A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstru...A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstruction by focused ion-scanning electron in combination with analysis of TOC,R_(o)values,X-ray diffraction etc.in the Cretaceous Qingshankou Formation shale in the Songliao Basin,NE China.Such pore characteristics and evolution study show that:(1)Organo-clay complex pore-fractures are developed in the shale matrix and in the form of spongy and reticular aggregates.Different from circular or oval organic pores discovered in other shales,a single organo-clay complex pore is square,rectangular,rhombic or slaty,with the pore diameter generally less than 200 nm.(2)With thermal maturity increasing,the elements(C,Si,Al,O,Mg,Fe,etc.)in organo-clay complex change accordingly,showing that organic matter shrinkage due to hydrocarbon generation and clay mineral transformation both affect organo-clay complex pore-fracture formation.(3)At high thermal maturity,the Qingshankou Formation shale is dominated by nano-scale organo-clay complex pore-fractures with the percentage reaching more than 70%of total pore space.The spatial connectivity of organo-clay complex pore-fractures is significantly better than that of organic pores.It is suggested that organo-complex pore-fractures are the main pore space of laminar shale at high thermal maturity and are the main oil and gas accumulation space in the core area of continental shale oil.The discovery of nano-scale organo-clay complex pore-fractures changes the conventional view that inorganic pores are the main reservoir space and has scientific significance for the study of shale oil formation and accumulation laws.展开更多
Based on the observation and analysis of cores and thin sections,and combined with cathodoluminescence,laser Raman,fluid inclusions,and in-situ LA-ICP-MS U-Pb dating,the genetic mechanism and petroleum geological sign...Based on the observation and analysis of cores and thin sections,and combined with cathodoluminescence,laser Raman,fluid inclusions,and in-situ LA-ICP-MS U-Pb dating,the genetic mechanism and petroleum geological significance of calcite veins in shales of the Cretaceous Qingshankou Formation in the Songliao Basin were investigated.Macroscopically,the calcite veins are bedding parallel,and show lenticular,S-shaped,cone-in-cone and pinnate structures.Microscopically,they can be divided into syntaxial blocky or columnar calcite veins and antitaxial fibrous calcite veins.The aqueous fluid inclusions in blocky calcite veins have a homogenization temperature of 132.5–145.1℃,the in-situ U-Pb dating age of blocky calcite veins is(69.9±5.2)Ma,suggesting that the middle maturity period of source rocks and the conventional oil formation period in the Qingshankou Formation are the sedimentary period of Mingshui Formation in Late Cretaceous.The aqueous fluid inclusions in fibrous calcite veins with the homogenization temperature of 141.2–157.4℃,yields the U-Pb age of(44.7±6.9)Ma,indicating that the middle-high maturity period of source rocks and the Gulong shale oil formation period in the Qingshankou Formation are the sedimentary period of Paleocene Yi'an Formaiton.The syntaxial blocky or columnar calcite veins were formed sensitively to the diagenetic evolution and hydrocarbon generation,mainly in three stages(fracture opening,vein-forming fluid filling,and vein growth).Tectonic extrusion activities and fluid overpressure are induction factors for the formation of fractures,and vein-forming fluid flows mainly as diffusion in a short distance.These veins generally follow a competitive growth mode.The antitaxial fibrous calcite veins were formed under the driving of the force of crystallization in a non-competitive growth environment.It is considered that the calcite veins in organic-rich shale of the Qingshankou Formation in the study area has important implications for local tectonic activities,fluid overpressure,hydrocarbon generation and expulsion,and diagenesis-hydrocarbon accumulation dating of the Songliao Basin.展开更多
The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important r...The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area.展开更多
An ostracod biostratigraphic study was performed on 425 samples from the composite geological section constructed by using cores taken from five selected wells drilled in the Late Cretaceous Qingshankou Formation in t...An ostracod biostratigraphic study was performed on 425 samples from the composite geological section constructed by using cores taken from five selected wells drilled in the Late Cretaceous Qingshankou Formation in the Songliao basin. A total of 19 ostracod zones are established in the formation, of which 3 are newly established and 3 are revised. The 19 ostracod zones are described in detail. This study provides a basis for the detailed stratigraphic division and correlation of the Qingshankou Formation and the Gaotaizi oil reservoir in the oilfield in the Songliao basin.展开更多
Micropores of shale are significant to the gas content and production potential of shale, which has been verified in the research of marine shale gas; while, few studies have been conducted on lacustrine shales. This ...Micropores of shale are significant to the gas content and production potential of shale, which has been verified in the research of marine shale gas; while, few studies have been conducted on lacustrine shales. This study collected 42 samples from three wells in the Late Cretaceous Qingshankou Formation of the southern Songliao Basin, NE China, and investigated these samples by the focused ion beam-scanning electron microscope(FIB–SEM) and nitrogen adsorption analysis techniques. Four types of micropores were identified in the samples, i.e., intergranular pore, intracellular pore, organic matter pore and microfracture. The pore structure type is characterized by open slit pores and "ink type" pores which are mainly 1.5–5 nm in diameter with mesopores as the main pores. The mesopores account for 74.01% of the pore volume and 54.68% of the pore surface area. Compared with the lacustrine shales from the Triassic Yanchang Formation in the Ordos Basin and Xujiahe Formation in the Sichuan Basin, the intergranular clay mineral interlayer pores are considered to be the main reservoir space for shale gas storage in the study area, followed by intraparticle pores, organic matter pores and microfractures. Maturity and micropore are the key controlling factors which affect the shale gas content of the Qingshankou Formation in southern Songliao Basin.展开更多
An analysis of drill cores and well logs shows that the main micro-facies of the third member sand bodies of the Qingshankou Formation in Qian'an are subaqueous distributary channel facies, sheet sand facies and suba...An analysis of drill cores and well logs shows that the main micro-facies of the third member sand bodies of the Qingshankou Formation in Qian'an are subaqueous distributary channel facies, sheet sand facies and subaqueous fan facies (olistostrome). Maps showing the distribution of these micro-facies together with inter-channel bay and prodelta mocro-facies are presented for different time-slices (lower, middle and upper parts of the Qingshankou Formation). These maps reveal the instability and change of sediment transport in the Baokang sedimentary system during the depositional period. Sediment transport was from the west in the early stage, from the south in the middle stage and from the northwest in the late stage. Values of thickness, porosity and permeability of the sand bodies in the third member of the Qingshankou Formation show that they have low to medium porosity and low permeability, and are characterized by serious reservoir heterogeneity. The joints between micro-facies and subaqueous fan micro-facies are characterized by the highest heterogeneity, the sheet sand and distal sand bar subfacies come next, and the heterogeneity of the subaqueous distributary channel sand bodies is relatively weak.展开更多
