118 kinds of Pt-Zr phases were established and investigated by considering various structures. Then the related physical properties, such as structural stability, lattice constants, formation enthalpies, elastic const...118 kinds of Pt-Zr phases were established and investigated by considering various structures. Then the related physical properties, such as structural stability, lattice constants, formation enthalpies, elastic constants and bulk moduli, are obtained by ab initio calculations. Based on the calculated results of formation enthalpies, the ground-state convex hull is derived for the Pt-Zr system. The calculated physical data would provide a basis for further thermodynamic calculations and atomistic simulations. For these Pt-Zr compounds, it is found there are a positive linear correlation between the formation enthalpies and atomic volumes, and a negative linear correlation between the bulk modules and atomic volumes.展开更多
Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improv...Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.展开更多
LaNiO3 (LNO) thin films were prepared on Pt(111) / Ti / SiO2 / Si substrate by metal-organic decomposition (MOD) method. Pb(Zr,Ti)O3 ferroelectric thin films and their compositionally graded thin films were prepared o...LaNiO3 (LNO) thin films were prepared on Pt(111) / Ti / SiO2 / Si substrate by metal-organic decomposition (MOD) method. Pb(Zr,Ti)O3 ferroelectric thin films and their compositionally graded thin films were prepared on LNO / Pt / Ti / SiO2 /Si substrates by Sol-gel method. The composition depth profile of a typical up-graded film was determined by using a combination of Auger Electron Spectroscopy (ASE) and Ar Ion Etching. The results confirm that the processing method produces graded composition changes. XRD analysis showed that the graded thin films possessed composite structure of tetragonal and rhombohedral. The dielectric constants of Up-graded and Down-graded thin films were higher than that of each thin film unit. The dielectric constants were 277 and 269 at 10 kHz, respectively. The loss tangents were 0.019 and 0.018 at 10 kHz, respectively. The Hysteresis loops showed that the remanent polarizations of graded thin films were higher than that of each thin film unit, but the coercive fields were smaller. The remanent polarizations of Up-graded and Down-graded thin films were 30.06 and 26.96 μC·cm-2, respectively. The coercive fields were 54.14, 54.23 kV·cm-1, respectively. The pyroelectric coefficients of Up-graded and Down-graded thin films were 4.62, 2.51×10-8 C·cm-2·K-1 at room temperature, respectively. They were higher than that of each thin film unit.展开更多
The effect of sulfate ion (SO4^2-) loading on the properties of Pt/SO4^2-ZrO2 and on the catalytic isomerization of n-butane to/so-butane was studied. The catalyst was prepared by impregnation of Zr(OH)4 with H2SO...The effect of sulfate ion (SO4^2-) loading on the properties of Pt/SO4^2-ZrO2 and on the catalytic isomerization of n-butane to/so-butane was studied. The catalyst was prepared by impregnation of Zr(OH)4 with H2SO4 and platinum solution followed by calcination at 600 ℃. Ammonia TPD and FT-IR were used to confirm the distribution of acid sites and the structure of the sulfate species. Nitrogen physisorption and X-ray diffraction were used to confirm the physical structures of Pt/SO4^2-ZrO2. XRD pattern showed that the presence of sulfate ion stabilized the metastable tetragonal phase of zirconia and hindered the transition of amorphous phase to monoclinic phase of zirconia. Ammonia TPD profiles indicated the distributions of weak and medium acid sites observed on 0.1 N and 1.0 N sulfate in the loaded catalysts. The addition of 2.0 N and 4.0 N sulfate ion generated strong acid site and decreased the weak and medium acid sites. However, the XRD results and the specific surface area of the catalysts indicated that the excessive amount of sulfate ion collapsed the structure of the catalyst. The catalysts showed high activity and stability for isomerization of n-butane to iso-butane at 200 ℃ under hydrogen atmosphere. The conversion of n-butane to iso-butane per specific surface area of the catalyst increased with the increasing amount of sulfate ion owing to the existence of the bidentate sulfate and/or polynucleic sulfate species ((ZrO)2SO2), which acts as an active site for the isomerization.展开更多
