Due to the mutual repulsion between their hydrophilic surface terminations and the high surface energy facilitating their ran-dom restacking,2D MXene nanosheets usually cannot self-assemble into 3D macroscopic gels wi...Due to the mutual repulsion between their hydrophilic surface terminations and the high surface energy facilitating their ran-dom restacking,2D MXene nanosheets usually cannot self-assemble into 3D macroscopic gels with various applications in the absence of proper linking agents.In this work,a rapid spontaneous gelation of Ti3C2Tx MXene with a very low dispersion concentration of 0.5 mg mL^(-1) into multifunctional architectures under moderate centrifugation is illustrated.The as-prepared MXene gels exhibit reconfigurable internal structures and tunable rheological,tribological,electrochemical,infrared-emissive and photothermal-conversion properties based on the pH-induced changes in the surface chemistry of Ti_(3)C_(2)T_(x) nanosheets.By adopting a gel with optimized pH value,high lubrication,exceptional specific capacitances(~635 and~408 F g^(-1) at 5 and 100 mV s^(-1),respectively),long-term capacitance retention(~96.7%after 10,000 cycles)and high-precision screen-or extrusion-printing into different high-resolution anticounterfeiting patterns can be achieved,thus displaying extensive potential applications in the fields of semi-solid lubrication,control-lable devices,supercapacitors,information encryption and infrared camouflaging.展开更多
A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 m...A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.展开更多
Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apat...Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apatite fission track dating and inverse thermal modeling,we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau.In contrast to previous views,we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites,indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times.In addition,we also suggest that the 5-2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau,because it led to the increase in atmospheric CO_(2)level and a hotter upper crust than before,which are efficient for suddenly fast rock weathering and erosion.Finally,we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate.展开更多
The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electro...The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).展开更多
Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-Apr...Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-April)was studied to reveal the variations of the key factors at different explosive-developing stages.This EC had weak low-level baroclinicity,mid-level cyclonic-vorticity advection,and strong low-level water vapor convergence at the initial explosive-developing stage.The low-level baroclinicity and mid-level cyclonic-vorticity advection increased substantially during the maximum-deepening-rate stage.The diagnostic analyses using the Zwack-Okossi equation showed that diabatic heating was the main contributor to the initial rapid intensification of this EC.The cyclonic-vorticity advection and warm-air advection enhanced rapidly in the middle and upper troposphere and contributed to the maximum rapid intensification,whereas the diabatic heating weakened slightly in the mid-low troposphere.The relative contribution of the diabatic heating decreased from the initial explosive-developing stage to the maximum-deepening-rate stage due to the enhancement of other factors(the cyclonic-vorticity advection and warm-air advection).Furthermore,the physical factors contributing to this EC varied with the explosive-developing stage.The non-key factors at the initial explosive-developing stage need attention to forecast the rapid intensification.展开更多
Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to e...Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to enhance the vehicle’s longitudinal and vertical motion control performance.While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden.To facilitate the controller design and ease the load,a half-vehicle dynamics system is built and simplified to the linear-time-varying(LTV)model.Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety,energy-saving and comfort requirements.The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption.Finally,the effectiveness of the proposed controller is verified through the rapid-control-prototype(RCP)test.The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability.展开更多
BACKGROUND Cesarean hemorrhage is one of the serious complications,and short-term massive blood transfusion can easily cause postoperative infection and physical stress response.However,predictive nursing intervention...BACKGROUND Cesarean hemorrhage is one of the serious complications,and short-term massive blood transfusion can easily cause postoperative infection and physical stress response.However,predictive nursing intervention has important clinical significance for it.AIM To explore the effect of predictive nursing intervention on the stress response and complications of women undergoing short-term mass blood transfusion during cesarean section(CS).METHODS A clinical medical record of 100 pregnant women undergoing rapid mass blood transfusion during sections from June 2019 to June 2021.According to the different nursing methods,patients divided into control group(n=50)and observation group(n=50).Among them,the control group implemented routine nursing,and the observation group implemented predictive nursing intervention based on the control