The lithology, lithofacies, reservoir properties and shale oil enrichment model of the fine-grained sedimentary system in a lake basin with terrigenous clastics of large depression are studied taking the organic-rich ...The lithology, lithofacies, reservoir properties and shale oil enrichment model of the fine-grained sedimentary system in a lake basin with terrigenous clastics of large depression are studied taking the organic-rich shale in the first member of Cretaceous Qingshankou Formation(shortened as Qing 1 Member) in the Changling Sag, southern Songliao Basin as an example. A comprehensive analysis of mineralogy, thin section, test, log and drilling geologic data shows that lamellar shale with high TOC content of semi-deep lake to deep lake facies has higher hydrocarbon generation potential than the massive mudstone facies with medium TOC content, and has bedding-parallel fractures acting as effective reservoir space under over pressure. The sedimentary environments changing periodically and the undercurrent transport deposits in the outer delta front give rise to laminated shale area. The laminated shale with medium TOC content has higher hydrocarbon generation potential than the laminated shale with low TOC content, and the generated oil migrates a short distance to the sandy laminae to retain and accumulate in situ. Ultra-low permeability massive mudstone facies as the top and bottom seals, good preservation conditions, high pressure coefficient, and lamellar shale facies with high TOC are the conditions for "lamellation type" shale oil enrichment in some sequences and zones. The sequence and zone with laminated shale of medium TOC content in oil window and with micro-migration of expelled hydrocarbon are the condition for the enrichment of "lamination type" shale oil. The tight oil and "lamination type" shale oil are in contiguous distribution.展开更多
The targeted reservoir,which is referred as the first member of Cretaceous Qingshankou Formation in Gulong Sag,Songliao Basin,NE China,is characterized by the enrichment of clay and lamellation fractures.Aiming at the...The targeted reservoir,which is referred as the first member of Cretaceous Qingshankou Formation in Gulong Sag,Songliao Basin,NE China,is characterized by the enrichment of clay and lamellation fractures.Aiming at the technical challenge of determining oil saturation of such reservoir,nano-pores were accurately described and located through focused ion beam scanning electron microscopy and quantitative evaluation of minerals by scanning electron microscopy based on Simandoux model,to construct a 4D digital core frame.Electrical parameters of the shale reservoir were determined by finite element simulation,and the oil saturation calculation method suitable for shale was proposed.Comparison between the results from this method with that from real core test and 2D nuclear magnetic log shows that the absolute errors meet the requirements of the current reserve specification in China for clay-rich shale reservoir.Comparison analysis of multiple wells shows that the oil saturation values calculated by this method of several points vertically in single wells and multiple wells on the plane are in agreement with the test results of core samples and the regional deposition pattern,proving the accuracy and applicability of the method model.展开更多
Through the study of organic matter enrichment,hydrocarbon generation and accumulation process of black shale of the Cretaceous Qingshankou Formation in the Songliao Basin,the enrichment mechanism of Gulong shale oil ...Through the study of organic matter enrichment,hydrocarbon generation and accumulation process of black shale of the Cretaceous Qingshankou Formation in the Songliao Basin,the enrichment mechanism of Gulong shale oil and the distribution of conventional–unconventional oil are revealed.The Songliao Basin is a huge interior lake basin formed in the Early Cretaceous under the control of the subduction and retreat of the western Pacific plate and the massive horizontal displacement of the Tanlu Fault Zone in Northeast China.During the deposition of the Qingshankou Formation,strong terrestrial hydrological cycle led to the lake level rise of the ancient Songliao Basin and the input of a large amount of nutrients,resulting in planktonic bacteria and algae flourish.Intermittent seawater intrusion events promoted the formation of salinization stratification and anoxic environment in the lake,which were beneficial to the enrichment of organic matters.Biomarkers analysis confirms that the biogenic organic matter of planktonic bacteria and algae modified by microorganisms plays an important role in the formation of high-quality source rocks with high oil generation capability.There are four favorable conditions for the enrichment of light shale oil in the Qingshankou Formation of the Gulong Sag,Songliao Basin:the moderate organic matter abundance and high oil potential provide sufficient material basis for oil enrichment;high degree of thermal evolution makes shale oil have high GOR and good mobility;low hydrocarbon expulsion efficiency leads to a high content of retained hydrocarbons in the source rock;and the confinement effect of intra-layer cement in the high maturity stage induces the efficient accumulation of light shale oil.The restoration of hydrocarbon accumulation process suggests that liquid hydrocarbons generated in the early(low–medium maturity)stage of the Qingshankou Formation source rocks accumulated in placanticline and slope after long-distance secondary migration,forming high-quality conventional and tight oil reservoirs.Light oil generated in the late(medium–high maturity)stage accumulated in situ,forming about 15 billion tons of Gulong shale oil resources,which finally enabled the orderly distribution of conventional–unconventional oils that are contiguous horizontally and superposed vertically within the basin,showing a complete pattern of“whole petroleum system”with conventional oil,tight oil and shale oil in sequence.展开更多
