We construct a new bipartite entangled state(NBES),which describes both the squeezing and the entanglement involved in the parametric down-conversion process and can be produced using a symmetric beam splitter.Const...We construct a new bipartite entangled state(NBES),which describes both the squeezing and the entanglement involved in the parametric down-conversion process and can be produced using a symmetric beam splitter.Constructing asymmetric ket-bra integrations based on the NBES leads to some new squeezing operators,which clearly exhibit the relationships between squeezing and entangled state transformations.Moreover,an entangled Wigner operator with a definite physical meaning is also presented.展开更多
The quantum entangled photon-pair source,as an essential component of optical quantum systems,holds great potential for applications such as quantum teleportation,quan-tum computing,and quantum imaging.The current wor...The quantum entangled photon-pair source,as an essential component of optical quantum systems,holds great potential for applications such as quantum teleportation,quan-tum computing,and quantum imaging.The current workhorse technique for preparing photon pairs involves performing spon-taneous parametric down conversion(SPDC)in bulk nonlinear crystals.However,the current power consumption and cost of preparing entangled photon-pair sources are relatively high,pos-ing challenges to their integration and scalability.In this paper,we propose a low-power system model for the quantum entan-gled photon-pair source based on SPDC theory and phase matching technology.This model allows us to analyze the per-formance of each module and the influence of component cha-racteristics on the overall system.In our experimental setup,we utilize a 5 mW laser diode and a typical type-II barium metabo-rate(BBO)crystal to prepare an entangled photon-pair source.The experimental results are in excellent agreement with the model,indicating a significant step towards achieving the goal of low-power and low-cost entangled photon-pair sources.This achievement not only contributes to the practical application of quantum entanglement lighting,but also paves the way for the widespread adoption of optical quantum systems in the future.展开更多
Entangled optical quantum states are essential towards solving questions in fundamental physics and are at the heart of applications in quantum information science. For advancing the research and development of quantu...Entangled optical quantum states are essential towards solving questions in fundamental physics and are at the heart of applications in quantum information science. For advancing the research and development of quantum technologies, practical access to the generation and manipulation of photon states carrying significant quantum resources is required. Recently, integrated photonics has become a leading platform for the compact and cost- efficient generation and processing of optical quantum states. Despite significant advances, most on-chip non- classical light sources are still limited to basic bi-photon systems formed by two-dimensional states (i.e., qubits). An interesting approach beating large potential is the use of the time or frequency domain to enabled the scalable on- chip generation of complex states. In this manuscript, we review recent efforts in using on-chip optical frequency combs for quantum state generation and telecommunica- tions components for their coherent control. In particular, the generation of bi- and multi-photon entangled qubit states has been demonstrated, based on a discrete time domain approach. Moreover, the on-chip generation of high-dimensional entangled states (quDits) has recentlybeen realized, wherein the photons are created in a coherent superposition of multiple pure frequency modes. The time- and frequency-domain states formed with on-chip frequency comb sources were coherently manipulated via off-the-shelf telecommunications compo- nents. Our results suggest that microcavity-based entangled photon states and their coherent control using accessible telecommunication infrastructures can open up new venues for scalable quantum information science.展开更多
Dispersive optics quantum key distribution(DO-QKD)based on energy-time entangled photon pairs is an important QKD scheme.In DO-QKD,the arrival time of photons is used in key generation and security analysis,which woul...Dispersive optics quantum key distribution(DO-QKD)based on energy-time entangled photon pairs is an important QKD scheme.In DO-QKD,the arrival time of photons is used in key generation and security analysis,which would be greatly affected by fiber dispersion.In this work,we establish a theoretical model of the entanglement-based DO-QKD system,considering the protocol,physical processes(such as fiber transmission and single-photon detection),and the analysis of security tests.Based on this theoretical model,we investigate the influence of chromatic dispersion introduced by transmission fibers on the performance of DO-QKD.By analyzing the benefits and costs of dispersion compensation,the system performance under G.652 and G.655 optical fibers are shown,respectively.The results show that dispersion compensation is unnecessary for DO-QKD systems in campus networks and even metro networks.Whereas,it is still required in DO-QKD systems with longer fiber transmission distances.展开更多
