Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetic...Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetics,the sulfur redox kinetics for Li-S batteries is still not ultrafast.Herein,in this work,a catalyst with dual-single-atom Pt-Co embedded in N-doped carbon nanotubes(Pt&Co@NCNT)was proposed by the atomic layer deposition method to suppress the shuttle effect and synergistically improve the interconversion kinetics from polysulfides to Li_(2)S.The X-ray absorption near edge curves indicated the reversible conversion of Li_(2)Sx on the S/Pt&Co@NCNT electrode.Meanwhile,density functional theory demonstrated that the Pt&Co@NCNT promoted the free energy of the phase transition of sulfur species and reduced the oxidative decomposition energy of Li_(2)S.As a result,the batteries assembled with S/Pt&Co@NCNT electrodes exhibited a high capacity retention of 80%at 100 cycles at a current density of 1.3 mA cm^(−2)(S loading:2.5 mg cm^(−2)).More importantly,an excellent rate performance was achieved with a high capacity of 822.1 mAh g^(−1) at a high current density of 12.7 mA cm^(−2).This work opens a new direction to boost the sulfur redox kinetics for ultrafast Li-S batteries.展开更多
Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of...Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of nanoparticles. The fully oxidized Fe2O3 and Co3O4 species on Pt nanoparticle sur-faces result in the low performance of the CO complete oxidation (COOX) reaction. In contrast, un-saturated FeO and CoO surface species can be formed during exposure to the CO preferential oxida-tion (CO-PROX) reaction with an excess of H2, leading to a high O2 activation ability and enhancing the CO-PROX activity. The FeOx surface structures can be transformed between these two states by varying the reactive gas environments, exhibiting oscillating activity in these two reactions. Con-versely, the CoO surface structure formed in the H2 -rich atmosphere is stable when exposed to the COOX reaction and exhibits similar activity in these two reactions. It is hoped that this work may assist in understanding the important role of surface oxides in real reactions.展开更多
为寻求一种较好的Pt-Co/C纳米合金催化剂合成方法,运用浸渍还原法制备两种Pt-Co/C催化剂,运用循环伏安和线性扫描的方法测试它们在H_(2)SO_(4)溶液中有无CH3OH时,对O_(2)的电催化还原情况及抗甲醇性能,同时与商用Pt/C催化剂进行还原性...为寻求一种较好的Pt-Co/C纳米合金催化剂合成方法,运用浸渍还原法制备两种Pt-Co/C催化剂,运用循环伏安和线性扫描的方法测试它们在H_(2)SO_(4)溶液中有无CH3OH时,对O_(2)的电催化还原情况及抗甲醇性能,同时与商用Pt/C催化剂进行还原性能比较。结果表明:与商用Pt/C催化剂电极相比,Pt-Co/C(1)催化剂电极对O_(2)的电催化还原效果较好。80℃时制备的Pt∶Co=3∶1的Pt-Co/C催化剂电极对O_(2)的电催化还原效果最佳。扫描电子显微镜(Scanning Electron Microscope,SEM)和透射电子显微镜(Transmission Electron Microscope,TEM)观察表明,Pt-Co/C(1)催化剂粒径小且分散均匀。采用浸渍还原法,以硼氢化钠为还原剂制得的Pt-Co/C(1)催化剂对O2的电催化还原性能较好,同时具有较好的抗甲醇氧化能力。展开更多
We have prepared and characterized atomically well-defined model systems for ceria-supported Pt-Co core-shell catalysts. Pt@Co and Co@Pt core-shell nanostructures were grown on well-ordered CeO2(111) films on Cu(111) ...We have prepared and characterized atomically well-defined model systems for ceria-supported Pt-Co core-shell catalysts. Pt@Co and Co@Pt core-shell nanostructures were grown on well-ordered CeO2(111) films on Cu(111) by physical vapour deposition of Pt and Co metals in ultrahigh vacuum and investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy. The deposition of Co onto CeO2(111) yields CoCeO2(111) solid solution at low Co coverage(0.5 ML), followed by the growth of metallic Co nanoparticles at higher Co coverages. Both Pt@Co and Co@Pt model structures are stable against sintering in the temperature range between 300 and 500 K. After annealing at 500 K, the Pt@Co nanostructure contains nearly pure Co-shell while the Pt-shell in the Co@Pt is partially covered by metallic Co. Above 550 K, the re-ordering in the near surface regions yields a subsurface Pt-Co alloy and Pt-rich shells in both Pt@Co and Co@Pt nanostructures. In the case of Co@Pt nanoparticles, the chemical ordering in the near surface region depends on the initial thickness of the deposited Pt-shell. Annealing of the Co@Pt nanostructures in the presence of O2 triggers the decomposition of Pt-Co alloy along with the oxidation of Co, regardless of the thickness of the initial Pt-shell. Progressive oxidation of Co coupled with adsorbate-induced Co segregation leads to the formation of thick CoO layers on the surfaces of the supported Co@Pt nanostructures. This process is accompanied by the disintegration of the CeO2(111) film and encapsulation of oxidized Co@Pt nanostructures by CeO2 upon annealing in O2 above 550 K. Notably, during oxidation and reduction cycles with O2 and H2 at different temperatures, the changes in the structure and chemical composition of supported Co@Pt nanostructures were driven mainly by oxidation while reduction treatments had little effect regardless of the initial thickness of the Pt-shell.展开更多