Pure shales in the first member of Qingshankou Formation(simplified as Qing 1 Member)in the southern Songliao Basin,i.e.,the semi-deep and deep lacustrine shales,are characterized by a high content of clay minerals an...Pure shales in the first member of Qingshankou Formation(simplified as Qing 1 Member)in the southern Songliao Basin,i.e.,the semi-deep and deep lacustrine shales,are characterized by a high content of clay minerals and poor hydrocarbon mobility,making the development of shale oil difficult.According to the drilling and testing results,the shale of Qing 1 Member can be classified into 3 lithofacies,i.e.,bedded argillaceous shale,laminated diamictite shale,and interbedded felsic shale.The TOC and brittle minerals control the enrichment of shale oil,of them,TOC controls the total oil content,in other words,the total oil content increases with the increase of TOC;while the laminae made up of brittle minerals contain a large number of bigger intergranular pores which are favorable enrichment space for movable shale oil.In consideration of the origins of the 3 lithofacies,two shale oil enrichment models are classified,i.e.,the deep lacustrine high-TOC bedded argillaceous shale(Model-I)and the semi-deep lacustrine moderate-high-TOC laminated diamictite shale(Model-II).In the Model-I,the shale is characterized by high hydrocarbon generation ability,high total oil content,abundant horizontal bedding fractures,and vertical and high angle fractures locally;the complex fracture network formed by horizontal bedding fractures and vertical fractures improve the storage capacity and permeability of the shale reservoir,increase the enrichment space for movable oil.In the Model-II,the shale is characterized by good hydrocarbon generation ability and fairly high total oil content,and as the brittle laminae contain large intergranular pores,the shale has a higher movable oil content.Based on the two models,shale oil sweet-spot areas of 2880 km2 in the southern Songliao Basin are favorable for further exploration.Aimed at the difficulties in reservoir fracturing of the lacustrine shale with a high content of clay minerals,the composite fracturing technology with supercritical carbon dioxide was used in the shale oil reservoir for the first time,realizing large-scale volume fracturing in shale with a high content of clay minerals and strong heterogeneity,marking a breakthrough of oil exploration in continental shale with a high content of clay minerals in China.展开更多
Located at Songliao Basin in the Northeastern China, SK-1 is the first Cretaceous terrestrial scientific drilling in the world.This program recovered the Middle to Upper Cretaceous strata of Songliao Basin which inclu...Located at Songliao Basin in the Northeastern China, SK-1 is the first Cretaceous terrestrial scientific drilling in the world.This program recovered the Middle to Upper Cretaceous strata of Songliao Basin which includes,from bottom to top,the Quantou, Qingshankou,Yaojia,Nenjiang,Mingshui and Sifangtai Formations.Lithofacies analysis has been undertaken on the core of Qingshankou Formation by a combination展开更多
Pyrite is a ubiquitous authigenic mineral in modern anoxic sediments and occurs in ancient sedimentary rocks.Study of sedimentary pyrite morphology, which can provide useful information on deposition environments and ...Pyrite is a ubiquitous authigenic mineral in modern anoxic sediments and occurs in ancient sedimentary rocks.Study of sedimentary pyrite morphology, which can provide useful information on deposition environments and early diagenetic processes,has become an important aspect for reconstruction of palaeoenviroment.The Upper Cretaceous Qingshankou Formation Unit 1(K<sub>2</sub>qn<sup>1</sup>)lithology,which occured in the south well of the SLCORE I for Continental Cretaceous Scientific Drilling Project展开更多
Because of the influence of hydrocarbons,especially adsorbed hydrocarbons,on the detection of cracked hydrocarbon(S2)and total organic carbon(TOC),the hydrogen index(HI)-based hydrocarbon generation model deviates fro...Because of the influence of hydrocarbons,especially adsorbed hydrocarbons,on the detection of cracked hydrocarbon(S2)and total organic carbon(TOC),the hydrogen index(HI)-based hydrocarbon generation model deviates from actual practice.In this study,the shale in the first member of the Qingshankou Formation in the central depression of the Songliao Basin,where in northeastern China,was taken as the research object and a correction method for S2 and TOC was established.By correcting the experimental results of different maturity samples,the actual hydrocarbon generation model has been revealed,the differences before and after correction compared,and the evolutionary characteristics of the adsorbed hydrocarbon content were clarified.The results show that the organic matter enters the hydrocarbon generation threshold at R_(o)-0.5% and reaches the hydrocarbon generation peak at R_(o)-1.0% and that the hydrocarbon generation process ends at R_(o)-1.3%.The hydrocarbon generation model established based on the measured values has a‘lag effect’compared to actual values,and this extends the hydrocarbon generation window of organic matter and delays the hydrocarbon generation peak.With the increase of maturity,adsorbed hydrocarbon content shows the characteristics of‘first increasing,then stabilizing,and then decreasing’,and reache s the most abundant stage at Roof 0.9%-1.3%.展开更多
On the basis of sorting out current understanding of solid bitumen (SB) in shales and taking organic-rich shales in the first member of the Cretaceous Qingshankou Formation in the Songliao Basin as an example, the def...On the basis of sorting out current understanding of solid bitumen (SB) in shales and taking organic-rich shales in the first member of the Cretaceous Qingshankou Formation in the Songliao Basin as an example, the definition, classification, occurrence and evolution path of SB are systemtically studied, and the indicative significance of SB reflectance (Rob) on maturity and its influence on the development of reservoir space are discussed and summarized. The results show that the difference of primary maceral types is primarily responsible for the different evolution paths of SB. Most of the pre-oil bitumen is in-situ SB with only a small amount being of migrated SB, while most of the post-oil bitumen and pyrobitumen are migrated SB. From the immature to early oil maturity stage, bituminite, vitrinite, and inertinite can be distinguished from SB based on their optical characteristics under reflected light, and alginite can be differentiated from SB by their fluorescence characteristics. Under scanning electron microscope, in-situ SB and migrated SB can be effectively identified. Rob increases linearly with increasing vitrinite reflectance (Ro), as a result of a decrease of aliphatic structure and the enhancement of aromatization of SB. Within the oil window three types of secondary pores may develop in SB, including modified mineral pores, devolatilization cracks and bubble holes. At a high maturity stage spongy pores may develop in pyrobitumen. Scanning electron microscopy combined with in-situ SEM-Raman spectroscopy can further reveal the structral information of different types of SB, thus providing crucial data for understanding for understanding OM migration paths, dynamics, and distances at micro-scale.展开更多
A quantitative evaluation model that integrates kerogen adsorption and clay pore adsorption of shale oil was proposed,and the evaluation charts of adsorption-swelling capacity of kerogen(Mk)and adsorbed oil capacity o...A quantitative evaluation model that integrates kerogen adsorption and clay pore adsorption of shale oil was proposed,and the evaluation charts of adsorption-swelling capacity of kerogen(Mk)and adsorbed oil capacity of clay minerals(Mc)were established,taking the 1st member of Cretaceous Qingshankou Formation in the northern Songliao Basin as an example.The model and charts were derived from swelling oil experiments performed on naturally evolved kerogens and adsorbed oil experiments on clays(separated from shale core samples).They were constructed on the basis of clarifying the control law of kerogen maturity evolution on its adsorption-swelling capacity,and considering the effect of both the clay pore surface area that occupied by adsorbed oil and formation temperature.The results are obtained in four aspects:(1)For the Qing 1 Member shale,with the increase of maturity,Mk decreases.Given Ro of 0.83%–1.65%,Mk is about 50–250 mg/g.(2)The clay in shale adsorbs asphaltene.Mc is 0.63 mg/m^(2),and about 15%of the clay pore surface is occupied by adsorbed oil.(3)In the low to medium maturity stages,the shale oil adsorption is controlled by organic matter.When Ro>1.3%,the shale oil adsorption capacity is contributed by clay pores.(4)The oil adsorption capacity evaluated on the surface at room temperature is 8%–22%(avg.15%)higher than that is held in the formations.The proposed evaluation model reveals the occurrence mechanisms of shale oils with different maturities,and provides a new insight for estimating the reserves of shale oil under formation temperature conditions.展开更多