group.Moreover,compared the differences in stress res-ponse,complications,and pain scores before and after the nursing of pregnant women undergoing rapid mass blood transfusion during CS.RESULTS The anxiety and depression scores of pregnant women in the two groups were significantly improved after nursing,and the psychological stress response of the observation group was significantly lower than that of the control group(P<0.05).The heart rate and mean arterial pressure(MAP)of the observation group during delivery were lower than those of the control group,and the MAP at the end of delivery was lower than that of the control group(P<0.05).Moreover,different pain scores improved significantly in both groups,with the observation group considerably less than the control group(P<0.05).After nursing,complications such as skin rash,urinary retention,chills,diarrhea,and anaphylactic shock in the observation group were 18%,which significantly higher than in the control group(4%)(P<0.05).CONCLUSION Predictive nursing intervention can effectively relieve the pain,reduce the incidence of complications,improve mood and stress response,and serve as a reference value for the nursing of women undergoing rapid mass transfusion during CS.展开更多
大脑中动脉M2段(M2 segment of middle cerebral artery, MCA-M2)是颈内动脉系统的重要分支,大脑中动脉M2段闭塞脑梗死导致的神经功能缺损对患者家庭及社会带来了沉重的负担。大脑中动脉M2段闭塞脑梗死的介入治疗目前仍存在争议。目前...大脑中动脉M2段(M2 segment of middle cerebral artery, MCA-M2)是颈内动脉系统的重要分支,大脑中动脉M2段闭塞脑梗死导致的神经功能缺损对患者家庭及社会带来了沉重的负担。大脑中动脉M2段闭塞脑梗死的介入治疗目前仍存在争议。目前有研究表明大脑中动脉M2段闭塞脑梗死血管内治疗优于传统的内科治疗。RAPID软件在急性缺血性脑卒中患者行血管内治疗的决策中提供帮助得到认可,但对于大脑中动脉M2段闭塞脑梗死的血管内治疗适应症的选择缺乏定论。本文就大脑中动脉M2段闭塞脑梗死血管内治疗疗效及Rapid软件筛选合适大脑中动脉M2段闭塞脑梗死介入治疗患者做一综述。The M2 segment of middle cerebral artery (MCA-M2) is an important branch of the internal carotid artery system. Cerebral infarction caused by M2 segment occlusion of MCA-M2 has brought a heavy burden on the family and society. The interventional treatment of M2 segment occlusion of MCA-M2 is still controversial. Current studies have shown that endovascular treatment of M2 segment occlusion of MCA-M2 is superior to traditional medical treatment. RAPID software has been recognized as a helpful tool in the decision-making of endovascular treatment for patients with acute ischemic stroke, but there is a lack of a definite conclusion on the indications for endovascular treatment of M2 segment occlusion of MCA-M2. This article reviews the efficacy of endovascular treatment of M2 segment occlusion of MCA-M2 and the selection of suitable patients for interventional treatment of M2 segment occlusion of MCA-M2 with Rapid software.展开更多
The features of nuclear stopping power and multi-hadron production systematically are studied by making an analysis of rapidity distributions of pion and proton at AGS, SPS and RHIC in this work. It is found that nucl...The features of nuclear stopping power and multi-hadron production systematically are studied by making an analysis of rapidity distributions of pion and proton at AGS, SPS and RHIC in this work. It is found that nuclear stopping power increases linearly with project rapidity yp at AGS and SPS, but that is not liner at RHIC. It is argued that the average rapidity loss is saturated at central rapidity region at RHIC. For pion distribution, it is found that the phase space of pion distribution distributes uniformly in the longitudinal direction,and a linear relationship of <βγ >L with log s is given at AGS and SPS. Non-uniform flow model may explain the features of the distribution at AGS and SPS, but may not ex- plain those of at RHIC.展开更多
Rapidity distributions of both E895 proton data at AGS energies and NA49 net proton data at SPS energies can be described reasonably well with a potential version of the Ur QMD in which mean-field potentials for both ...Rapidity distributions of both E895 proton data at AGS energies and NA49 net proton data at SPS energies can be described reasonably well with a potential version of the Ur QMD in which mean-field potentials for both pre-formed hadrons and confined baryons are considered, with the help of a traditional coalescence afterburner in which one parameter set for both relative distance R_0 and relative momentum P_0,(3.8 fm, 0.3 Ge V/c), is used. Because of the large cancellation between the expansion in R_0 and the shrinkage in P_0 through the Lorentz transformation, the relativistic effect in clusters has little effect on the rapidity distribution of free(net) protons. Using a Woods-Saxon-like function instead of a pure logarithmic function as seen by FOPI collaboration at SIS energies, one can fit well both the data at SIS energies and the Ur QMD calculation results at AGS and SPS energies. Further, it is found that for central Au+Au or Pb+Pb collisions at top SIS, SPS and RHIC energies, the proton fractions in clusters are about33%, 10%, and 0.7%, respectively.展开更多
The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pe...The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pesticide residues in tea products exceed the maximum residue limits. However, the complex matrices present in tea samples comprise a major challenge in the analytical detection of pesticide residues. In this study, nine types of lateral flow immunochromatographic strips (LFICSs) were developed to detect the pesticides of interest (fenpropathrin, chlorpyrifos, imidacloprid, thiamethoxam, acetamiprid, carbendazim, chlorothalonil, pyraclostrobin, and iprodione). To reduce the interference of tea substrates on the assay sensitivity, the pretreatment conditions for tea samples, including the extraction solvent, extraction time, and purification agent, were optimized for the simultaneous detection of these pesticides. The entire testing procedure (including pretreatment and detection) could be completed within 30 min. The detected results of authentic tea samples were confirmed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which suggest that the LFICS coupled with sample rapid pretreatment can be used for on-site rapid screening of the target pesticide in tea products prior to their market release.展开更多