In this paper, Pt-Co_3O_4 nanocomposite was synthesized by a sol gel process combined with electrodeposition method. Its electrocatalytic activity towards methanol oxidation was investigated at room temperature using ...In this paper, Pt-Co_3O_4 nanocomposite was synthesized by a sol gel process combined with electrodeposition method. Its electrocatalytic activity towards methanol oxidation was investigated at room temperature using cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and current density time curve. It is found that the resultant Pt-Co_3O_4 catalysts with minute amount of Pt exhibite attractive electrocatalytic activity for methanol oxidation reaction(MOR) but with a high resistance CO poisoning due to the synergistic effects from Pt and Co_3O_4. Together with the low manufacturing cost of Co_3O_4, the reported nanostructured Pt-Co_3O_4 catalyst is expected to be a promising electrode material for direct methanol fuel cells(DMFC).展开更多
基金supported by the National Natural Science Foundation of China(22208039)the Basic Scientific Research Project of the Educational Department of Liaoning Province(LJKMZ20220878)+1 种基金and the Dalian Science and Technology Talent Innovation Support Plan(2022RQ036)supported by the Natural Science and Engineering Research Council of Canada(NSERC),the Canada Research Chair Program(CRC),the Canada Foundation for Innovation(CFI),and Western University。
文摘Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetics,the sulfur redox kinetics for Li-S batteries is still not ultrafast.Herein,in this work,a catalyst with dual-single-atom Pt-Co embedded in N-doped carbon nanotubes(Pt&Co@NCNT)was proposed by the atomic layer deposition method to suppress the shuttle effect and synergistically improve the interconversion kinetics from polysulfides to Li_(2)S.The X-ray absorption near edge curves indicated the reversible conversion of Li_(2)Sx on the S/Pt&Co@NCNT electrode.Meanwhile,density functional theory demonstrated that the Pt&Co@NCNT promoted the free energy of the phase transition of sulfur species and reduced the oxidative decomposition energy of Li_(2)S.As a result,the batteries assembled with S/Pt&Co@NCNT electrodes exhibited a high capacity retention of 80%at 100 cycles at a current density of 1.3 mA cm^(−2)(S loading:2.5 mg cm^(−2)).More importantly,an excellent rate performance was achieved with a high capacity of 822.1 mAh g^(−1) at a high current density of 12.7 mA cm^(−2).This work opens a new direction to boost the sulfur redox kinetics for ultrafast Li-S batteries.
基金National Natural Science Foundation of China(20833002,20903057,51172110)Research Fund for the Doctoral Program of Higher Education of China(20093223120002)+2 种基金Natural Science Foundation of Jiangsu Province(BK2010525,BK2011750)Foundation of Jiangsu Educational Committee(09KJB150007,08KJB150011)Scientific Research Foundation of Nanjing University of Posts and Telecommunications(NY208046,NY208025,NY208026)~~
基金supported by the National Natural Science Foundation of China(21403004,21403003)~~
文摘Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of nanoparticles. The fully oxidized Fe2O3 and Co3O4 species on Pt nanoparticle sur-faces result in the low performance of the CO complete oxidation (COOX) reaction. In contrast, un-saturated FeO and CoO surface species can be formed during exposure to the CO preferential oxida-tion (CO-PROX) reaction with an excess of H2, leading to a high O2 activation ability and enhancing the CO-PROX activity. The FeOx surface structures can be transformed between these two states by varying the reactive gas environments, exhibiting oscillating activity in these two reactions. Con-versely, the CoO surface structure formed in the H2 -rich atmosphere is stable when exposed to the COOX reaction and exhibits similar activity in these two reactions. It is hoped that this work may assist in understanding the important role of surface oxides in real reactions.