The mud shale of Qingshankou Formation in Songliao Basin is the main rock source and contains rich shale oil resources. The successful development of shale oil depends on evaluating and optimizing the “sweet spots”....The mud shale of Qingshankou Formation in Songliao Basin is the main rock source and contains rich shale oil resources. The successful development of shale oil depends on evaluating and optimizing the “sweet spots”. To accurately identify and optimize the favorable sweet spots of shale oil in Qingshankou Formation, Songliao Basin, the original logging data were preprocessed in this paper. Then the thin mud shale interlayer of Qingshankou Formation was identified effectively by using the processed logging data. Based on the artificial neural network method, the mineral content of mud shale in Qingshankou Formation was predicted. The lithofacies were identified according to the mineral and TOC content. Finally, a three-dimensional (3-D) model of total organic carbon (TOC), vitrinite reflectance (Ro), mineral content, and rock of Qingshankou Formation in Songliao Basin was established to evaluate and predict the favorable sweet spots of shale oil in the study area. The results show that there are a lot of calcareous and siliceous thin interlayers in Qingshankou Formation, and TOC content is generally between 2% and 3%. Ro is the highest in Gulong sag, followed by Sanzhao sag. The lithofacies mainly consists of felsic shale and mixed shale, mainly in the first member of Qingshankou Formation. Comprehensive analysis shows that shale oil development potential is enormous in the eastern part of Sanzhao Sag and the northern part of Gulong Sag.展开更多
Organic matter is the basis for oil and gas generation,and the depositional environment controls its enrichment.The first member of the Qingshankou Formation(K_(2)qn^(1))in Songliao Basin has a thick organic-rich shal...Organic matter is the basis for oil and gas generation,and the depositional environment controls its enrichment.The first member of the Qingshankou Formation(K_(2)qn^(1))in Songliao Basin has a thick organic-rich shale and so is an important target section for shale oil exploration and development.In the Gulong Sag,shale samples from this unit were collected over the full length of the section.The characterization of the environments of deposition(EOD)of K_(2)qn^(1)was improved by utilizing lithological characteristics,thin section observations,elemental compositions,and organic carbon concentrations.Combined with the normalization coefficients proposed in this paper,an organic matter correlation model was established to elucidate the factors that influence organic matter enrichment.From the bottom to the top of K2qn1,the lake depth gradually becomes shallower,the primary productivity first decreases and then increases,the reducing conditions become stronger and then weaker,the water salinity gradually decreases,the climate first becomes semi-humid and then warm and humid,and the input of terrigenous debris first decreases and then increases.A major marine transgression at the base of the K_(2)qn^(1)᾽s brought in nutrients to increase primary productivity,and the density-stratified reducing environment preserved and enriched organic matter.High primary productivity occurred during the middle of the deposition of the K_(2)qn^(1),while terrigenous input is low.Organic matter is preserved in reduced deep lake environments,resulting in organic matter-rich black shale.The lake became shallower,and the salinity decreased in the upper part of K_(2)qn^(1).Benthic organisms rapidly multiplied,consuming large amounts of oxygen and destroying the previously depositional environment,resulting in a reducing environment disturbed by benthic organisms with poor preservation conditions and the lowest organic matter content.展开更多
Continental shale oil is widely distributed in the Cretaceous Qingshankou Formation of the Songliao Basin in Northeast China.In the Qijia-Gulong sag and the Changling sag in the Songliao Basin,breakthroughs of shale o...Continental shale oil is widely distributed in the Cretaceous Qingshankou Formation of the Songliao Basin in Northeast China.In the Qijia-Gulong sag and the Changling sag in the Songliao Basin,breakthroughs of shale oil exploration and development have been made in the first and second members of the Qingshankou Formation,and several wells represented byWell GYYP1 have achieved high and stable shale oil production.However,some horizontal wells in shale oil development pilot test(Well groups A and D)were characterized by low shale oil production,high flowback rate and rapid production decline.Therefore,controlling factors of the shale oil production were investigated.The results show that shale oil enrichment area and optimal sweet spots are fundamental for high shale oil production,improving horizontal length and drilling ratio of sweet spots is a technical guarantee for enhancing shale oil production of single well,and artificial fracture network(incl.scale,complexity,and coupling with preexisting geological bodies)created by fracturing is a direct factor for controlling the shale oil production.For subsequent exploration and development of the shale oil,the heterogeneity of sweet spot distribution should be carefully considered,the shale oil enrichment areas and optimal sweet spots also need be optimized,and the wellbore trajectory control and fine geological modeling techniques should be figured out.Moreover,the fracturing techniques suitable for the shale with high clay mineral content and weak brittleness should be developed,and the personalized and differentiated staged fracturing also needs to be performed,to effectively enhance single-well shale oil production and estimated ultimate recovery.展开更多
Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics...Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.展开更多
