all electrocatalysts prepared the formation of HCO or CO intermediates are observed,which indicates the production of carbon dioxide. Polarization curves at 80 ℃in a direct methane fuel cell( DMEFC) show that Pd/C and Pt/C electroacatalysts have superior performance to Pd/C-ATO and Pt/C-ATO in methane oxidation.
文摘质子交换膜燃料电池(PEMFCs)因其高能量密度、低操作温度和环保等特性,被视为极具潜力的能量转换系统.目前,碳载铂颗粒(Pt/C)是PEMFCs阴极氧还原反应(ORR)中使用最广泛的催化剂.然而,Pt与碳载体间的电子结构差异导致Pt纳米颗粒(Pt NPs)易从碳载体上脱落,严重降低了ORR的催化活性.此外,Pt的高成本和稀缺性也限制了其广泛应用.相比之下,Pt纳米枝晶(NDs)因具有高利用率的表面活性位点而备受关注.然而,Pt NDs的合成通常需要严格控制反应条件,且其与碳基底间的弱相互作用易导致活性位点损失和性能下降.因此,开发具有强金属载体相互作用的Pt复合碳催化剂对PEMFCs的实际应用至关重要.本文通过原位Cl-介导的生长策略,结合碳本征空位工程,成功制备了分散在富含碳本征空位的中空氮掺杂碳基底上的Pt NDs催化剂(Pt@HNC-V-800).拉曼光谱和电子顺磁共振光谱结果表明,碳本征空位的形成机制源于碳基底结构中氮原子的耗散,该过程引起碳原子的重新排列,进而产生了丰富的本征缺陷位点.X射线吸收光谱和X射线光电子能谱结果表明,与无碳空位的Pt@HNC催化剂相比,富含本征碳空位的样品(Pt@HNC-V-800)表现出较低的Pt-Pt键配位数(8.64)和更强的给电子效应.得益于Pt NDs丰富的活性位点及其与本征碳空位基底之间的强电子效应,Pt@HNC-V-800的ORR半波电位高达0.947 V,质量活性和比表面活性分别为1.55 A mg^(-1) Pt和1.85 mA cm^(-2),是商用Pt/C的8.2和6.8倍(0.191 A mg^(-1)Pt和0.27 mA cm^(-2)).加速耐久性测试结果表明,经20000次电势循环后,Pt@HNC-V-800的活性无明显变化,其活性损失远低于无碳本征空位的Pt@HNC材料和商业Pt/C催化剂.因此,与无碳本征空位的Pt@HNC材料相比,Pt@HNC-V-800的ORR活性和稳定性都有较大提升,进一步证实了碳本征空位工程协同Pt NDs策略的优越性.此外,密度泛函理论计算结果表明,Pt@HNC-V的丰富空位降低了氧中间体过电势,优化了ORR中间体在Pt NDs上的吸附能,进而提高了催化剂的ORR本征活性.同时,富碳本征空位的存在增强了Pt NDs在碳载体上的结合能,使Pt NDs不易在电势循环过程中脱离碳载体,从而增强了稳定性.综上所述,本文通过Pt NDs与碳本征空位工程协同效应策略,精准调控碳负载Pt基催化剂的结构,大幅提升其在酸性条件下的ORR性能,为进一步设计高性能的ORR电催化剂提供了新思路.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University,China(IRT1238)National Natural Science Foundation of China(21275041,21235002,J1210040)+2 种基金Foundation for Innovative Research Groups of National Natural Science Foundation of China(21221003)Hunan Provincial Natural Science Foundation,China(12JJ2010)Specialized Research Fund for the Doctoral Program of Higher Education,China(20110161110009)~~