The human serotonin transporter(SERT)terminates neurotransmission by removing serotonin from the synaptic cleft,which is an essential process that plays an important role in depression.In addition to natural substrate...The human serotonin transporter(SERT)terminates neurotransmission by removing serotonin from the synaptic cleft,which is an essential process that plays an important role in depression.In addition to natural substrate serotonin,SERT is also the target of the abused drug cocaine and,clinically used antidepressants,escitalopram,and paroxetine.To date,few studies have attempted to investigate the unbinding mechanism underlying the orthosteric and allosteric modulation of SERT.In this article,the conserved property of the orthosteric and allosteric sites(S1 and S2)of SERT was revealed by combining the high resolutions of x-ray crystal structures and molecular dynamics(MD)simulations.The residues Tyr95 and Ser438 located within the S1 site,and Arg104 located within the S2 site in SERT illustrate conserved interactions(hydrogen bonds and hydrophobic interactions),as responses to selective serotonin reuptake inhibitors.Van der Waals interactions were keys to designing effective drugs inhibiting SERT and further,electrostatic interactions highlighted escitalopram as a potent antidepressant.We found that cocaine,escitalopram,and paroxetine,whether the S1 site or the S2 site,were more competitive.According to this potential of mean force(PMF)simulations,the new insights reveal the principles of competitive inhibitors that lengths of trails from central SERT to an opening were~18A for serotonin and~22 A for the above-mentioned three drugs.Furthermore,the distance between the natural substrate serotonin and cocaine(or escitalopram)at the allosteric site was~3A.Thus,it can be inferred that the potent antidepressants tended to bind at deeper positions of the S1 or the S2 site of SERT in comparison to the substrate.Continuing exploring the processes of unbinding four ligands against the two target pockets of SERT,this study observed a broad pathway in which serotonin,cocaine,escitalopram(at the S1 site),and paroxetine all were pulled out to an opening between MT1b and MT6a,which may be helpful to understand the dissociation mechanism of antidepressants.展开更多
The realization of protein functional movement is usually accompanied by specific conformational changes,and there exist some key residues that mediate and control the functional motions of proteins in the allosteric ...The realization of protein functional movement is usually accompanied by specific conformational changes,and there exist some key residues that mediate and control the functional motions of proteins in the allosteric process.In the present work,the perturbation-response scanning method developed by our group was combined with the molecular dynamics(MD)simulation to identify the key residues controlling the functional movement of proteins.In our method,a physical quantity that is directly related to protein specific function was introduced,and then based on the MD simulation trajectories,the perturbation-response scanning method was used to identify the key residues for functional motions,in which the residues that highly correlated with the fluctuation of the function-related quantity were identified as the key residues controlling the specific functional motions of the protein.Two protein systems,i.e.,the heat shock protein 70 and glutamine binding protein,were selected as case studies to validate the effectiveness of our method.Our calculated results are in good agreement with the experimental results.The location of the key residues in the two proteins are similar,indicating the similar mechanisms behind the performance of their biological functions.展开更多
Heat conduction in single-walled carbon nanotubes (SWCNTs) has been investigated by using various methods, while less work has been focused on multi-walled carbon nanotubes (MWCNTs). The thermal conductivities of ...Heat conduction in single-walled carbon nanotubes (SWCNTs) has been investigated by using various methods, while less work has been focused on multi-walled carbon nanotubes (MWCNTs). The thermal conductivities of the double-walled carbon nanotubes (DWCNTs) with two different temperature control methods are studied by using molecular dynamics (MD) simulations. One case is that the heat baths (HBs) are imposed only on the outer wall, while the other is that the HBs are imposed on both the two walls. The results show that the ratio of the thermal conductivity of DWCNTs in the first case to that in the second case is inversely proportional to the ratio of the cross-sectional area of the DWCNT to that of its outer wall. In order to interpret the results and explore the heat conduction mechanisms, the inter-wall thermal transport of DWCNTs is simulated. Analyses of the temperature profiles of a DWCNT and its two walls in the two cases and the inter- wall thermal resistance show that in the first case heat is almost transported only along the outer wall, while in the second case a DWCNT behaves like parallel heat transport channels in which heat is transported along each wall independently. This gives a good explanation of our results and presents the heat conduction mechanisms of MWCNTs.展开更多