The Mg-Y-Zn magnesium alloy system is commonly recognized for its remarkable combination of high strength and ductility,achieved even with minimal amounts of alloying elements.This exceptional performance is attribute...The Mg-Y-Zn magnesium alloy system is commonly recognized for its remarkable combination of high strength and ductility,achieved even with minimal amounts of alloying elements.This exceptional performance is attributed to its unique microstructure,which includes Long-Period Stacking Ordered(LPSO)phases or the distinctive microstructure derived from the LPSO phase,referred to as the Mille-Feuille structure(MFS).This study systematically compares the traditional ingot metallurgy method with the rapid solidification technique,coupled with diverse heat treatments and extrusion processes.Microscopic analyses reveal variations in the presence of LPSO phases,Mille-Feuille structure,and grain size,leading to divergent mechanical and corrosion properties.The rapid solidification approach stands out,ensuring superior mechanical properties alongside a reasonable corrosion rate.展开更多
Background Broilers stand out as one of the fastest-growing livestock globally,making a substantial contribution to animal meat production.However,the molecular and epigenetic mechanisms underlying the rapid growth an...Background Broilers stand out as one of the fastest-growing livestock globally,making a substantial contribution to animal meat production.However,the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear.This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers.We measured the growth performance of Cornish(CC)and White Plymouth Rock(RR)over a 42-d period.Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching(D21)and D42 for RNA-seq and ATAC-seq library construction.Results The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured,with CC outpacing RR in terms of weight at each stage of development.Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages,respectively.A total of 75,149 ATAC-seq peaks were annotated in promoter,exon,intron and intergenic regions,with a higher number of peaks in the promoter and intronic regions.The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis.The results spotlighted the upregulation of ACTC1 and FDPS at D21,which were primarily associated with muscle structure development by gene cluster enrichment.Additionally,a noteworthy upregulation of MUSTN1,FOS and TGFB3 was spotted in broiler chickens at D42,which were involved in cell differentiation and muscle regeneration after injury,suggesting a regulatory role of muscle growth and repair.Conclusions This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration.Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration.These findings provide a foundation for future research to investigate the functional aspects of muscle development.展开更多
Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and...Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and management policies,limited knowledge exists regarding age-related effects on dendroclimatic relationships in key subtropical tree species.In this study,we employed a den-drochronological method to examine the impact of rapid warming on growth dynamics and climatic sensitivity of young(40–60 years)and old(100–180 years)Pinus mas-soniana forests across six sites in central-southern China.The normalized log basal area increment of trees in both age groups increased significantly following rapid warming in 1984.Trees in young forests further showed a distinct growth decline during a prolonged severe drought(2004–2013),whereas those in old forests maintained growth increases.Tree growth was more strongly influenced by temperature than by moisture,particularly in old forests.Spring tem-peratures strongly and positively impacted the growth of old trees but had a weaker effect on young ones.Old forests had a significantly lower resistance to extreme drought but faster recovery compared to young forests.The“divergence problem”was more pronounced in younger forests due to their heightened sensitivity to warming-induced drought and heat stress.With ongoing warming,young forests also may initially experience a growth decline due to their heightened sensitivity to winter drought.Our findings underscore the importance of considering age-dependent changes in forest/tree growth response to warming in subtropical forest man-agement,particularly in the context of achieving“Carbon Peak&Carbon Neutrality”goals in China.展开更多
Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vi...Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vivo degradation presents challenges,notably in upholding mechanical integrity over time.This study investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes of a lean Mg-Zn-Ca-Mn alloy,ZX10.Utilizing rapid,cost-efficient characterization methods like X-ray diffraction and optical microscopy,we swiftly examine microstructural changes post-thermal treatment.Employing Pearson correlation coefficient analysis,we unveil the relationship between microstructural properties and critical targets(properties):hardness and corrosion resistance.Additionally,leveraging the least absolute shrinkage and selection operator(LASSO),we pinpoint the dominant microstructural factors among closely correlated variables.Our findings underscore the significant role of grain size refinement in strengthening and the predominance of the ternary Ca_(2)Mg_(6)Zn_(3)phase in corrosion behavior.This suggests that achieving an optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration of ternary phases.This thorough investigation furnishes valuable insights into the intricate interplay of processing,structure,and properties in magnesium alloys,thereby advancing the development of superior biodegradable implant materials.展开更多
Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment ...Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment occurs remains a challenging topic in TC intensity change research.Based on the simulation outputs of North Atlantic Hurricane Wilma(2005)and western North Pacific Typhoon Rammasun(2014),vortex track oscillations at different vertical levels and their associated role in vortex alignment are examined to improve our understanding of the vortex alignment during RI of TCs with initial hurricane intensity.It is found that vortex tracks at different vertical levels oscillate consistently in speed and direction during the RI of the two simulated TCs.While the consistent track oscillation reduces the oscillation tilt during RI,the reduction of vortex tilt results mainly from the mean track before RI.It is also found that the vortex tilt is primarily due to the mean vortex track before and after RI.The track oscillations are closely associated with wavenumber-1 vortex Rossby waves that are dominant wavenumber-1 circulations in the TC inner-core region.This study suggests that the dynamics of the wavenumber-1 vortex Rossby waves play an important role in the regulation of the physical processes associated with the track oscillation and vertical alignment of TCs.展开更多
Mg-6Zn-1Y(at.%)ribbons with strengthening precipitates of multi-type nanoquasicrystals were prepared by melt-spinning followed by aging treatments.Microstructural evolution of the rapidly solidified ribbons during iso...Mg-6Zn-1Y(at.%)ribbons with strengthening precipitates of multi-type nanoquasicrystals were prepared by melt-spinning followed by aging treatments.Microstructural evolution of the rapidly solidified ribbons during isothermal aging was comprehensively studied using various electron microscopy techniques.Two new kinds of decagonal quasicrystals were formed in aged ribbons,in addition to precipitation of nanometer icosahedral quasicrystals.Atomic-resolution observations reveal that both decagonal quasicrystals can be modeled by quasiperiodic tiling with decagonal clusters of 2.5 nm in diameter,but overlap of neighboring clusters in both decagonal quasicrystals is different from the Gummelt model observed in other quasicrystals.A shell composed of complex Laves Mg-Zn domains was formed surrounding each decagonal quasicrystal precipitate upon prolonged aging.In addition,all kinds of nanoprecipitates exhibit excellent structure and size stability at 573 K.Our findings may have implications for not only fundamental studies about quasicrystals,but also microstructural manipulation of high-performance Mg alloys.展开更多
Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement e...Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 μl·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater.展开更多
Slurry electrolysis(SE),as a hydrometallurgical process,has the characteristic of a multitank series connection,which leads to various stirring conditions and a complex solid suspension state.The computational fluid d...Slurry electrolysis(SE),as a hydrometallurgical process,has the characteristic of a multitank series connection,which leads to various stirring conditions and a complex solid suspension state.The computational fluid dynamics(CFD),which requires high computing resources,and a combination with machine learning was proposed to construct a rapid prediction model for the liquid flow and solid concentration fields in a SE tank.Through scientific selection of calculation samples via orthogonal experiments,a comprehensive dataset covering a wide range of conditions was established while effectively reducing the number of simulations and providing reasonable weights for each factor.Then,a prediction model of the SE tank was constructed using the K-nearest neighbor algorithm.The results show that with the increase in levels of orthogonal experiments,the prediction accuracy of the model improved remarkably.The model established with four factors and nine levels can accurately predict the flow and concentration fields,and the regression coefficients of average velocity and solid concentration were 0.926 and 0.937,respectively.Compared with traditional CFD,the response time of field information prediction in this model was reduced from 75 h to 20 s,which solves the problem of serious lag in CFD applied alone to actual production and meets real-time production control requirements.展开更多
基金This work is financially supported by the Hundred Talents Program of Chinese Academy of Sciences(E30247YB)the Special Talents Program of Lanzhou Institute of Chemical Physics(E0SX0282)+1 种基金the National Natural Science Foundation of Shandong Province(ZR2022QB190)the Innovative Research Funds of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai(E1R06SXM07,E1R06SXM09 and E2R06SXM14).