Important effects exist between precious metals and rare earths oxides in three-way catalyst, especially the coordinated effects. These effects were studied by using H2PtCl6, Pt(NH3)2(NO2)2 and Pt(OH)2(C2H5ONH2)2 as P...Important effects exist between precious metals and rare earths oxides in three-way catalyst, especially the coordinated effects. These effects were studied by using H2PtCl6, Pt(NH3)2(NO2)2 and Pt(OH)2(C2H5ONH2)2 as Pt precursors, and the mixed oxide of (Ce-Zr-La-Pr)O as base material to prepare a series of catalysts, and their performances of the catalysts were studied by TPR and CO pulse titration technologies. The results shown that Pt precursors and their solutions pH values influenced the oxygen storage capabilities, the active metal distribution degrees of the catalysts obviously, and every catalyst prepared by different precursors had an optimal pH values. It indicates that the active metals precursors and their solutions acidities have outstanding influences on the catalysts performances for the mutual effects existing between the active metals and the Rare Earth metal oxides, which results from the mate groups of the precursors and the solution acidity.展开更多
The liquid phase ring-opening of octamethylcy-clotetrasiloxane (D4) was investigated over Pt-H2SO4/Zr- montmorillonite catalyst. Montmorillonite (Mt), Zr-Mt, H2SO4/Mt, H2SO4/Zr-Mt and Pt-H2SO4/Zr-Mt were also dete...The liquid phase ring-opening of octamethylcy-clotetrasiloxane (D4) was investigated over Pt-H2SO4/Zr- montmorillonite catalyst. Montmorillonite (Mt), Zr-Mt, H2SO4/Mt, H2SO4/Zr-Mt and Pt-H2SO4/Zr-Mt were also detected for evaluation. The catalysts were characterized by X-ray fluorescence, X-ray diffraction, nitrogen adsorption-desorption, NH3-TPD and pyridine-FTIR measurements. In comparison to activate clay which is used in the industry of catalyst, Zr-Mt catalyst displayed stronger acidity and more excellent catalytic activity in the polymerization of D4, polymethylhydrosiloxane (DH) and hexamethyldisiloxane (MM) to low-hydro sili- cone oil. Relative to Zr-Mt, the acidity of H2SO4/Zr-Mt was noticeably improved and the catalyst exhibited a higher capability of ring-opening of D4 conversion and yield of low-hydro silicone oil. To enhance the stability of H2SO4/Zr-Mt catalyst, a small amount of metals (Pt) was doped. The nitrogen adsorption-desorption results indicated that pore textural parameters of the Pt-H2SO4/Zr-Mt had not changed with larger specific surface area. Compared with H2SO4/Zr-Mt, the total acidity of Pt-H2SO4-Zr/Mt catalyst retained, but the content of the Bransted acid increased and the content of the Lewis acid decreased. The Pt-H2SO4-Zr/Mt catalyst displayed higher catalyst reproducibility. After 40 h reaction of polymerization, the yield of low-hydro silicone oil decreased from 93% to 42% over H2SO4/Zr-Mt catalyst, while the yield of low-hydro silicone oil reduced from 93% to 78% over Pt-H2SO4/Zr-Mt catalyst. A sharp decrease in catalytic activity after 35 h of Pt-H2SO4/Zr-Mt catalyst was detected. Furthermore, Pt-H2SO4/Zr-Mt was completely regenerated under appropriate condition and appeared good repeatability in the D4, DH and MM to low-hydro silicone oil.展开更多
基金Projects (50971072,51131003) support by the National Natural Science Foundation of ChinaProjects (2011CB606301,2012CB825700) supported by the Ministry of Science and Technology of ChinaProject supported by the Administration of Tsinghua University
文摘118 kinds of Pt-Zr phases were established and investigated by considering various structures. Then the related physical properties, such as structural stability, lattice constants, formation enthalpies, elastic constants and bulk moduli, are obtained by ab initio calculations. Based on the calculated results of formation enthalpies, the ground-state convex hull is derived for the Pt-Zr system. The calculated physical data would provide a basis for further thermodynamic calculations and atomistic simulations. For these Pt-Zr compounds, it is found there are a positive linear correlation between the formation enthalpies and atomic volumes, and a negative linear correlation between the bulk modules and atomic volumes.