The possibility of complex formation by short lysine brush and therapeutic Semax peptides was investigated using molecular dynamics method. Lysine dendrimers and polymer brushes are used for drug and other (e.g., DNA,...The possibility of complex formation by short lysine brush and therapeutic Semax peptides was investigated using molecular dynamics method. Lysine dendrimers and polymer brushes are used for drug and other (e.g., DNA, peptides, and polysaccharides) molecules delivery to different target cells. It is known that they could penetrate blood brain barrier. Since short lysine brush is nontoxic, a system containing of such brush and 8 oppositely charged Semax peptides was studied. It was obtained that stable complexes consisting of brush and peptides formed and structures of these complexes were investigated. Such complex can be used in future for delivery of Semax peptides to brain since these peptides have significant antioxidant, antihypoxic and neuroprotective effects.展开更多
Constrained molecular dynamics simulations have been used to investigate the LiCl and NaCl ionic association in water in terms of atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/M...Constrained molecular dynamics simulations have been used to investigate the LiCl and NaCl ionic association in water in terms of atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM). The simulations make use of the seven-site fluctuating charge and flexible ABEEM-7P water model, based on which an ion-water interaction potential has been constructed. The mean force and the potential of mean force for LiCl and NaCl in water, the charge distributions, as well as the structural and dynamical properties of contact ion pair dissociation have been investigated. The results are reasonable and informative. For LiCl ion pair in water, the solvent-separated ion pair configurations are more stable than contact ion pair configurations. The calculated PMF for NaCl in water indicates that contact ion pair and solvent-separated ion pair configurations are of comparable stability.展开更多
Molecular dynamics simulation is carried out to study the nanometric machining of single crystal Nickel(Ni). Through an investigation of atomic displacement and the variation of cutting force, it is found that the lat...Molecular dynamics simulation is carried out to study the nanometric machining of single crystal Nickel(Ni). Through an investigation of atomic displacement and the variation of cutting force, it is found that the latter is in accordance with the number variation of elastic displaced atoms in the workpiece. It is further found that the generation of complex stacking faults is the predominant cause of cutting force fluctuation, and the stacking faults with complex structures lead to work-hardening. The temperature of the cutting tool and workpiece is studied during the machining process. It is concluded that the selection of averaging steps has a significant influence on the system temperature distribution. Thus, the time-spatial averaging method, which has a high accuracy and consistency in temperature distribution, is proposed.展开更多
In this study two genistein derivatives(G1 and G2)are reported as inhibitors of acetylcholinesterase(AChE)and butyrylcholinesterase(BuChE),and differences in the inhibition of AChE are described.Although they differ i...In this study two genistein derivatives(G1 and G2)are reported as inhibitors of acetylcholinesterase(AChE)and butyrylcholinesterase(BuChE),and differences in the inhibition of AChE are described.Although they differ in structure by a single methyl group,the inhibitory effect of G1(IC50¼264 nmol/L)on AChE was 80 times stronger than that of G2(IC50¼21,210 nmol/L).Enzyme-kinetic analysis,molecular docking and molecular dynamics(MD)simulations were conducted to better understand the molecular basis for this difference.The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE.The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area(MM/GBSA)method were consistent with the experimental data.The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions(ΔEele+ΔGGB)was responsible for the binding affinities of these two inhibitors.Additionally,analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124,Glu292,Val294 and Phe338 of AChE.In conclusion,the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds.展开更多
Nanobeams have promising applications in areas such as sensors,actuators,and resonators in nanoelectromechanical systems(NEMS).Considering the effects of gyration inertia,surface layer mass,surface residual stress,and...Nanobeams have promising applications in areas such as sensors,actuators,and resonators in nanoelectromechanical systems(NEMS).Considering the effects of gyration inertia,surface layer mass,surface residual stress,and surface Young's modulus,this study develops the vibration equations of the Timoshenko nanobeam.The generalized differential quadrature(GDQ)method and molecular dynamics(MD)simulation are used to study the surface effect on vibration.For a rectangular cross section,surface residual stress and surface Young's modulus are all affected by the height of the cross section rather than by the length-height ratio.If surface layer mass is considered,then the first three natural frequencies all decrease relative to their counterparts in the case in which surface layer mass is ignored.Results show that the effect of gyration inertia on resonance frequency is negligible.Longitudinal vibration does not easily occur relative to the bending and rotation vibrations of nanobeams.In addition,the results obtained by the GDQ method fit those obtained by MD simulation for beams with length-height ratios of 4-8.This study provides insights into the mechanism of the vibration of short and deep nanobeams and sheds light on the quantitative design of the elements in NEMSs.展开更多