文摘Due to the mutual repulsion between their hydrophilic surface terminations and the high surface energy facilitating their ran-dom restacking,2D MXene nanosheets usually cannot self-assemble into 3D macroscopic gels with various applications in the absence of proper linking agents.In this work,a rapid spontaneous gelation of Ti3C2Tx MXene with a very low dispersion concentration of 0.5 mg mL^(-1) into multifunctional architectures under moderate centrifugation is illustrated.The as-prepared MXene gels exhibit reconfigurable internal structures and tunable rheological,tribological,electrochemical,infrared-emissive and photothermal-conversion properties based on the pH-induced changes in the surface chemistry of Ti_(3)C_(2)T_(x) nanosheets.By adopting a gel with optimized pH value,high lubrication,exceptional specific capacitances(~635 and~408 F g^(-1) at 5 and 100 mV s^(-1),respectively),long-term capacitance retention(~96.7%after 10,000 cycles)and high-precision screen-or extrusion-printing into different high-resolution anticounterfeiting patterns can be achieved,thus displaying extensive potential applications in the fields of semi-solid lubrication,control-lable devices,supercapacitors,information encryption and infrared camouflaging.
基金supported by the China Geological Survey Project(Grant No.DD20211314)the Fundamental Research Funds for Chinese Academy of Geological Science(No.JKY202122).
文摘A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.
基金supported by National Natural Science Foundation of China(Grant Nos.42025301,41730213 and 41890831)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0702)+2 种基金Hong Kong RGC GRF(Grant No.17307918)HKU Internal Grants for Member of Chinese Academy of Sciences(Grant No.102009906)for Distinguished Research Achievement Award(Grant No.102010100)。
文摘Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apatite fission track dating and inverse thermal modeling,we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau.In contrast to previous views,we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites,indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times.In addition,we also suggest that the 5-2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau,because it led to the increase in atmospheric CO_(2)level and a hotter upper crust than before,which are efficient for suddenly fast rock weathering and erosion.Finally,we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate.
基金financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC),through the Discovery Grant Program (RGPIN-2018-06725)the Discovery Accelerator Supplement Grant program (RGPAS-2018-522651)+2 种基金the New Frontiers in Research Fund-Exploration program (NFRFE-2019-00488)supported by funding from the Canada First Research Excellence Fund as part of the University of Alberta’s Future Energy Systems research initiative (FES-T06-Q03)supported by the Chinese Scholarship Council (CSC)(Grant No. 202006450027).
文摘The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).
基金jointly funded by the State Key Program of the National Natural Science Foundation of China(No.42130605)the Major Program of the National Natural Science Foundation of China(No.72293604)+5 种基金the Youth Innovative Talents Program of Guangdong Colleges and Universities(No.2022KQNCX026)the Natural Science Foundation of Shandong(No.ZR2022MD038)the Project of Enhancing School with Innovation of Guangdong Ocean University(No.230419106)the State Key Program of the National Natural Science Foundation of China(No.42130605)the National Natural Science Foundation of China(Nos.42275001,42276019,42205014,and 42275017)the Guangdong Ocean University Ph.D.Scientific Research Program(No.R19045).
文摘Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-April)was studied to reveal the variations of the key factors at different explosive-developing stages.This EC had weak low-level baroclinicity,mid-level cyclonic-vorticity advection,and strong low-level water vapor convergence at the initial explosive-developing stage.The low-level baroclinicity and mid-level cyclonic-vorticity advection increased substantially during the maximum-deepening-rate stage.The diagnostic analyses using the Zwack-Okossi equation showed that diabatic heating was the main contributor to the initial rapid intensification of this EC.The cyclonic-vorticity advection and warm-air advection enhanced rapidly in the middle and upper troposphere and contributed to the maximum rapid intensification,whereas the diabatic heating weakened slightly in the mid-low troposphere.The relative contribution of the diabatic heating decreased from the initial explosive-developing stage to the maximum-deepening-rate stage due to the enhancement of other factors(the cyclonic-vorticity advection and warm-air advection).Furthermore,the physical factors contributing to this EC varied with the explosive-developing stage.The non-key factors at the initial explosive-developing stage need attention to forecast the rapid intensification.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975118,52025121)Foundation of State Key Laboratory of Automotive Simulation and Control of China(Grant No.20210104)+1 种基金Foundation of State Key Laboratory of Automobile Safety and Energy Saving of China(Grant No.KFZ2201)Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements of China(Grant No.BA2021023).