We show that the secret key generation rate can be balanced with the maximum secure distance of four-state continuous-variable quantum key distribution(CV-QKD) by using the linear optics cloning machine(LOCM). Ben...We show that the secret key generation rate can be balanced with the maximum secure distance of four-state continuous-variable quantum key distribution(CV-QKD) by using the linear optics cloning machine(LOCM). Benefiting from the LOCM operation, the LOCM-tuned noise can be employed by the reference partner of reconciliation to achieve higher secret key generation rates over a long distance. Simulation results show that the LOCM operation can flexibly regulate the secret key generation rate and the maximum secure distance and improve the performance of four-state CV-QKD protocol by dynamically tuning parameters in an appropriate range.展开更多
The breast cancer is the most common cause of cancer death in women. To establish an early stage in situ imaging of breast cancer cells, green quantum dots (QDs) are used as a fluorescent signal generator. The QDs b...The breast cancer is the most common cause of cancer death in women. To establish an early stage in situ imaging of breast cancer cells, green quantum dots (QDs) are used as a fluorescent signal generator. The QDs based imaging of breast cancer cells involves anti-HER2/neu antibody for labeling the over expressed HER2 on the surface of breast cancer cells. The complete assay involves breast cancer cells, biotin labeled antibody and streptavidin conjugated QDs. The breast cancer cells are grown in culture plates and exposed to the biotin labeled antibodies, and then exposed to streptavidin labeled QDs to utilize the strong and stable biotin-streptavidin interaction. Fluorescent images of the complete assay for breast cancer cells are evaluated on a microscope with a UV light source. Results show that the breast cancer cells in the complete assay are used as fluorescent cells with brighter signals compared with those labeled by the organic dye using similar parameters and the same number of cells.展开更多
Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted ...Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted into phase signals,it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement.Here,we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation,which is suitable for polarization interferometry.We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference.Besides,we analyze the effect of magnification error which is never considered in the previous works,and find the constraint on the magnification.Our results may find important applications in high-precision measurements,e.g.,gravitational wave detection.展开更多
From metamaterials to metasurfaces,optical nano-structure has been widely investigated for novel and high efficiency functionalities.Apart from the intrisinsic properties of composite material,rich capabilities can be...From metamaterials to metasurfaces,optical nano-structure has been widely investigated for novel and high efficiency functionalities.Apart from the intrisinsic properties of composite material,rich capabilities can be derived from the judi-cious design of metasurfaces,which enable more excellent and highly integrated optical devices than traditional bulk op-tical elements.In the meantime,the abundant manipulation abilites of light in the classical domain can be carried over in-to quantum domain.In this review,we highlight recent development of quantum optics based on metasurfaces,ranging from quantum plasmonics,generation,manipulation and appplication of quantum light to quantum vaccum engineering etc.Finally,some promising avenues for quantum optics with the help of optical metasurface are presented.展开更多
The mathematical expression of the electron diffusion and drift length LDE of exponential doping photocathode is deduced. In the quantum efficiency equation of the reflection-mode uniform doping cathode, substituting ...The mathematical expression of the electron diffusion and drift length LDE of exponential doping photocathode is deduced. In the quantum efficiency equation of the reflection-mode uniform doping cathode, substituting LDE for LD, the equivalent quantum efficiency equation of the reflection-mode exponential doping cathode is obtained. By using the equivalent equation, theoretical simulation and experimental analysis shows that the equivalent index formula and formula-doped cathode quantum efficiency results in line. The equivalent equation avoids complicated calculation, thereby simplifies the process of solving the quantum efficiency of exponential doping photocathode.展开更多