The structure and properties of molten salt solution o J Li,K|F,Cl system have been investiged by computerized simulation of molecular dynamic method.The partial RDF,the partial molar energy of mixing and the diffusio...The structure and properties of molten salt solution o J Li,K|F,Cl system have been investiged by computerized simulation of molecular dynamic method.The partial RDF,the partial molar energy of mixing and the diffusion coeffients of Li^+,K^+,F^- and Cl^- have been calculated. The results are in agreement with the experimental values.The regularities of the distribution of ions and mieroscopic holes are discussed based on the results of computerized simulation.展开更多
Acetohydroxyacid synthase(AHAS) is the target enzyme of several classes of herbicides,such as sulfonylureas and imidazolinones.Now many mutant AHASs with herbicide resistance have emerged along with extensive use of h...Acetohydroxyacid synthase(AHAS) is the target enzyme of several classes of herbicides,such as sulfonylureas and imidazolinones.Now many mutant AHASs with herbicide resistance have emerged along with extensive use of herbicides,therefore it is imperative to understand the detailed interaction mechanism and resistance mechanism so as to develop new potent inhibitors for wild-type or resistant AHAS.With the aid of available crystal structures of the Arabidopsis thaliana(At) AHAS-inhibitor complex,molecular dynamics(MD) simulations were used to investigate the interaction and resistance mechanism directly and dynamically at the atomic level.Nanosecond-level MD simulations were performed on six systems consisting of wild-type or W574L mutant AtAHAS in the complex with three sulfonylurea inhibitors,separately,and binding free energy was calculated for each system using the MM-GBSA method.Comprehensive analyses from structural and energetic aspects confirmed the importance of residue W574,and also indicated that W574L mutation might alert the structural charactersistic of the substrate access channel and decrease the binding affinity of inhibitors,which cooperatively weaken the effective channel-blocked effect and finally result in weaker inhibitory effect of inhibitor and corresponding herbicide resistance of W574L mutant.To our knowledge,it is the first report about MD simulations study on the AHAS-related system,which will pave the way to study the interactions between herbicides and wild-type or mutant AHAS dynamically,and decipher the resistance mechanism at the atomic level for better designing new potent anti-resistance herbicides.展开更多
The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstru...The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstructure transformation mechanisms were analyzed by several methods. The system was found to be solidified into amorphous structures from different initial melt temperatures at the same cooling rate of 1×10^12 K/s, and the 1551 bond-type and the icosahedron basic cluster (12 0 12 0 ) played a key role in the microstructure transition. Different initial melt temperatures had significant effects on the final microstructures. These effects only can be clearly observed below the glass transition temperature Tg; and these effects are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. However, the changes of the average atomic energy of the systems are still linearly related with the initial melt temperatures, namely, the higher the initial melt temperature is, the more stable the amorphous structure is and the stronger the glass forming ability will be.展开更多
The embedded-atom method(EAM)is used to study the behavior of helium in meta-ls.By fitting the measured parameters such as the activation energy and the heat of solution,the EAM potentials of helium in nickel are extr...The embedded-atom method(EAM)is used to study the behavior of helium in meta-ls.By fitting the measured parameters such as the activation energy and the heat of solution,the EAM potentials of helium in nickel are extracted.Based upon the EAM potentials,thebinding energy and the self-trapping of helium in nickel are investigated with molecular dynam-ics simulation.展开更多
In this paper, thermoelastic problem of onedimensional copper rod under thermal shock is simulated using molecular dynamics method by adopting embedded atom method potential. The rod is on axis x, the left outermost s...In this paper, thermoelastic problem of onedimensional copper rod under thermal shock is simulated using molecular dynamics method by adopting embedded atom method potential. The rod is on axis x, the left outermost surface of which is traction free and the right outermost surface is fixed. Free boundary condition is imposed on the outermost surfaces in direction y and z. The left and right ends of the rod are subjected to hot and cold baths, respectively. Temperature, displacement and stress distributions are obtained along the rod at different moments, which are shown to be limited in the mobile region, indicating that the heat propagation speed is limited rather than infinite. This is consistent with the prediction given by generalized thermoelastic theory. From simulation results we find that the speed of heat conduction is the same as the speed of thermal stress wave. In the present paper, the simulations are conducted using the large-scale atomic/molecular massively parallel simulator and completed visualization software.展开更多