文摘Four-wheel independently driven electric vehicles(FWID-EV)endow a flexible and scalable control framework to improve vehicle performance.This paper integrates the torque vectoring and active suspension system(ASS)to enhance the vehicle’s longitudinal and vertical motion control performance.While the nonlinear characteristic of the tire model leads to a relatively heavier computational burden.To facilitate the controller design and ease the load,a half-vehicle dynamics system is built and simplified to the linear-time-varying(LTV)model.Then a model predictive controller is developed by formulating the objective function by comprehensively considering the safety,energy-saving and comfort requirements.The in-wheel motor efficiency and the power loss of tire slip are treated as optimization indices in this work to reduce energy consumption.Finally,the effectiveness of the proposed controller is verified through the rapid-control-prototype(RCP)test.The results demonstrate the enhancement of the energy-saving as well as comfort on the basis of vehicle stability.
文摘BACKGROUND Cesarean hemorrhage is one of the serious complications,and short-term massive blood transfusion can easily cause postoperative infection and physical stress response.However,predictive nursing intervention has important clinical significance for it.AIM To explore the effect of predictive nursing intervention on the stress response and complications of women undergoing short-term mass blood transfusion during cesarean section(CS).METHODS A clinical medical record of 100 pregnant women undergoing rapid mass blood transfusion during sections from June 2019 to June 2021.According to the different nursing methods,patients divided into control group(n=50)and observation group(n=50).Among them,the control group implemented routine nursing,and the observation group implemented predictive nursing intervention based on the control group.Moreover,compared the differences in stress res-ponse,complications,and pain scores before and after the nursing of pregnant women undergoing rapid mass blood transfusion during CS.RESULTS The anxiety and depression scores of pregnant women in the two groups were significantly improved after nursing,and the psychological stress response of the observation group was significantly lower than that of the control group(P<0.05).The heart rate and mean arterial pressure(MAP)of the observation group during delivery were lower than those of the control group,and the MAP at the end of delivery was lower than that of the control group(P<0.05).Moreover,different pain scores improved significantly in both groups,with the observation group considerably less than the control group(P<0.05).After nursing,complications such as skin rash,urinary retention,chills,diarrhea,and anaphylactic shock in the observation group were 18%,which significantly higher than in the control group(4%)(P<0.05).CONCLUSION Predictive nursing intervention can effectively relieve the pain,reduce the incidence of complications,improve mood and stress response,and serve as a reference value for the nursing of women undergoing rapid mass transfusion during CS.
文摘大脑中动脉M2段(M2 segment of middle cerebral artery, MCA-M2)是颈内动脉系统的重要分支,大脑中动脉M2段闭塞脑梗死导致的神经功能缺损对患者家庭及社会带来了沉重的负担。大脑中动脉M2段闭塞脑梗死的介入治疗目前仍存在争议。目前有研究表明大脑中动脉M2段闭塞脑梗死血管内治疗优于传统的内科治疗。RAPID软件在急性缺血性脑卒中患者行血管内治疗的决策中提供帮助得到认可,但对于大脑中动脉M2段闭塞脑梗死的血管内治疗适应症的选择缺乏定论。本文就大脑中动脉M2段闭塞脑梗死血管内治疗疗效及Rapid软件筛选合适大脑中动脉M2段闭塞脑梗死介入治疗患者做一综述。The M2 segment of middle cerebral artery (MCA-M2) is an important branch of the internal carotid artery system. Cerebral infarction caused by M2 segment occlusion of MCA-M2 has brought a heavy burden on the family and society. The interventional treatment of M2 segment occlusion of MCA-M2 is still controversial. Current studies have shown that endovascular treatment of M2 segment occlusion of MCA-M2 is superior to traditional medical treatment. RAPID software has been recognized as a helpful tool in the decision-making of endovascular treatment for patients with acute ischemic stroke, but there is a lack of a definite conclusion on the indications for endovascular treatment of M2 segment occlusion of MCA-M2. This article reviews the efficacy of endovascular treatment of M2 segment occlusion of MCA-M2 and the selection of suitable patients for interventional treatment of M2 segment occlusion of MCA-M2 with Rapid software.