We present a strain-compensated InP-based InGaAs/InAlAs photovoltaic quantum cascade detector grown by solid source molecular beam epitaxy. The detector is based on a vertical intersubband transition and electron tran...We present a strain-compensated InP-based InGaAs/InAlAs photovoltaic quantum cascade detector grown by solid source molecular beam epitaxy. The detector is based on a vertical intersubband transition and electron transfer on a cascade of quantum levels which is designed to provide longitudinal optical phonon extraction stairs. By careful structure design and growth, the whole epilayer has a residual strain toward InP substrate of only -2.8× 10^-4. A clear narrow band detection spectrum centered at 4.5 μm has been observed above room temperature for a device with 200/times 200 ×μm^2 square mesa.展开更多
A new implementation of high-dimensional quantum key distribution (QKD) protocol is discussed. Using three mutual unbiased bases, we present a d?level six-state QKD protocol that exploits the orbital angular moment...A new implementation of high-dimensional quantum key distribution (QKD) protocol is discussed. Using three mutual unbiased bases, we present a d?level six-state QKD protocol that exploits the orbital angular momentum with the spatial mode of the light beam. The protocol shows that the feature of a high capacity since keys are encoded using photon modes in d-level Hilbert space. The devices for state preparation and measurement are also discussed. This protocol has high security and the alignment of shared reference frames is not needed between sender and receiver.展开更多
A 10.7μm quantum cascade detector based on lattice matched InGaAs/InAlAs/InP is demonstrated and characterized in terms of responsivity, resistivity and detectivity. The device operates in the 8 14μm atmospheric win...A 10.7μm quantum cascade detector based on lattice matched InGaAs/InAlAs/InP is demonstrated and characterized in terms of responsivity, resistivity and detectivity. The device operates in the 8 14μm atmospheric window up to 140 K and shows a peak reponsivity of 14.4mA/W at 78K. With a resistance-area product value of 159Ωcm^2, the Johnson noise limited detectivity D^*J is 2.8 × 10^9 Jones (cmHz^1/2W^-1) at 78K.展开更多
We demonstrate 10 Gb/s directly-modulated 1.3 μm InAs quantum-dot (QD) lasers grown on GaAs substrates by molecular beam epitaxy. The active region of the QD lasers consists of five-stacked InAs QD layers. Ridge-wa...We demonstrate 10 Gb/s directly-modulated 1.3 μm InAs quantum-dot (QD) lasers grown on GaAs substrates by molecular beam epitaxy. The active region of the QD lasers consists of five-stacked InAs QD layers. Ridge-waveguide lasers with a ridge width of 4 μm and a cavity length of 600 μm are fabricated with standard lithography and wet etching techniques. It is found that the lasers emit at 1293 nm with a very low threshold current of 5 mA at room temperature. Furthermore, clear eye-opening patterns under 10 Gb/s modulation rate at temperatures of up to 50oC are achieved by the QD lasers. The results presented here have important implications for realizing low-cost, low-power-consumption, and high-speed light sources for next-generation communication systems.展开更多
In this paper the evolution characteristics of the fidelity of quantum information for the V-type three-level atom interacting with number state light field in Kerr meddium are investigated. It shows that the periodic...In this paper the evolution characteristics of the fidelity of quantum information for the V-type three-level atom interacting with number state light field in Kerr meddium are investigated. It shows that the periodicity of the evolutions of fidelity of quantum information is influenced by the Kerr coefficient, the photon number of the initial field and intensity of light. The evolutions of the fidelity of quantum information are modulated by the initial number state field. The Rabi oscillation frequency and the modulation frequency of fidelity for the field and the system vary with the value of the Kerr coefficient. The evolutions of fidelity of quantum information obviously show the quantum collapse and revival behaviours in the system of atom interacting with light field.展开更多
Quantum key distribution enables unconditionally secure key distribution between two legitimate users.The information-theoretic security is guaranteed by the fundamental laws of quantum physics.Initially,the quantum k...Quantum key distribution enables unconditionally secure key distribution between two legitimate users.The information-theoretic security is guaranteed by the fundamental laws of quantum physics.Initially,the quantum key distribution protocol was proposed based on the qubits.Later on,it was found that quantum continuous variables can also be exploited for this target.The continuous variable quantum key distribution can build upon standard telecommunication technology and exhibits a higher secret key rate per pulse at a relatively short distance due to the possibility of encoding more than 1 bit per pulse.In this article,we review the current status of the continuous variable quantum key distribution research,including its basic principle,experimental implementations,security and future directions;the experimental progress in this field made by our group is also presented.展开更多