基金supported by the National Natural Science Foundation of China(21506194,21676255)the Provincial Natural Science Foundation of Zhejiang Province(LY16B070011)the Commission of Science and Technology of Zhejiang Province(2017C33106,2017C03007)~~
文摘Platinum/cerium-zirconium-sulfate(Pt/Ce-Zr-SO_4^(2-)) catalysts were prepared by wetness impregnation.Catalytic activities were evaluated from the combustion of propene and CO.Sulfate(SO_4^(2-))addition improved the catalytic activity significantly.When using Pt/Ce-Zr-SO_4^(2-) with 10 wt%SO_4^(2-),the temperature for 90%conversion of propene and CO decreased by 75℃ compared with Pt/Ce-Zr.The conversion exceeded 95%at 240℃ even after 0.02%sulfur dioxide poisoning for 20 h.Temperature-programmed desorption of CO and X-ray photoelectron spectroscopy analyses revealed an improvement in Pt dispersion onto the Ce-Zr-SO_4^(2-) support,and the increased number of Pt particles built up more Pt^(-)-(SO_4^(2-))^(-) couples,which resulted in excellent activity.The increased total acidity and new Bronsted acid sites on the surface provided the Pt/Ce-Zr-SO_4^(2-) with good sulfur resistance.
文摘LaNiO3 (LNO) thin films were prepared on Pt(111) / Ti / SiO2 / Si substrate by metal-organic decomposition (MOD) method. Pb(Zr,Ti)O3 ferroelectric thin films and their compositionally graded thin films were prepared on LNO / Pt / Ti / SiO2 /Si substrates by Sol-gel method. The composition depth profile of a typical up-graded film was determined by using a combination of Auger Electron Spectroscopy (ASE) and Ar Ion Etching. The results confirm that the processing method produces graded composition changes. XRD analysis showed that the graded thin films possessed composite structure of tetragonal and rhombohedral. The dielectric constants of Up-graded and Down-graded thin films were higher than that of each thin film unit. The dielectric constants were 277 and 269 at 10 kHz, respectively. The loss tangents were 0.019 and 0.018 at 10 kHz, respectively. The Hysteresis loops showed that the remanent polarizations of graded thin films were higher than that of each thin film unit, but the coercive fields were smaller. The remanent polarizations of Up-graded and Down-graded thin films were 30.06 and 26.96 μC·cm-2, respectively. The coercive fields were 54.14, 54.23 kV·cm-1, respectively. The pyroelectric coefficients of Up-graded and Down-graded thin films were 4.62, 2.51×10-8 C·cm-2·K-1 at room temperature, respectively. They were higher than that of each thin film unit.