Fine-grained sedimentary rocks often contain hydrocarbon and mineral resources.Compared with coarse-grained sedimentary rocks,fine-grained sedimentary rocks are less studied.To elucidate the lithofacies and pore struc...Fine-grained sedimentary rocks often contain hydrocarbon and mineral resources.Compared with coarse-grained sedimentary rocks,fine-grained sedimentary rocks are less studied.To elucidate the lithofacies and pore structure of lacustrine fine-grained rocks,the 340.6 m continuous core of Cretaceous Qing-1 Member from five wells in the southern central depression of the Songliao Basin was analyzed using X-ray diffraction,Rock-Eval pyrolysis,low-temperature nitrogen adsorption,high-pressure mercury injection,argon ion polishing-field emission scanning electron microscopy,and laser scanning confocal microscopy.Based on mineral compositions,organic matter abundance and sedimentary structure,lacustrine fine-grained rocks in the study area were divided into ten lithofacies,with their spatial distributions mainly influenced by tectonic cycle,climate cycle and provenance.Furthermore,pore structure characteristics of different lithofacies are summarized.(1)The siliceous mudstone lithofacies with low TOC content and the laminated/layered claybearing siliceous mudstone lithofacies with medium TOC content have the highest proportion of first-class pores(diameter>100 nm),making it the most favourable lithofacies for the accumulation of shale oil and shale gas.(2)The massive claybearing siliceous mudstone lithofacies with low TOC content has the highest proportion of second-class pores(diameter ranges from 10 to 100 nm),making it a favourable lithofacies for the enrichment of shale gas.(3)The massive clay-bearing siliceous mudstone lithofacies with high TOC content has the highest proportion of third-class pores(diameter<10 nm),making it intermediate in gas storage and flow.Laser confocal oil analysis shows that the heavy component of oil is mainly distributed in the clay lamina,while the light part with higher mobility is mainly concentrated in the silty lamina.展开更多
基金Supported by Central Government Guided Local Science and Technology Innovation Fund Program(ZY20B13)。
文摘A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstruction by focused ion-scanning electron in combination with analysis of TOC,R_(o)values,X-ray diffraction etc.in the Cretaceous Qingshankou Formation shale in the Songliao Basin,NE China.Such pore characteristics and evolution study show that:(1)Organo-clay complex pore-fractures are developed in the shale matrix and in the form of spongy and reticular aggregates.Different from circular or oval organic pores discovered in other shales,a single organo-clay complex pore is square,rectangular,rhombic or slaty,with the pore diameter generally less than 200 nm.(2)With thermal maturity increasing,the elements(C,Si,Al,O,Mg,Fe,etc.)in organo-clay complex change accordingly,showing that organic matter shrinkage due to hydrocarbon generation and clay mineral transformation both affect organo-clay complex pore-fracture formation.(3)At high thermal maturity,the Qingshankou Formation shale is dominated by nano-scale organo-clay complex pore-fractures with the percentage reaching more than 70%of total pore space.The spatial connectivity of organo-clay complex pore-fractures is significantly better than that of organic pores.It is suggested that organo-complex pore-fractures are the main pore space of laminar shale at high thermal maturity and are the main oil and gas accumulation space in the core area of continental shale oil.The discovery of nano-scale organo-clay complex pore-fractures changes the conventional view that inorganic pores are the main reservoir space and has scientific significance for the study of shale oil formation and accumulation laws.
基金Supported by the Natural Science Foundation of Hebei(D2024501002)Fundamental Research Funds for the Central Universities(N2423020)Major Science and Technology Projects of CNPC(2021ZZ10)。
文摘Based on the observation and analysis of cores and thin sections,and combined with cathodoluminescence,laser Raman,fluid inclusions,and in-situ LA-ICP-MS U-Pb dating,the genetic mechanism and petroleum geological significance of calcite veins in shales of the Cretaceous Qingshankou Formation in the Songliao Basin were investigated.Macroscopically,the calcite veins are bedding parallel,and show lenticular,S-shaped,cone-in-cone and pinnate structures.Microscopically,they can be divided into syntaxial blocky or columnar calcite veins and antitaxial fibrous calcite veins.The aqueous fluid inclusions in blocky calcite veins have a homogenization temperature of 132.5–145.1℃,the in-situ U-Pb dating age of blocky calcite veins is(69.9±5.2)Ma,suggesting that the middle maturity period of source rocks and the conventional oil formation period in the Qingshankou Formation are the sedimentary period of Mingshui Formation in Late Cretaceous.The aqueous fluid inclusions in fibrous calcite veins with the homogenization temperature of 141.2–157.4℃,yields the U-Pb age of(44.7±6.9)Ma,indicating that the middle-high maturity period of source rocks and the Gulong shale oil formation period in the Qingshankou Formation are the sedimentary period of Paleocene Yi'an Formaiton.The syntaxial blocky or columnar calcite veins were formed sensitively to the diagenetic evolution and hydrocarbon generation,mainly in three stages(fracture opening,vein-forming fluid filling,and vein growth).Tectonic extrusion activities and fluid overpressure are induction factors for the formation of fractures,and vein-forming fluid flows mainly as diffusion in a short distance.These veins generally follow a competitive growth mode.The antitaxial fibrous calcite veins were formed under the driving of the force of crystallization in a non-competitive growth environment.It is considered that the calcite veins in organic-rich shale of the Qingshankou Formation in the study area has important implications for local tectonic activities,fluid overpressure,hydrocarbon generation and expulsion,and diagenesis-hydrocarbon accumulation dating of the Songliao Basin.
基金funded by the shale oil and gas geological survey project in Quemoco sag,Qiangtang Basin of China Geological Survey(DD20221855,DD20230315).
文摘The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area.
文摘An ostracod biostratigraphic study was performed on 425 samples from the composite geological section constructed by using cores taken from five selected wells drilled in the Late Cretaceous Qingshankou Formation in the Songliao basin. A total of 19 ostracod zones are established in the formation, of which 3 are newly established and 3 are revised. The 19 ostracod zones are described in detail. This study provides a basis for the detailed stratigraphic division and correlation of the Qingshankou Formation and the Gaotaizi oil reservoir in the oilfield in the Songliao basin.
基金financially supported by the National Natural Science Foundation of China (grant No. 41702171)a National Science and Technology Major Project (grant No. 2016ZX05034002)
文摘Micropores of shale are significant to the gas content and production potential of shale, which has been verified in the research of marine shale gas; while, few studies have been conducted on lacustrine shales. This study collected 42 samples from three wells in the Late Cretaceous Qingshankou Formation of the southern Songliao Basin, NE China, and investigated these samples by the focused ion beam-scanning electron microscope(FIB–SEM) and nitrogen adsorption analysis techniques. Four types of micropores were identified in the samples, i.e., intergranular pore, intracellular pore, organic matter pore and microfracture. The pore structure type is characterized by open slit pores and "ink type" pores which are mainly 1.5–5 nm in diameter with mesopores as the main pores. The mesopores account for 74.01% of the pore volume and 54.68% of the pore surface area. Compared with the lacustrine shales from the Triassic Yanchang Formation in the Ordos Basin and Xujiahe Formation in the Sichuan Basin, the intergranular clay mineral interlayer pores are considered to be the main reservoir space for shale gas storage in the study area, followed by intraparticle pores, organic matter pores and microfractures. Maturity and micropore are the key controlling factors which affect the shale gas content of the Qingshankou Formation in southern Songliao Basin.