The insulin-degrading enzyme(IDE)plays a significant role in the degradation of the amyloid beta(Aβ),a peptide found in the brain regions of the patients with early Alzheimer’s disease.Adenosine triphosphate(ATP)all...The insulin-degrading enzyme(IDE)plays a significant role in the degradation of the amyloid beta(Aβ),a peptide found in the brain regions of the patients with early Alzheimer’s disease.Adenosine triphosphate(ATP)allosterically regulates the Aβ-degrading activity of IDE.The present study investigates the electrostatic interactions between ATP-IDE at the allosteric site of IDE,including thermostabilities/flexibilities of IDE residues,which have not yet been explored systematically.This study applies the quantum mechanics/molecular mechanics(QM/MM)to the proposed computational model for exploring electrostatic interactions between ATP and IDE.Molecular dynamic(MD)simulations are performed at different temperatures for identifying flexible and thermostable residues of IDE.The proposed computational model predicts QM/MM energy-minimised structures providing the IDE residues(Lys530 and Asp385)with high binding affinities.Considering root mean square fluctuation values during the MD simulations at 300.00 K including heat-shock temperatures(321.15 K and 315.15 K)indicates that Lys530 and Asp385 are also the thermostable residues of IDE,whereas Ser576 and Lys858 have high flexibilities with compromised thermostabilities.The present study sheds light on the phenomenon of biological recognition and interactions at the ATP-binding domain,which may have important implications for pharmacological drug design.The proposed computational model may facilitate the development of allosteric IDE activators/inhibitors,which mimic ATP interactions.展开更多
Free transverse vibration of monolayer graphene, boron nitride (BN), and silicon carbide (SiC) sheets is investigated by using molecular dynamics finite element method. Eigenfrequencies and eigenmodes of these three s...Free transverse vibration of monolayer graphene, boron nitride (BN), and silicon carbide (SiC) sheets is investigated by using molecular dynamics finite element method. Eigenfrequencies and eigenmodes of these three sheets in rectangular shape are studied with different aspect ratios with respect to various boundary conditions. It is found that aspect ratios and boundary conditions affect in a similar way on natural frequencies of graphene, BN, and SiC sheets. Natural frequencies in all modes decrease with an increase of the sheet’s size. Graphene exhibits the highest natural frequencies, and SiC sheet possesses the lowest ones. Missing atoms have minor effects on natural frequencies in this study.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11904036 and 12175081)Fundamental Research Funds for the Central Universities(Grant No.CCNU22QNOO4)。
文摘The human serotonin transporter(SERT)terminates neurotransmission by removing serotonin from the synaptic cleft,which is an essential process that plays an important role in depression.In addition to natural substrate serotonin,SERT is also the target of the abused drug cocaine and,clinically used antidepressants,escitalopram,and paroxetine.To date,few studies have attempted to investigate the unbinding mechanism underlying the orthosteric and allosteric modulation of SERT.In this article,the conserved property of the orthosteric and allosteric sites(S1 and S2)of SERT was revealed by combining the high resolutions of x-ray crystal structures and molecular dynamics(MD)simulations.The residues Tyr95 and Ser438 located within the S1 site,and Arg104 located within the S2 site in SERT illustrate conserved interactions(hydrogen bonds and hydrophobic interactions),as responses to selective serotonin reuptake inhibitors.Van der Waals interactions were keys to designing effective drugs inhibiting SERT and further,electrostatic interactions highlighted escitalopram as a potent antidepressant.We found that cocaine,escitalopram,and paroxetine,whether the S1 site or the S2 site,were more competitive.According to this potential of mean force(PMF)simulations,the new insights reveal the principles of competitive inhibitors that lengths of trails from central SERT to an opening were~18A for serotonin and~22 A for the above-mentioned three drugs.Furthermore,the distance between the natural substrate serotonin and cocaine(or escitalopram)at the allosteric site was~3A.Thus,it can be inferred that the potent antidepressants tended to bind at deeper positions of the S1 or the S2 site of SERT in comparison to the substrate.Continuing exploring the processes of unbinding four ligands against the two target pockets of SERT,this study observed a broad pathway in which serotonin,cocaine,escitalopram(at the S1 site),and paroxetine all were pulled out to an opening between MT1b and MT6a,which may be helpful to understand the dissociation mechanism of antidepressants.