We report the molecular beam epitaxy growth of 1.3 μm InAs/GaAs quantum-dot (QD) lasers with high characteristic temperature T0. The active region of the lasers consists of five-layer InAs QDs with p-type modulatio...We report the molecular beam epitaxy growth of 1.3 μm InAs/GaAs quantum-dot (QD) lasers with high characteristic temperature T0. The active region of the lasers consists of five-layer InAs QDs with p-type modulation doping. Devices with a stripe width of 4 μm and a cavity length of 1200 μm are fabricated and tested in the pulsed regime under different temperatures. It is found that T0 of the QD lasers is as high as 532 K in the temperature range from 10°C to 60°C. In addition, the aging test for the lasers under continuous wave operation at 100°C for 72 h shows almost no degradation, indicating the high crystal quality of the devices.展开更多
In a recent paper [Yan F L et al. Chin.Phys.Lett. 25(2008)1187], a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented. We analyze the ...In a recent paper [Yan F L et al. Chin.Phys.Lett. 25(2008)1187], a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented. We analyze the security of the protocol and find that a dishonest participant can eavesdrop the key by using a special attack. Finally, we give a description of this strategy and put forward an improved version of this protocol which can stand against this kind of attack.展开更多
A protocol is proposed to implement a three-qubit phase gate for photonic qubits in a three-mode cavity. The idea can be extended to directly implement a N-qubit phase gate. We also show that the interaction time rema...A protocol is proposed to implement a three-qubit phase gate for photonic qubits in a three-mode cavity. The idea can be extended to directly implement a N-qubit phase gate. We also show that the interaction time remains unchanged with the increasing number of qubits. In addition, the influence of cavity decay and atomic spontaneous emission on the gate fidelity and photon loss probability is also discussed by numerical calculation.展开更多
Y and inverted Y-type four-level schemes for optical quantum coherence systems,which may be intuitivelyconsidered to be very simple,have not been studied intensively till now.In this paper,we present the multiformity ...Y and inverted Y-type four-level schemes for optical quantum coherence systems,which may be intuitivelyconsidered to be very simple,have not been studied intensively till now.In this paper,we present the multiformity ofthese two types of schemes by considering that they can be classified into nine possible level styles as the second-ordersub-schemes using laser fields.Further we point out the complexity of their more than one hundred realistic configurationsas the third-order four-level sub-schemes that may appear in the optical quantum coherence experiments.Throughoutthis paper we review which configurations have been studied in some research aspects and which ones not,accordingto our knowledge,in order to be propitious to next steps of theoretical and experimental investigations,especially forapplications in the fields of quantum optics,quantum information science,laser spectroscopy,and so on.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11147009)the Natural Science Foundation of Shandong Province,China (Grant Nos. ZR2010AQ027 and ZR2012AM004)the Shandong Provincial Higher Educational Science and Technology Program,China (Grant No. J10LA15)
文摘We construct a new bipartite entangled state(NBES),which describes both the squeezing and the entanglement involved in the parametric down-conversion process and can be produced using a symmetric beam splitter.Constructing asymmetric ket-bra integrations based on the NBES leads to some new squeezing operators,which clearly exhibit the relationships between squeezing and entangled state transformations.Moreover,an entangled Wigner operator with a definite physical meaning is also presented.
文摘The quantum entangled photon-pair source,as an essential component of optical quantum systems,holds great potential for applications such as quantum teleportation,quan-tum computing,and quantum imaging.The current workhorse technique for preparing photon pairs involves performing spon-taneous parametric down conversion(SPDC)in bulk nonlinear crystals.However,the current power consumption and cost of preparing entangled photon-pair sources are relatively high,pos-ing challenges to their integration and scalability.In this paper,we propose a low-power system model for the quantum entan-gled photon-pair source based on SPDC theory and phase matching technology.This model allows us to analyze the per-formance of each module and the influence of component cha-racteristics on the overall system.In our experimental setup,we utilize a 5 mW laser diode and a typical type-II barium metabo-rate(BBO)crystal to prepare an entangled photon-pair source.The experimental results are in excellent agreement with the model,indicating a significant step towards achieving the goal of low-power and low-cost entangled photon-pair sources.This achievement not only contributes to the practical application of quantum entanglement lighting,but also paves the way for the widespread adoption of optical quantum systems in the future.