文摘An analysis of drill cores and well logs shows that the main micro-facies of the third member sand bodies of the Qingshankou Formation in Qian'an are subaqueous distributary channel facies, sheet sand facies and subaqueous fan facies (olistostrome). Maps showing the distribution of these micro-facies together with inter-channel bay and prodelta mocro-facies are presented for different time-slices (lower, middle and upper parts of the Qingshankou Formation). These maps reveal the instability and change of sediment transport in the Baokang sedimentary system during the depositional period. Sediment transport was from the west in the early stage, from the south in the middle stage and from the northwest in the late stage. Values of thickness, porosity and permeability of the sand bodies in the third member of the Qingshankou Formation show that they have low to medium porosity and low permeability, and are characterized by serious reservoir heterogeneity. The joints between micro-facies and subaqueous fan micro-facies are characterized by the highest heterogeneity, the sheet sand and distal sand bar subfacies come next, and the heterogeneity of the subaqueous distributary channel sand bodies is relatively weak.
基金Supported by the National Natural Science Foundation of China(41972156)。
文摘The lithology, lithofacies, reservoir properties and shale oil enrichment model of the fine-grained sedimentary system in a lake basin with terrigenous clastics of large depression are studied taking the organic-rich shale in the first member of Cretaceous Qingshankou Formation(shortened as Qing 1 Member) in the Changling Sag, southern Songliao Basin as an example. A comprehensive analysis of mineralogy, thin section, test, log and drilling geologic data shows that lamellar shale with high TOC content of semi-deep lake to deep lake facies has higher hydrocarbon generation potential than the massive mudstone facies with medium TOC content, and has bedding-parallel fractures acting as effective reservoir space under over pressure. The sedimentary environments changing periodically and the undercurrent transport deposits in the outer delta front give rise to laminated shale area. The laminated shale with medium TOC content has higher hydrocarbon generation potential than the laminated shale with low TOC content, and the generated oil migrates a short distance to the sandy laminae to retain and accumulate in situ. Ultra-low permeability massive mudstone facies as the top and bottom seals, good preservation conditions, high pressure coefficient, and lamellar shale facies with high TOC are the conditions for "lamellation type" shale oil enrichment in some sequences and zones. The sequence and zone with laminated shale of medium TOC content in oil window and with micro-migration of expelled hydrocarbon are the condition for the enrichment of "lamination type" shale oil. The tight oil and "lamination type" shale oil are in contiguous distribution.
基金Supported by the PetroChina"Fourteenth Five-Year Plan"Prospective Basic Technology Research Project(2021DJ4002)PetroChina Major Oil and Gas Project(2021ZZ10-01).
文摘The targeted reservoir,which is referred as the first member of Cretaceous Qingshankou Formation in Gulong Sag,Songliao Basin,NE China,is characterized by the enrichment of clay and lamellation fractures.Aiming at the technical challenge of determining oil saturation of such reservoir,nano-pores were accurately described and located through focused ion beam scanning electron microscopy and quantitative evaluation of minerals by scanning electron microscopy based on Simandoux model,to construct a 4D digital core frame.Electrical parameters of the shale reservoir were determined by finite element simulation,and the oil saturation calculation method suitable for shale was proposed.Comparison between the results from this method with that from real core test and 2D nuclear magnetic log shows that the absolute errors meet the requirements of the current reserve specification in China for clay-rich shale reservoir.Comparison analysis of multiple wells shows that the oil saturation values calculated by this method of several points vertically in single wells and multiple wells on the plane are in agreement with the test results of core samples and the regional deposition pattern,proving the accuracy and applicability of the method model.
基金Supported by the Heilongjiang Province S&D Project(2022-JS-1740,2022-JS-1853)China National Petroleum Corporation Scientific Research and Technological Development Project(2021DJ1808).
文摘Through the study of organic matter enrichment,hydrocarbon generation and accumulation process of black shale of the Cretaceous Qingshankou Formation in the Songliao Basin,the enrichment mechanism of Gulong shale oil and the distribution of conventional–unconventional oil are revealed.The Songliao Basin is a huge interior lake basin formed in the Early Cretaceous under the control of the subduction and retreat of the western Pacific plate and the massive horizontal displacement of the Tanlu Fault Zone in Northeast China.During the deposition of the Qingshankou Formation,strong terrestrial hydrological cycle led to the lake level rise of the ancient Songliao Basin and the input of a large amount of nutrients,resulting in planktonic bacteria and algae flourish.Intermittent seawater intrusion events promoted the formation of salinization stratification and anoxic environment in the lake,which were beneficial to the enrichment of organic matters.Biomarkers analysis confirms that the biogenic organic matter of planktonic bacteria and algae modified by microorganisms plays an important role in the formation of high-quality source rocks with high oil generation capability.There are four favorable conditions for the enrichment of light shale oil in the Qingshankou Formation of the Gulong Sag,Songliao Basin:the moderate organic matter abundance and high oil potential provide sufficient material basis for oil enrichment;high degree of thermal evolution makes shale oil have high GOR and good mobility;low hydrocarbon expulsion efficiency leads to a high content of retained hydrocarbons in the source rock;and the confinement effect of intra-layer cement in the high maturity stage induces the efficient accumulation of light shale oil.The restoration of hydrocarbon accumulation process suggests that liquid hydrocarbons generated in the early(low–medium maturity)stage of the Qingshankou Formation source rocks accumulated in placanticline and slope after long-distance secondary migration,forming high-quality conventional and tight oil reservoirs.Light oil generated in the late(medium–high maturity)stage accumulated in situ,forming about 15 billion tons of Gulong shale oil resources,which finally enabled the orderly distribution of conventional–unconventional oils that are contiguous horizontally and superposed vertically within the basin,showing a complete pattern of“whole petroleum system”with conventional oil,tight oil and shale oil in sequence.