文摘为寻求一种较好的Pt-Co/C纳米合金催化剂合成方法,运用浸渍还原法制备两种Pt-Co/C催化剂,运用循环伏安和线性扫描的方法测试它们在H_(2)SO_(4)溶液中有无CH3OH时,对O_(2)的电催化还原情况及抗甲醇性能,同时与商用Pt/C催化剂进行还原性能比较。结果表明:与商用Pt/C催化剂电极相比,Pt-Co/C(1)催化剂电极对O_(2)的电催化还原效果较好。80℃时制备的Pt∶Co=3∶1的Pt-Co/C催化剂电极对O_(2)的电催化还原效果最佳。扫描电子显微镜(Scanning Electron Microscope,SEM)和透射电子显微镜(Transmission Electron Microscope,TEM)观察表明,Pt-Co/C(1)催化剂粒径小且分散均匀。采用浸渍还原法,以硼氢化钠为还原剂制得的Pt-Co/C(1)催化剂对O2的电催化还原性能较好,同时具有较好的抗甲醇氧化能力。
基金funded by the European Community(FP7-NMP.2012.1.1-1 project chip CAT,Reference No.310191)by the Deutsche Forschungsgemeinschaft(DFG)within the Excellence Cluster“Engineering of Advanced Materials”in the framework of the excellence initiative+2 种基金support by the DFG is acknowledged through the Priority Program SPP 1708 and the Research Unit FOR 1878supported by structural funds under project CZ.02.1.01/0.0/0.0/16_025/0007414by the Czech Ministry of Education(grant LM2015057)。
文摘We have prepared and characterized atomically well-defined model systems for ceria-supported Pt-Co core-shell catalysts. Pt@Co and Co@Pt core-shell nanostructures were grown on well-ordered CeO2(111) films on Cu(111) by physical vapour deposition of Pt and Co metals in ultrahigh vacuum and investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy. The deposition of Co onto CeO2(111) yields CoCeO2(111) solid solution at low Co coverage(0.5 ML), followed by the growth of metallic Co nanoparticles at higher Co coverages. Both Pt@Co and Co@Pt model structures are stable against sintering in the temperature range between 300 and 500 K. After annealing at 500 K, the Pt@Co nanostructure contains nearly pure Co-shell while the Pt-shell in the Co@Pt is partially covered by metallic Co. Above 550 K, the re-ordering in the near surface regions yields a subsurface Pt-Co alloy and Pt-rich shells in both Pt@Co and Co@Pt nanostructures. In the case of Co@Pt nanoparticles, the chemical ordering in the near surface region depends on the initial thickness of the deposited Pt-shell. Annealing of the Co@Pt nanostructures in the presence of O2 triggers the decomposition of Pt-Co alloy along with the oxidation of Co, regardless of the thickness of the initial Pt-shell. Progressive oxidation of Co coupled with adsorbate-induced Co segregation leads to the formation of thick CoO layers on the surfaces of the supported Co@Pt nanostructures. This process is accompanied by the disintegration of the CeO2(111) film and encapsulation of oxidized Co@Pt nanostructures by CeO2 upon annealing in O2 above 550 K. Notably, during oxidation and reduction cycles with O2 and H2 at different temperatures, the changes in the structure and chemical composition of supported Co@Pt nanostructures were driven mainly by oxidation while reduction treatments had little effect regardless of the initial thickness of the Pt-shell.
基金supported by National Natural Science Foundation of China (Grant No. 21273192, 91023010, 61204009, 21303153)Innovation Scientists and Technicians Troop Construction Projects of Henan Province (Grant No. 104100510001)+1 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (2008 HASTIT016)Henan Province Science and Technology Key Project (Grant No. 082102230036 and 122102210479)
文摘In this paper, Pt-Co_3O_4 nanocomposite was synthesized by a sol gel process combined with electrodeposition method. Its electrocatalytic activity towards methanol oxidation was investigated at room temperature using cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and current density time curve. It is found that the resultant Pt-Co_3O_4 catalysts with minute amount of Pt exhibite attractive electrocatalytic activity for methanol oxidation reaction(MOR) but with a high resistance CO poisoning due to the synergistic effects from Pt and Co_3O_4. Together with the low manufacturing cost of Co_3O_4, the reported nanostructured Pt-Co_3O_4 catalyst is expected to be a promising electrode material for direct methanol fuel cells(DMFC).