基金Supported by the Excellent Youth Foundation of Hubei Scientific Committee (Grant No. 2006ABB036)the Educational Commission of Hubei Province of China (Grant No. Z20081302)and the Natural Science Foundation of China Three Gorges Uni-versity (Grant No. 2003C02)
文摘The features of nuclear stopping power and multi-hadron production systematically are studied by making an analysis of rapidity distributions of pion and proton at AGS, SPS and RHIC in this work. It is found that nuclear stopping power increases linearly with project rapidity yp at AGS and SPS, but that is not liner at RHIC. It is argued that the average rapidity loss is saturated at central rapidity region at RHIC. For pion distribution, it is found that the phase space of pion distribution distributes uniformly in the longitudinal direction,and a linear relationship of <βγ >L with log s is given at AGS and SPS. Non-uniform flow model may explain the features of the distribution at AGS and SPS, but may not ex- plain those of at RHIC.
基金the National Natural Science Foundation of China(Grant Nos.1137506211547312 and 11275068)+2 种基金the project sponsored by SRF for ROCSSEMand the Doctoral Scientific Research Foundation(Grant No.11447109)
文摘Rapidity distributions of both E895 proton data at AGS energies and NA49 net proton data at SPS energies can be described reasonably well with a potential version of the Ur QMD in which mean-field potentials for both pre-formed hadrons and confined baryons are considered, with the help of a traditional coalescence afterburner in which one parameter set for both relative distance R_0 and relative momentum P_0,(3.8 fm, 0.3 Ge V/c), is used. Because of the large cancellation between the expansion in R_0 and the shrinkage in P_0 through the Lorentz transformation, the relativistic effect in clusters has little effect on the rapidity distribution of free(net) protons. Using a Woods-Saxon-like function instead of a pure logarithmic function as seen by FOPI collaboration at SIS energies, one can fit well both the data at SIS energies and the Ur QMD calculation results at AGS and SPS energies. Further, it is found that for central Au+Au or Pb+Pb collisions at top SIS, SPS and RHIC energies, the proton fractions in clusters are about33%, 10%, and 0.7%, respectively.
基金supported by grants from Shanghai Agriculture Applied Technology Development Program,China(Grant No.:2020-02-08-00-08-F01456)the Key Research and Development Program of Zhejiang Province,China(Grant No.:2020C02024-2).
文摘The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pesticide residues in tea products exceed the maximum residue limits. However, the complex matrices present in tea samples comprise a major challenge in the analytical detection of pesticide residues. In this study, nine types of lateral flow immunochromatographic strips (LFICSs) were developed to detect the pesticides of interest (fenpropathrin, chlorpyrifos, imidacloprid, thiamethoxam, acetamiprid, carbendazim, chlorothalonil, pyraclostrobin, and iprodione). To reduce the interference of tea substrates on the assay sensitivity, the pretreatment conditions for tea samples, including the extraction solvent, extraction time, and purification agent, were optimized for the simultaneous detection of these pesticides. The entire testing procedure (including pretreatment and detection) could be completed within 30 min. The detected results of authentic tea samples were confirmed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which suggest that the LFICS coupled with sample rapid pretreatment can be used for on-site rapid screening of the target pesticide in tea products prior to their market release.
基金supported by Japan Society for the Promotion of Science(KAKENHI Grant-in-Aid for Scientific Research18H05475,18H05476 and JP20H00312)+2 种基金MRC International Collaborative Research Grant.The authors would like to thank the Czech Science Foundation(Project No.22-22248S)specific university research(A1_FCHT_2024_007)for financial supportthe assistance provided by the Ferroic Multifunctionalities project,supported by the Ministry of Education,Youth,and Sports of the Czech Republic.Project No.CZ.02.01.01/00/22_008/0004591,co-funded by the European Union.CzechNanoLab project LM2023051 funded by MEYS CR is gratefully acknowledged for the financial support of the measurements/sample fabrication at LNSM Research Infrastructure.
文摘The Mg-Y-Zn magnesium alloy system is commonly recognized for its remarkable combination of high strength and ductility,achieved even with minimal amounts of alloying elements.This exceptional performance is attributed to its unique microstructure,which includes Long-Period Stacking Ordered(LPSO)phases or the distinctive microstructure derived from the LPSO phase,referred to as the Mille-Feuille structure(MFS).This study systematically compares the traditional ingot metallurgy method with the rapid solidification technique,coupled with diverse heat treatments and extrusion processes.Microscopic analyses reveal variations in the presence of LPSO phases,Mille-Feuille structure,and grain size,leading to divergent mechanical and corrosion properties.The rapid solidification approach stands out,ensuring superior mechanical properties alongside a reasonable corrosion rate.