文摘Entangled optical quantum states are essential towards solving questions in fundamental physics and are at the heart of applications in quantum information science. For advancing the research and development of quantum technologies, practical access to the generation and manipulation of photon states carrying significant quantum resources is required. Recently, integrated photonics has become a leading platform for the compact and cost- efficient generation and processing of optical quantum states. Despite significant advances, most on-chip non- classical light sources are still limited to basic bi-photon systems formed by two-dimensional states (i.e., qubits). An interesting approach beating large potential is the use of the time or frequency domain to enabled the scalable on- chip generation of complex states. In this manuscript, we review recent efforts in using on-chip optical frequency combs for quantum state generation and telecommunica- tions components for their coherent control. In particular, the generation of bi- and multi-photon entangled qubit states has been demonstrated, based on a discrete time domain approach. Moreover, the on-chip generation of high-dimensional entangled states (quDits) has recentlybeen realized, wherein the photons are created in a coherent superposition of multiple pure frequency modes. The time- and frequency-domain states formed with on-chip frequency comb sources were coherently manipulated via off-the-shelf telecommunications compo- nents. Our results suggest that microcavity-based entangled photon states and their coherent control using accessible telecommunication infrastructures can open up new venues for scalable quantum information science.
基金the National Key R&D Program of China under Grants No.2017YFA0303704 and No.2018YFB2200400Natural Science Foundation of Beijing under Grant No.Z180012National Natural Science Foundation of China under Grants No.61875101 and No.91750206.
文摘Dispersive optics quantum key distribution(DO-QKD)based on energy-time entangled photon pairs is an important QKD scheme.In DO-QKD,the arrival time of photons is used in key generation and security analysis,which would be greatly affected by fiber dispersion.In this work,we establish a theoretical model of the entanglement-based DO-QKD system,considering the protocol,physical processes(such as fiber transmission and single-photon detection),and the analysis of security tests.Based on this theoretical model,we investigate the influence of chromatic dispersion introduced by transmission fibers on the performance of DO-QKD.By analyzing the benefits and costs of dispersion compensation,the system performance under G.652 and G.655 optical fibers are shown,respectively.The results show that dispersion compensation is unnecessary for DO-QKD systems in campus networks and even metro networks.Whereas,it is still required in DO-QKD systems with longer fiber transmission distances.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61379153 and 61572529)
文摘We show that the secret key generation rate can be balanced with the maximum secure distance of four-state continuous-variable quantum key distribution(CV-QKD) by using the linear optics cloning machine(LOCM). Benefiting from the LOCM operation, the LOCM-tuned noise can be employed by the reference partner of reconciliation to achieve higher secret key generation rates over a long distance. Simulation results show that the LOCM operation can flexibly regulate the secret key generation rate and the maximum secure distance and improve the performance of four-state CV-QKD protocol by dynamically tuning parameters in an appropriate range.
基金Supported by the Foundation for Cultivating the Excellent Doctoral Dissertation of Jiangxi Province of China (YBP08A03)~~
文摘The breast cancer is the most common cause of cancer death in women. To establish an early stage in situ imaging of breast cancer cells, green quantum dots (QDs) are used as a fluorescent signal generator. The QDs based imaging of breast cancer cells involves anti-HER2/neu antibody for labeling the over expressed HER2 on the surface of breast cancer cells. The complete assay involves breast cancer cells, biotin labeled antibody and streptavidin conjugated QDs. The breast cancer cells are grown in culture plates and exposed to the biotin labeled antibodies, and then exposed to streptavidin labeled QDs to utilize the strong and stable biotin-streptavidin interaction. Fluorescent images of the complete assay for breast cancer cells are evaluated on a microscope with a UV light source. Results show that the breast cancer cells in the complete assay are used as fluorescent cells with brighter signals compared with those labeled by the organic dye using similar parameters and the same number of cells.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 92065113, 11904357, 62075208, and 12174367)the Innovation Programme for Quantum Science and Technology (Grant No. 2021ZD0301604)+1 种基金the National Key Research and Development Program of China (Grant No. 2021YFE0113100)supported by Beijing Academy of Quantum Information Sciences
文摘Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted into phase signals,it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement.Here,we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation,which is suitable for polarization interferometry.We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference.Besides,we analyze the effect of magnification error which is never considered in the previous works,and find the constraint on the magnification.Our results may find important applications in high-precision measurements,e.g.,gravitational wave detection.
基金The authors are grateful that this work was supported by the National Key R&D Program of China(2017YFA0303700,2017YFA0303702,and 2016YFA0202103)the National Natural Science Foundation of China(No.11822406,11834007,11774162,11674166,11674167,11674168,11621091,11774164,and 91850204).