基金Supported by the China Geological Survey Project(DD20190115)
文摘Pure shales in the first member of Qingshankou Formation(simplified as Qing 1 Member)in the southern Songliao Basin,i.e.,the semi-deep and deep lacustrine shales,are characterized by a high content of clay minerals and poor hydrocarbon mobility,making the development of shale oil difficult.According to the drilling and testing results,the shale of Qing 1 Member can be classified into 3 lithofacies,i.e.,bedded argillaceous shale,laminated diamictite shale,and interbedded felsic shale.The TOC and brittle minerals control the enrichment of shale oil,of them,TOC controls the total oil content,in other words,the total oil content increases with the increase of TOC;while the laminae made up of brittle minerals contain a large number of bigger intergranular pores which are favorable enrichment space for movable shale oil.In consideration of the origins of the 3 lithofacies,two shale oil enrichment models are classified,i.e.,the deep lacustrine high-TOC bedded argillaceous shale(Model-I)and the semi-deep lacustrine moderate-high-TOC laminated diamictite shale(Model-II).In the Model-I,the shale is characterized by high hydrocarbon generation ability,high total oil content,abundant horizontal bedding fractures,and vertical and high angle fractures locally;the complex fracture network formed by horizontal bedding fractures and vertical fractures improve the storage capacity and permeability of the shale reservoir,increase the enrichment space for movable oil.In the Model-II,the shale is characterized by good hydrocarbon generation ability and fairly high total oil content,and as the brittle laminae contain large intergranular pores,the shale has a higher movable oil content.Based on the two models,shale oil sweet-spot areas of 2880 km2 in the southern Songliao Basin are favorable for further exploration.Aimed at the difficulties in reservoir fracturing of the lacustrine shale with a high content of clay minerals,the composite fracturing technology with supercritical carbon dioxide was used in the shale oil reservoir for the first time,realizing large-scale volume fracturing in shale with a high content of clay minerals and strong heterogeneity,marking a breakthrough of oil exploration in continental shale with a high content of clay minerals in China.
文摘Located at Songliao Basin in the Northeastern China, SK-1 is the first Cretaceous terrestrial scientific drilling in the world.This program recovered the Middle to Upper Cretaceous strata of Songliao Basin which includes,from bottom to top,the Quantou, Qingshankou,Yaojia,Nenjiang,Mingshui and Sifangtai Formations.Lithofacies analysis has been undertaken on the core of Qingshankou Formation by a combination
文摘Pyrite is a ubiquitous authigenic mineral in modern anoxic sediments and occurs in ancient sedimentary rocks.Study of sedimentary pyrite morphology, which can provide useful information on deposition environments and early diagenetic processes,has become an important aspect for reconstruction of palaeoenviroment.The Upper Cretaceous Qingshankou Formation Unit 1(K<sub>2</sub>qn<sup>1</sup>)lithology,which occured in the south well of the SLCORE I for Continental Cretaceous Scientific Drilling Project
基金funded by the National Natural Science Foundation of China(Grant No.42072147)the Qingdao Postdoctoral Science Foundation(Grant No.ZX20210070)。
文摘Because of the influence of hydrocarbons,especially adsorbed hydrocarbons,on the detection of cracked hydrocarbon(S2)and total organic carbon(TOC),the hydrogen index(HI)-based hydrocarbon generation model deviates from actual practice.In this study,the shale in the first member of the Qingshankou Formation in the central depression of the Songliao Basin,where in northeastern China,was taken as the research object and a correction method for S2 and TOC was established.By correcting the experimental results of different maturity samples,the actual hydrocarbon generation model has been revealed,the differences before and after correction compared,and the evolutionary characteristics of the adsorbed hydrocarbon content were clarified.The results show that the organic matter enters the hydrocarbon generation threshold at R_(o)-0.5% and reaches the hydrocarbon generation peak at R_(o)-1.0% and that the hydrocarbon generation process ends at R_(o)-1.3%.The hydrocarbon generation model established based on the measured values has a‘lag effect’compared to actual values,and this extends the hydrocarbon generation window of organic matter and delays the hydrocarbon generation peak.With the increase of maturity,adsorbed hydrocarbon content shows the characteristics of‘first increasing,then stabilizing,and then decreasing’,and reache s the most abundant stage at Roof 0.9%-1.3%.
基金Supported by the the National Natural Science Foundation of China(U22A201550).
文摘On the basis of sorting out current understanding of solid bitumen (SB) in shales and taking organic-rich shales in the first member of the Cretaceous Qingshankou Formation in the Songliao Basin as an example, the definition, classification, occurrence and evolution path of SB are systemtically studied, and the indicative significance of SB reflectance (Rob) on maturity and its influence on the development of reservoir space are discussed and summarized. The results show that the difference of primary maceral types is primarily responsible for the different evolution paths of SB. Most of the pre-oil bitumen is in-situ SB with only a small amount being of migrated SB, while most of the post-oil bitumen and pyrobitumen are migrated SB. From the immature to early oil maturity stage, bituminite, vitrinite, and inertinite can be distinguished from SB based on their optical characteristics under reflected light, and alginite can be differentiated from SB by their fluorescence characteristics. Under scanning electron microscope, in-situ SB and migrated SB can be effectively identified. Rob increases linearly with increasing vitrinite reflectance (Ro), as a result of a decrease of aliphatic structure and the enhancement of aromatization of SB. Within the oil window three types of secondary pores may develop in SB, including modified mineral pores, devolatilization cracks and bubble holes. At a high maturity stage spongy pores may develop in pyrobitumen. Scanning electron microscopy combined with in-situ SEM-Raman spectroscopy can further reveal the structral information of different types of SB, thus providing crucial data for understanding for understanding OM migration paths, dynamics, and distances at micro-scale.
基金Supported by the National Natural Science Foundation of China(42102154,41922015,42072147)China Postdoctoral Science Foundation(2021M690168)Postdoctoral Innovation Talent Support Program of Shandong Province(SDBX2021004).
文摘A quantitative evaluation model that integrates kerogen adsorption and clay pore adsorption of shale oil was proposed,and the evaluation charts of adsorption-swelling capacity of kerogen(Mk)and adsorbed oil capacity of clay minerals(Mc)were established,taking the 1st member of Cretaceous Qingshankou Formation in the northern Songliao Basin as an example.The model and charts were derived from swelling oil experiments performed on naturally evolved kerogens and adsorbed oil experiments on clays(separated from shale core samples).They were constructed on the basis of clarifying the control law of kerogen maturity evolution on its adsorption-swelling capacity,and considering the effect of both the clay pore surface area that occupied by adsorbed oil and formation temperature.The results are obtained in four aspects:(1)For the Qing 1 Member shale,with the increase of maturity,Mk decreases.Given Ro of 0.83%–1.65%,Mk is about 50–250 mg/g.(2)The clay in shale adsorbs asphaltene.Mc is 0.63 mg/m^(2),and about 15%of the clay pore surface is occupied by adsorbed oil.(3)In the low to medium maturity stages,the shale oil adsorption is controlled by organic matter.When Ro>1.3%,the shale oil adsorption capacity is contributed by clay pores.(4)The oil adsorption capacity evaluated on the surface at room temperature is 8%–22%(avg.15%)higher than that is held in the formations.The proposed evaluation model reveals the occurrence mechanisms of shale oils with different maturities,and provides a new insight for estimating the reserves of shale oil under formation temperature conditions.