文摘The realization of protein functional movement is usually accompanied by specific conformational changes,and there exist some key residues that mediate and control the functional motions of proteins in the allosteric process.In the present work,the perturbation-response scanning method developed by our group was combined with the molecular dynamics(MD)simulation to identify the key residues controlling the functional movement of proteins.In our method,a physical quantity that is directly related to protein specific function was introduced,and then based on the MD simulation trajectories,the perturbation-response scanning method was used to identify the key residues for functional motions,in which the residues that highly correlated with the fluctuation of the function-related quantity were identified as the key residues controlling the specific functional motions of the protein.Two protein systems,i.e.,the heat shock protein 70 and glutamine binding protein,were selected as case studies to validate the effectiveness of our method.Our calculated results are in good agreement with the experimental results.The location of the key residues in the two proteins are similar,indicating the similar mechanisms behind the performance of their biological functions.
基金supported by the National Natural Science Foundation of China(Grant Nos.51322603,51136001,and 51356001)the Program for New Century Excellent Talents in University,Science Fund for Creative Research Groups of China(Grant No.51321002)the Initiative Scientific Research Program of Tsinghua University,China
文摘Heat conduction in single-walled carbon nanotubes (SWCNTs) has been investigated by using various methods, while less work has been focused on multi-walled carbon nanotubes (MWCNTs). The thermal conductivities of the double-walled carbon nanotubes (DWCNTs) with two different temperature control methods are studied by using molecular dynamics (MD) simulations. One case is that the heat baths (HBs) are imposed only on the outer wall, while the other is that the HBs are imposed on both the two walls. The results show that the ratio of the thermal conductivity of DWCNTs in the first case to that in the second case is inversely proportional to the ratio of the cross-sectional area of the DWCNT to that of its outer wall. In order to interpret the results and explore the heat conduction mechanisms, the inter-wall thermal transport of DWCNTs is simulated. Analyses of the temperature profiles of a DWCNT and its two walls in the two cases and the inter- wall thermal resistance show that in the first case heat is almost transported only along the outer wall, while in the second case a DWCNT behaves like parallel heat transport channels in which heat is transported along each wall independently. This gives a good explanation of our results and presents the heat conduction mechanisms of MWCNTs.
文摘The possibility of complex formation by short lysine brush and therapeutic Semax peptides was investigated using molecular dynamics method. Lysine dendrimers and polymer brushes are used for drug and other (e.g., DNA, peptides, and polysaccharides) molecules delivery to different target cells. It is known that they could penetrate blood brain barrier. Since short lysine brush is nontoxic, a system containing of such brush and 8 oppositely charged Semax peptides was studied. It was obtained that stable complexes consisting of brush and peptides formed and structures of these complexes were investigated. Such complex can be used in future for delivery of Semax peptides to brain since these peptides have significant antioxidant, antihypoxic and neuroprotective effects.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20633050 and 20703022)
文摘Constrained molecular dynamics simulations have been used to investigate the LiCl and NaCl ionic association in water in terms of atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM). The simulations make use of the seven-site fluctuating charge and flexible ABEEM-7P water model, based on which an ion-water interaction potential has been constructed. The mean force and the potential of mean force for LiCl and NaCl in water, the charge distributions, as well as the structural and dynamical properties of contact ion pair dissociation have been investigated. The results are reasonable and informative. For LiCl ion pair in water, the solvent-separated ion pair configurations are more stable than contact ion pair configurations. The calculated PMF for NaCl in water indicates that contact ion pair and solvent-separated ion pair configurations are of comparable stability.
基金supported by the National Natural Science Foundation of China(Grant No.51375082)
文摘Molecular dynamics simulation is carried out to study the nanometric machining of single crystal Nickel(Ni). Through an investigation of atomic displacement and the variation of cutting force, it is found that the latter is in accordance with the number variation of elastic displaced atoms in the workpiece. It is further found that the generation of complex stacking faults is the predominant cause of cutting force fluctuation, and the stacking faults with complex structures lead to work-hardening. The temperature of the cutting tool and workpiece is studied during the machining process. It is concluded that the selection of averaging steps has a significant influence on the system temperature distribution. Thus, the time-spatial averaging method, which has a high accuracy and consistency in temperature distribution, is proposed.