文摘From metamaterials to metasurfaces,optical nano-structure has been widely investigated for novel and high efficiency functionalities.Apart from the intrisinsic properties of composite material,rich capabilities can be derived from the judi-cious design of metasurfaces,which enable more excellent and highly integrated optical devices than traditional bulk op-tical elements.In the meantime,the abundant manipulation abilites of light in the classical domain can be carried over in-to quantum domain.In this review,we highlight recent development of quantum optics based on metasurfaces,ranging from quantum plasmonics,generation,manipulation and appplication of quantum light to quantum vaccum engineering etc.Finally,some promising avenues for quantum optics with the help of optical metasurface are presented.
基金Supported by the National Natural Science Foundation of China under Grant No 60678043.
文摘The mathematical expression of the electron diffusion and drift length LDE of exponential doping photocathode is deduced. In the quantum efficiency equation of the reflection-mode uniform doping cathode, substituting LDE for LD, the equivalent quantum efficiency equation of the reflection-mode exponential doping cathode is obtained. By using the equivalent equation, theoretical simulation and experimental analysis shows that the equivalent index formula and formula-doped cathode quantum efficiency results in line. The equivalent equation avoids complicated calculation, thereby simplifies the process of solving the quantum efficiency of exponential doping photocathode.
基金Supported by the National Science Fund for Distinguished Young Scholars of China under Grant No 60525406, the National Natural Science Foundation of China under Grant Nos 60736031, 60806018, 60906026 and 10990100, the National Basic Research Program of China under Grant No 2006CB604903, and the National High-tcch R&D Program of China under Grant Nos 2007AA03Z446 and 2009AA03Z403.
文摘We present a strain-compensated InP-based InGaAs/InAlAs photovoltaic quantum cascade detector grown by solid source molecular beam epitaxy. The detector is based on a vertical intersubband transition and electron transfer on a cascade of quantum levels which is designed to provide longitudinal optical phonon extraction stairs. By careful structure design and growth, the whole epilayer has a residual strain toward InP substrate of only -2.8× 10^-4. A clear narrow band detection spectrum centered at 4.5 μm has been observed above room temperature for a device with 200/times 200 ×μm^2 square mesa.
基金Supported by the National Basic Research Program of China under Grant Nos 2006CB921106 and 2010CB923202, the Fundamental Research Funds for the Central Universities No BUPT2009RC0710, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20090005120008, and the National Natural Science Foundation of China under Grant No 10947151.
文摘A new implementation of high-dimensional quantum key distribution (QKD) protocol is discussed. Using three mutual unbiased bases, we present a d?level six-state QKD protocol that exploits the orbital angular momentum with the spatial mode of the light beam. The protocol shows that the feature of a high capacity since keys are encoded using photon modes in d-level Hilbert space. The devices for state preparation and measurement are also discussed. This protocol has high security and the alignment of shared reference frames is not needed between sender and receiver.
基金Supported by the National Science Fund for Distinguished Young Scholars of China under Grant No 60525406, the National Natural Science Foundation of China under Grant Nos 60736031, 60806018, 60906026 and 10990100, the National Basic Research Program of China under Grant No 2006CB604903, and the National High-tech R&D Program of China under Grant Nos 2007AA03Z446 and 2009AA03Z403.
文摘A 10.7μm quantum cascade detector based on lattice matched InGaAs/InAlAs/InP is demonstrated and characterized in terms of responsivity, resistivity and detectivity. The device operates in the 8 14μm atmospheric window up to 140 K and shows a peak reponsivity of 14.4mA/W at 78K. With a resistance-area product value of 159Ωcm^2, the Johnson noise limited detectivity D^*J is 2.8 × 10^9 Jones (cmHz^1/2W^-1) at 78K.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2006AA03Z401, One-Hundred Talents Program of Chinese Academy of Sciences, and the National Natural Science Foundation of China under Grant No 60876033.
文摘We demonstrate 10 Gb/s directly-modulated 1.3 μm InAs quantum-dot (QD) lasers grown on GaAs substrates by molecular beam epitaxy. The active region of the QD lasers consists of five-stacked InAs QD layers. Ridge-waveguide lasers with a ridge width of 4 μm and a cavity length of 600 μm are fabricated with standard lithography and wet etching techniques. It is found that the lasers emit at 1293 nm with a very low threshold current of 5 mA at room temperature. Furthermore, clear eye-opening patterns under 10 Gb/s modulation rate at temperatures of up to 50oC are achieved by the QD lasers. The results presented here have important implications for realizing low-cost, low-power-consumption, and high-speed light sources for next-generation communication systems.