文摘The mud shale of Qingshankou Formation in Songliao Basin is the main rock source and contains rich shale oil resources. The successful development of shale oil depends on evaluating and optimizing the “sweet spots”. To accurately identify and optimize the favorable sweet spots of shale oil in Qingshankou Formation, Songliao Basin, the original logging data were preprocessed in this paper. Then the thin mud shale interlayer of Qingshankou Formation was identified effectively by using the processed logging data. Based on the artificial neural network method, the mineral content of mud shale in Qingshankou Formation was predicted. The lithofacies were identified according to the mineral and TOC content. Finally, a three-dimensional (3-D) model of total organic carbon (TOC), vitrinite reflectance (Ro), mineral content, and rock of Qingshankou Formation in Songliao Basin was established to evaluate and predict the favorable sweet spots of shale oil in the study area. The results show that there are a lot of calcareous and siliceous thin interlayers in Qingshankou Formation, and TOC content is generally between 2% and 3%. Ro is the highest in Gulong sag, followed by Sanzhao sag. The lithofacies mainly consists of felsic shale and mixed shale, mainly in the first member of Qingshankou Formation. Comprehensive analysis shows that shale oil development potential is enormous in the eastern part of Sanzhao Sag and the northern part of Gulong Sag.
基金funded by the National Natural Science Foundation of China(Grant Nos.42072147 and 41922015)the Fundamental Research Funds for the Central Universities(No.22CX07001A).
文摘Organic matter is the basis for oil and gas generation,and the depositional environment controls its enrichment.The first member of the Qingshankou Formation(K_(2)qn^(1))in Songliao Basin has a thick organic-rich shale and so is an important target section for shale oil exploration and development.In the Gulong Sag,shale samples from this unit were collected over the full length of the section.The characterization of the environments of deposition(EOD)of K_(2)qn^(1)was improved by utilizing lithological characteristics,thin section observations,elemental compositions,and organic carbon concentrations.Combined with the normalization coefficients proposed in this paper,an organic matter correlation model was established to elucidate the factors that influence organic matter enrichment.From the bottom to the top of K2qn1,the lake depth gradually becomes shallower,the primary productivity first decreases and then increases,the reducing conditions become stronger and then weaker,the water salinity gradually decreases,the climate first becomes semi-humid and then warm and humid,and the input of terrigenous debris first decreases and then increases.A major marine transgression at the base of the K_(2)qn^(1)᾽s brought in nutrients to increase primary productivity,and the density-stratified reducing environment preserved and enriched organic matter.High primary productivity occurred during the middle of the deposition of the K_(2)qn^(1),while terrigenous input is low.Organic matter is preserved in reduced deep lake environments,resulting in organic matter-rich black shale.The lake became shallower,and the salinity decreased in the upper part of K_(2)qn^(1).Benthic organisms rapidly multiplied,consuming large amounts of oxygen and destroying the previously depositional environment,resulting in a reducing environment disturbed by benthic organisms with poor preservation conditions and the lowest organic matter content.
文摘Continental shale oil is widely distributed in the Cretaceous Qingshankou Formation of the Songliao Basin in Northeast China.In the Qijia-Gulong sag and the Changling sag in the Songliao Basin,breakthroughs of shale oil exploration and development have been made in the first and second members of the Qingshankou Formation,and several wells represented byWell GYYP1 have achieved high and stable shale oil production.However,some horizontal wells in shale oil development pilot test(Well groups A and D)were characterized by low shale oil production,high flowback rate and rapid production decline.Therefore,controlling factors of the shale oil production were investigated.The results show that shale oil enrichment area and optimal sweet spots are fundamental for high shale oil production,improving horizontal length and drilling ratio of sweet spots is a technical guarantee for enhancing shale oil production of single well,and artificial fracture network(incl.scale,complexity,and coupling with preexisting geological bodies)created by fracturing is a direct factor for controlling the shale oil production.For subsequent exploration and development of the shale oil,the heterogeneity of sweet spot distribution should be carefully considered,the shale oil enrichment areas and optimal sweet spots also need be optimized,and the wellbore trajectory control and fine geological modeling techniques should be figured out.Moreover,the fracturing techniques suitable for the shale with high clay mineral content and weak brittleness should be developed,and the personalized and differentiated staged fracturing also needs to be performed,to effectively enhance single-well shale oil production and estimated ultimate recovery.
基金Supported by the PetroChina Science and Technology Major Project(2016E0201)。
文摘Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.
基金granted by the National Nature Science Foundation of China(Grants No.41902128 and 41872152)the Fundamental Research Funds for the Central Universities(Grant No.18CX02055A)+1 种基金the major national R&D projects(2017ZX05008-006-006002)the Key Laboratory for Strategic Evaluation of Shale Gas Resources,Ministry of Land and Resources(Grant No.20171101)。
文摘Fine-grained sedimentary rocks often contain hydrocarbon and mineral resources.Compared with coarse-grained sedimentary rocks,fine-grained sedimentary rocks are less studied.To elucidate the lithofacies and pore structure of lacustrine fine-grained rocks,the 340.6 m continuous core of Cretaceous Qing-1 Member from five wells in the southern central depression of the Songliao Basin was analyzed using X-ray diffraction,Rock-Eval pyrolysis,low-temperature nitrogen adsorption,high-pressure mercury injection,argon ion polishing-field emission scanning electron microscopy,and laser scanning confocal microscopy.Based on mineral compositions,organic matter abundance and sedimentary structure,lacustrine fine-grained rocks in the study area were divided into ten lithofacies,with their spatial distributions mainly influenced by tectonic cycle,climate cycle and provenance.Furthermore,pore structure characteristics of different lithofacies are summarized.(1)The siliceous mudstone lithofacies with low TOC content and the laminated/layered claybearing siliceous mudstone lithofacies with medium TOC content have the highest proportion of first-class pores(diameter>100 nm),making it the most favourable lithofacies for the accumulation of shale oil and shale gas.(2)The massive claybearing siliceous mudstone lithofacies with low TOC content has the highest proportion of second-class pores(diameter ranges from 10 to 100 nm),making it a favourable lithofacies for the enrichment of shale gas.(3)The massive clay-bearing siliceous mudstone lithofacies with high TOC content has the highest proportion of third-class pores(diameter<10 nm),making it intermediate in gas storage and flow.Laser confocal oil analysis shows that the heavy component of oil is mainly distributed in the clay lamina,while the light part with higher mobility is mainly concentrated in the silty lamina.