基金This work was funded in part of the Research Special Fund for Public Welfare Industry of Health(No.200802041)the National Great Science and Technology Projects(2012ZX09301002,2014ZX09507003-002)+1 种基金the International Collaboration Project(2011DFR31240)Institue of Chinese Materia Medica,China Academy of Chinese Medical Sciences&Peking Union Medical College graduate student innovation fund(2013-1007-18).
文摘In this study two genistein derivatives(G1 and G2)are reported as inhibitors of acetylcholinesterase(AChE)and butyrylcholinesterase(BuChE),and differences in the inhibition of AChE are described.Although they differ in structure by a single methyl group,the inhibitory effect of G1(IC50¼264 nmol/L)on AChE was 80 times stronger than that of G2(IC50¼21,210 nmol/L).Enzyme-kinetic analysis,molecular docking and molecular dynamics(MD)simulations were conducted to better understand the molecular basis for this difference.The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE.The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area(MM/GBSA)method were consistent with the experimental data.The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions(ΔEele+ΔGGB)was responsible for the binding affinities of these two inhibitors.Additionally,analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124,Glu292,Val294 and Phe338 of AChE.In conclusion,the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds.
基金This study was supported by the National Natural Science Foundation of China(Grand Number 11672334).
文摘Nanobeams have promising applications in areas such as sensors,actuators,and resonators in nanoelectromechanical systems(NEMS).Considering the effects of gyration inertia,surface layer mass,surface residual stress,and surface Young's modulus,this study develops the vibration equations of the Timoshenko nanobeam.The generalized differential quadrature(GDQ)method and molecular dynamics(MD)simulation are used to study the surface effect on vibration.For a rectangular cross section,surface residual stress and surface Young's modulus are all affected by the height of the cross section rather than by the length-height ratio.If surface layer mass is considered,then the first three natural frequencies all decrease relative to their counterparts in the case in which surface layer mass is ignored.Results show that the effect of gyration inertia on resonance frequency is negligible.Longitudinal vibration does not easily occur relative to the bending and rotation vibrations of nanobeams.In addition,the results obtained by the GDQ method fit those obtained by MD simulation for beams with length-height ratios of 4-8.This study provides insights into the mechanism of the vibration of short and deep nanobeams and sheds light on the quantitative design of the elements in NEMSs.
文摘The structure and properties of molten salt solution o J Li,K|F,Cl system have been investiged by computerized simulation of molecular dynamic method.The partial RDF,the partial molar energy of mixing and the diffusion coeffients of Li^+,K^+,F^- and Cl^- have been calculated. The results are in agreement with the experimental values.The regularities of the distribution of ions and mieroscopic holes are discussed based on the results of computerized simulation.
基金supported by the National Natural Science Foundation of China (Grant Nos.20432010, 20421202, and 90713011)the National Key Project for Basic Research (Grant Nos.2008DFA30770 and 2010CB126102)Key Project of Ministry of Education,China (Grant No.104189) and Institute of Scientific Computing (ISC) of Nankai University
文摘Acetohydroxyacid synthase(AHAS) is the target enzyme of several classes of herbicides,such as sulfonylureas and imidazolinones.Now many mutant AHASs with herbicide resistance have emerged along with extensive use of herbicides,therefore it is imperative to understand the detailed interaction mechanism and resistance mechanism so as to develop new potent inhibitors for wild-type or resistant AHAS.With the aid of available crystal structures of the Arabidopsis thaliana(At) AHAS-inhibitor complex,molecular dynamics(MD) simulations were used to investigate the interaction and resistance mechanism directly and dynamically at the atomic level.Nanosecond-level MD simulations were performed on six systems consisting of wild-type or W574L mutant AtAHAS in the complex with three sulfonylurea inhibitors,separately,and binding free energy was calculated for each system using the MM-GBSA method.Comprehensive analyses from structural and energetic aspects confirmed the importance of residue W574,and also indicated that W574L mutation might alert the structural charactersistic of the substrate access channel and decrease the binding affinity of inhibitors,which cooperatively weaken the effective channel-blocked effect and finally result in weaker inhibitory effect of inhibitor and corresponding herbicide resistance of W574L mutant.To our knowledge,it is the first report about MD simulations study on the AHAS-related system,which will pave the way to study the interactions between herbicides and wild-type or mutant AHAS dynamically,and decipher the resistance mechanism at the atomic level for better designing new potent anti-resistance herbicides.