文摘In this paper the evolution characteristics of the fidelity of quantum information for the V-type three-level atom interacting with number state light field in Kerr meddium are investigated. It shows that the periodicity of the evolutions of fidelity of quantum information is influenced by the Kerr coefficient, the photon number of the initial field and intensity of light. The evolutions of the fidelity of quantum information are modulated by the initial number state field. The Rabi oscillation frequency and the modulation frequency of fidelity for the field and the system vary with the value of the Kerr coefficient. The evolutions of fidelity of quantum information obviously show the quantum collapse and revival behaviours in the system of atom interacting with light field.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61378010 and 11504219)the Key Project of the Ministry of Science and Technology of China(Grant No.2016YFA0301403)+1 种基金the Natural Science Foundation of Shanxi Province,China(Grant No.2014011007-1)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province,China
文摘Quantum key distribution enables unconditionally secure key distribution between two legitimate users.The information-theoretic security is guaranteed by the fundamental laws of quantum physics.Initially,the quantum key distribution protocol was proposed based on the qubits.Later on,it was found that quantum continuous variables can also be exploited for this target.The continuous variable quantum key distribution can build upon standard telecommunication technology and exhibits a higher secret key rate per pulse at a relatively short distance due to the possibility of encoding more than 1 bit per pulse.In this article,we review the current status of the continuous variable quantum key distribution research,including its basic principle,experimental implementations,security and future directions;the experimental progress in this field made by our group is also presented.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2006AA03Z401, One-Hundred Talents Program of Chinese Academy of Sciences, and the National Natural Science Foundation of China under Grant No 60876033.
文摘We report the molecular beam epitaxy growth of 1.3 μm InAs/GaAs quantum-dot (QD) lasers with high characteristic temperature T0. The active region of the lasers consists of five-layer InAs QDs with p-type modulation doping. Devices with a stripe width of 4 μm and a cavity length of 1200 μm are fabricated and tested in the pulsed regime under different temperatures. It is found that T0 of the QD lasers is as high as 532 K in the temperature range from 10°C to 60°C. In addition, the aging test for the lasers under continuous wave operation at 100°C for 72 h shows almost no degradation, indicating the high crystal quality of the devices.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60873191, 60903152 and 60821001, the SRFDP under Grant No 200800131016, Beijing Nova Program under Grant No 2008B51, Key Project of the Ministry of Education of China under Grant No 109014, China Postdoctoral Science Foundation under Grant No 20090450018, Fujian Provincial Natural Science Foundation under Grant No 2008J0013, and the Foundation of Fujian Education Bureau under Grant No 3A08044.
文摘In a recent paper [Yan F L et al. Chin.Phys.Lett. 25(2008)1187], a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented. We analyze the security of the protocol and find that a dishonest participant can eavesdrop the key by using a special attack. Finally, we give a description of this strategy and put forward an improved version of this protocol which can stand against this kind of attack.
文摘A protocol is proposed to implement a three-qubit phase gate for photonic qubits in a three-mode cavity. The idea can be extended to directly implement a N-qubit phase gate. We also show that the interaction time remains unchanged with the increasing number of qubits. In addition, the influence of cavity decay and atomic spontaneous emission on the gate fidelity and photon loss probability is also discussed by numerical calculation.
基金Supported by the Research Starting Funds of Tianjin Polytechnic University under Grant Nos.20080033 and 20070010
文摘Y and inverted Y-type four-level schemes for optical quantum coherence systems,which may be intuitivelyconsidered to be very simple,have not been studied intensively till now.In this paper,we present the multiformity ofthese two types of schemes by considering that they can be classified into nine possible level styles as the second-ordersub-schemes using laser fields.Further we point out the complexity of their more than one hundred realistic configurationsas the third-order four-level sub-schemes that may appear in the optical quantum coherence experiments.Throughoutthis paper we review which configurations have been studied in some research aspects and which ones not,accordingto our knowledge,in order to be propitious to next steps of theoretical and experimental investigations,especially forapplications in the fields of quantum optics,quantum information science,laser spectroscopy,and so on.