文摘The effect of sulfate ion (SO4^2-) loading on the properties of Pt/SO4^2-ZrO2 and on the catalytic isomerization of n-butane to/so-butane was studied. The catalyst was prepared by impregnation of Zr(OH)4 with H2SO4 and platinum solution followed by calcination at 600 ℃. Ammonia TPD and FT-IR were used to confirm the distribution of acid sites and the structure of the sulfate species. Nitrogen physisorption and X-ray diffraction were used to confirm the physical structures of Pt/SO4^2-ZrO2. XRD pattern showed that the presence of sulfate ion stabilized the metastable tetragonal phase of zirconia and hindered the transition of amorphous phase to monoclinic phase of zirconia. Ammonia TPD profiles indicated the distributions of weak and medium acid sites observed on 0.1 N and 1.0 N sulfate in the loaded catalysts. The addition of 2.0 N and 4.0 N sulfate ion generated strong acid site and decreased the weak and medium acid sites. However, the XRD results and the specific surface area of the catalysts indicated that the excessive amount of sulfate ion collapsed the structure of the catalyst. The catalysts showed high activity and stability for isomerization of n-butane to iso-butane at 200 ℃ under hydrogen atmosphere. The conversion of n-butane to iso-butane per specific surface area of the catalyst increased with the increasing amount of sulfate ion owing to the existence of the bidentate sulfate and/or polynucleic sulfate species ((ZrO)2SO2), which acts as an active site for the isomerization.
基金Project supported by the National High Technology Research and Development Programs (863 ) of China (2002 AA321060, 2004AA649040) Yunnan Province Science Technology Program (2004B0028Q)
文摘Important effects exist between precious metals and rare earths oxides in three-way catalyst, especially the coordinated effects. These effects were studied by using H2PtCl6, Pt(NH3)2(NO2)2 and Pt(OH)2(C2H5ONH2)2 as Pt precursors, and the mixed oxide of (Ce-Zr-La-Pr)O as base material to prepare a series of catalysts, and their performances of the catalysts were studied by TPR and CO pulse titration technologies. The results shown that Pt precursors and their solutions pH values influenced the oxygen storage capabilities, the active metal distribution degrees of the catalysts obviously, and every catalyst prepared by different precursors had an optimal pH values. It indicates that the active metals precursors and their solutions acidities have outstanding influences on the catalysts performances for the mutual effects existing between the active metals and the Rare Earth metal oxides, which results from the mate groups of the precursors and the solution acidity.
基金Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The liquid phase ring-opening of octamethylcy-clotetrasiloxane (D4) was investigated over Pt-H2SO4/Zr- montmorillonite catalyst. Montmorillonite (Mt), Zr-Mt, H2SO4/Mt, H2SO4/Zr-Mt and Pt-H2SO4/Zr-Mt were also detected for evaluation. The catalysts were characterized by X-ray fluorescence, X-ray diffraction, nitrogen adsorption-desorption, NH3-TPD and pyridine-FTIR measurements. In comparison to activate clay which is used in the industry of catalyst, Zr-Mt catalyst displayed stronger acidity and more excellent catalytic activity in the polymerization of D4, polymethylhydrosiloxane (DH) and hexamethyldisiloxane (MM) to low-hydro sili- cone oil. Relative to Zr-Mt, the acidity of H2SO4/Zr-Mt was noticeably improved and the catalyst exhibited a higher capability of ring-opening of D4 conversion and yield of low-hydro silicone oil. To enhance the stability of H2SO4/Zr-Mt catalyst, a small amount of metals (Pt) was doped. The nitrogen adsorption-desorption results indicated that pore textural parameters of the Pt-H2SO4/Zr-Mt had not changed with larger specific surface area. Compared with H2SO4/Zr-Mt, the total acidity of Pt-H2SO4-Zr/Mt catalyst retained, but the content of the Bransted acid increased and the content of the Lewis acid decreased. The Pt-H2SO4-Zr/Mt catalyst displayed higher catalyst reproducibility. After 40 h reaction of polymerization, the yield of low-hydro silicone oil decreased from 93% to 42% over H2SO4/Zr-Mt catalyst, while the yield of low-hydro silicone oil reduced from 93% to 78% over Pt-H2SO4/Zr-Mt catalyst. A sharp decrease in catalytic activity after 35 h of Pt-H2SO4/Zr-Mt catalyst was detected. Furthermore, Pt-H2SO4/Zr-Mt was completely regenerated under appropriate condition and appeared good repeatability in the D4, DH and MM to low-hydro silicone oil.