基金Projects(50831003,51071065,51101022,51102090) supported by the National Natural Science Foundation of China
文摘The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstructure transformation mechanisms were analyzed by several methods. The system was found to be solidified into amorphous structures from different initial melt temperatures at the same cooling rate of 1×10^12 K/s, and the 1551 bond-type and the icosahedron basic cluster (12 0 12 0 ) played a key role in the microstructure transition. Different initial melt temperatures had significant effects on the final microstructures. These effects only can be clearly observed below the glass transition temperature Tg; and these effects are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. However, the changes of the average atomic energy of the systems are still linearly related with the initial melt temperatures, namely, the higher the initial melt temperature is, the more stable the amorphous structure is and the stronger the glass forming ability will be.
基金The project supported by the National Natural Science Foundation of China
文摘The embedded-atom method(EAM)is used to study the behavior of helium in meta-ls.By fitting the measured parameters such as the activation energy and the heat of solution,the EAM potentials of helium in nickel are extracted.Based upon the EAM potentials,thebinding energy and the self-trapping of helium in nickel are investigated with molecular dynam-ics simulation.
基金supported by the National Natural Science Foundation of China (10872158)
文摘In this paper, thermoelastic problem of onedimensional copper rod under thermal shock is simulated using molecular dynamics method by adopting embedded atom method potential. The rod is on axis x, the left outermost surface of which is traction free and the right outermost surface is fixed. Free boundary condition is imposed on the outermost surfaces in direction y and z. The left and right ends of the rod are subjected to hot and cold baths, respectively. Temperature, displacement and stress distributions are obtained along the rod at different moments, which are shown to be limited in the mobile region, indicating that the heat propagation speed is limited rather than infinite. This is consistent with the prediction given by generalized thermoelastic theory. From simulation results we find that the speed of heat conduction is the same as the speed of thermal stress wave. In the present paper, the simulations are conducted using the large-scale atomic/molecular massively parallel simulator and completed visualization software.
文摘The insulin-degrading enzyme(IDE)plays a significant role in the degradation of the amyloid beta(Aβ),a peptide found in the brain regions of the patients with early Alzheimer’s disease.Adenosine triphosphate(ATP)allosterically regulates the Aβ-degrading activity of IDE.The present study investigates the electrostatic interactions between ATP-IDE at the allosteric site of IDE,including thermostabilities/flexibilities of IDE residues,which have not yet been explored systematically.This study applies the quantum mechanics/molecular mechanics(QM/MM)to the proposed computational model for exploring electrostatic interactions between ATP and IDE.Molecular dynamic(MD)simulations are performed at different temperatures for identifying flexible and thermostable residues of IDE.The proposed computational model predicts QM/MM energy-minimised structures providing the IDE residues(Lys530 and Asp385)with high binding affinities.Considering root mean square fluctuation values during the MD simulations at 300.00 K including heat-shock temperatures(321.15 K and 315.15 K)indicates that Lys530 and Asp385 are also the thermostable residues of IDE,whereas Ser576 and Lys858 have high flexibilities with compromised thermostabilities.The present study sheds light on the phenomenon of biological recognition and interactions at the ATP-binding domain,which may have important implications for pharmacological drug design.The proposed computational model may facilitate the development of allosteric IDE activators/inhibitors,which mimic ATP interactions.
文摘Free transverse vibration of monolayer graphene, boron nitride (BN), and silicon carbide (SiC) sheets is investigated by using molecular dynamics finite element method. Eigenfrequencies and eigenmodes of these three sheets in rectangular shape are studied with different aspect ratios with respect to various boundary conditions. It is found that aspect ratios and boundary conditions affect in a similar way on natural frequencies of graphene, BN, and SiC sheets. Natural frequencies in all modes decrease with an increase of the sheet’s size. Graphene exhibits the highest natural frequencies, and SiC sheet possesses the lowest ones. Missing atoms have minor effects on natural frequencies in this study.