采用水热法制备了高分散碳载Pt/C和Pt-SnO2/C电催化剂。采用XRD、SEM、TEM和激光粒度仪等方法对制得的纳米催化剂进行了表面微观结构分析。采用电化学工作站测试循环伏安曲线(CV)等表征Pt/C和Pt-SnO2/C纳米催化剂电催化活性。测试结果表...采用水热法制备了高分散碳载Pt/C和Pt-SnO2/C电催化剂。采用XRD、SEM、TEM和激光粒度仪等方法对制得的纳米催化剂进行了表面微观结构分析。采用电化学工作站测试循环伏安曲线(CV)等表征Pt/C和Pt-SnO2/C纳米催化剂电催化活性。测试结果表明,Pt-SnO2/C纳米催化剂的峰电流密度(131.05 m A·cm-2)是Pt/C催化剂的峰电流密度(65.48 m A·cm-2)的2倍;Pt-SnO2/C催化的电化学表面积(108.4 m2·g-1)远高于Pt/C催化剂的电化学表面积(99.14 m2·g-1);Pt-SnO2/C纳米粒子比Pt/C纳米粒子具有更强的抗CO中毒能力和更高的电催化活性。展开更多
Carbon-supported Pt/C,Pt/Re/C,Pt/SnO2/C and Pt/Re/SnO2/C,with 20 wt.%overall metal loading were prepared and their electrochemical activity towards ethanol oxidation reaction(EOR)was investigated.Transmission electron...Carbon-supported Pt/C,Pt/Re/C,Pt/SnO2/C and Pt/Re/SnO2/C,with 20 wt.%overall metal loading were prepared and their electrochemical activity towards ethanol oxidation reaction(EOR)was investigated.Transmission electron microscopy(TEM)combined with energy dispersive X-ray spectroscopy(EDS)revealed,that indeed binary and ternary combinations of the designed nanoparticles(NPs)were formed and successfully uniformly deposited on a carbon support.Fourier transform infrared spectroscopy(FTIR)allowed to assess the chemical composition of the nanocatalysts and X-ray diffraction(XRD)allowed to determine the catalyst structure.Potentiodynamic and chronoamperometric measurements were used to establish its catalytic activity and stability.The influence of Re addition on the electrochemical activity towards ethanol oxidation reaction(EOR)was verified.Indeed,the addition of Re to the binary Pt/SnO2/C catalyst leads to the formation of ternary Pt/Re/SnO2/C with physical contact between the individual NPs,enhancing the EOR.Furthermore,the onset potential of the synthesized ternary catalyst is shifted to more negative potentials and the current densities and specific activity are nearly 11 and 5 times higher,respectively,than for commercial Pt catalyst.Additionally ternary Pt/Re/SnO2/C catalyst retained 96%of its electrochemical surface area.展开更多
文摘采用水热法制备了高分散碳载Pt/C和Pt-SnO2/C电催化剂。采用XRD、SEM、TEM和激光粒度仪等方法对制得的纳米催化剂进行了表面微观结构分析。采用电化学工作站测试循环伏安曲线(CV)等表征Pt/C和Pt-SnO2/C纳米催化剂电催化活性。测试结果表明,Pt-SnO2/C纳米催化剂的峰电流密度(131.05 m A·cm-2)是Pt/C催化剂的峰电流密度(65.48 m A·cm-2)的2倍;Pt-SnO2/C催化的电化学表面积(108.4 m2·g-1)远高于Pt/C催化剂的电化学表面积(99.14 m2·g-1);Pt-SnO2/C纳米粒子比Pt/C纳米粒子具有更强的抗CO中毒能力和更高的电催化活性。
文摘Carbon-supported Pt/C,Pt/Re/C,Pt/SnO2/C and Pt/Re/SnO2/C,with 20 wt.%overall metal loading were prepared and their electrochemical activity towards ethanol oxidation reaction(EOR)was investigated.Transmission electron microscopy(TEM)combined with energy dispersive X-ray spectroscopy(EDS)revealed,that indeed binary and ternary combinations of the designed nanoparticles(NPs)were formed and successfully uniformly deposited on a carbon support.Fourier transform infrared spectroscopy(FTIR)allowed to assess the chemical composition of the nanocatalysts and X-ray diffraction(XRD)allowed to determine the catalyst structure.Potentiodynamic and chronoamperometric measurements were used to establish its catalytic activity and stability.The influence of Re addition on the electrochemical activity towards ethanol oxidation reaction(EOR)was verified.Indeed,the addition of Re to the binary Pt/SnO2/C catalyst leads to the formation of ternary Pt/Re/SnO2/C with physical contact between the individual NPs,enhancing the EOR.Furthermore,the onset potential of the synthesized ternary catalyst is shifted to more negative potentials and the current densities and specific activity are nearly 11 and 5 times higher,respectively,than for commercial Pt catalyst.Additionally ternary Pt/Re/SnO2/C catalyst retained 96%of its electrochemical surface area.