基金supported by the National Key Research and Development Program of China(2022YFF1000204)the National Natural Science Foundation of China(32102535)the Key Research and Development Program of Hainan province(ZDYF2023XDNY036)。
文摘Background Broilers stand out as one of the fastest-growing livestock globally,making a substantial contribution to animal meat production.However,the molecular and epigenetic mechanisms underlying the rapid growth and development of broiler chickens are still unclear.This study aims to explore muscle development patterns and regulatory networks during the postnatal rapid growth phase of fast-growing broilers.We measured the growth performance of Cornish(CC)and White Plymouth Rock(RR)over a 42-d period.Pectoral muscle samples from both CC and RR were randomly collected at day 21 after hatching(D21)and D42 for RNA-seq and ATAC-seq library construction.Results The consistent increase in body weight and pectoral muscle weight across both breeds was observed as they matured,with CC outpacing RR in terms of weight at each stage of development.Differential expression analysis identified 398 and 1,129 genes in the two dimensions of breeds and ages,respectively.A total of 75,149 ATAC-seq peaks were annotated in promoter,exon,intron and intergenic regions,with a higher number of peaks in the promoter and intronic regions.The age-biased genes and breed-biased genes of RNA-seq were combined with the ATAC-seq data for subsequent analysis.The results spotlighted the upregulation of ACTC1 and FDPS at D21,which were primarily associated with muscle structure development by gene cluster enrichment.Additionally,a noteworthy upregulation of MUSTN1,FOS and TGFB3 was spotted in broiler chickens at D42,which were involved in cell differentiation and muscle regeneration after injury,suggesting a regulatory role of muscle growth and repair.Conclusions This work provided a regulatory network of postnatal broiler chickens and revealed ACTC1 and MUSTN1 as the key responsible for muscle development and regeneration.Our findings highlight that rapid growth in broiler chickens triggers ongoing muscle damage and subsequent regeneration.These findings provide a foundation for future research to investigate the functional aspects of muscle development.
基金funded by the National Natural Science Foundation of China(42107476,31901241)the China Postdoctoral Science Foundation(2020M682600)+1 种基金the China Postdoctoral International Exchange Fellowship Program(PC2021099)the Natural Science Foundation of Hunan Province(2021JJ41075).
文摘Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and management policies,limited knowledge exists regarding age-related effects on dendroclimatic relationships in key subtropical tree species.In this study,we employed a den-drochronological method to examine the impact of rapid warming on growth dynamics and climatic sensitivity of young(40–60 years)and old(100–180 years)Pinus mas-soniana forests across six sites in central-southern China.The normalized log basal area increment of trees in both age groups increased significantly following rapid warming in 1984.Trees in young forests further showed a distinct growth decline during a prolonged severe drought(2004–2013),whereas those in old forests maintained growth increases.Tree growth was more strongly influenced by temperature than by moisture,particularly in old forests.Spring tem-peratures strongly and positively impacted the growth of old trees but had a weaker effect on young ones.Old forests had a significantly lower resistance to extreme drought but faster recovery compared to young forests.The“divergence problem”was more pronounced in younger forests due to their heightened sensitivity to warming-induced drought and heat stress.With ongoing warming,young forests also may initially experience a growth decline due to their heightened sensitivity to winter drought.Our findings underscore the importance of considering age-dependent changes in forest/tree growth response to warming in subtropical forest man-agement,particularly in the context of achieving“Carbon Peak&Carbon Neutrality”goals in China.
基金supported by the National Science Foundation under grant DMR#2320355supported by the Department of Energy,Office of Science,Basic Energy Sciences,under Award#DESC0022305(formulation engineering of energy materials via multiscale learning spirals)Computing resources were provided by the ARCH high-performance computing(HPC)facility,which is supported by National Science Foundation(NSF)grant number OAC 1920103。
文摘Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vivo degradation presents challenges,notably in upholding mechanical integrity over time.This study investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes of a lean Mg-Zn-Ca-Mn alloy,ZX10.Utilizing rapid,cost-efficient characterization methods like X-ray diffraction and optical microscopy,we swiftly examine microstructural changes post-thermal treatment.Employing Pearson correlation coefficient analysis,we unveil the relationship between microstructural properties and critical targets(properties):hardness and corrosion resistance.Additionally,leveraging the least absolute shrinkage and selection operator(LASSO),we pinpoint the dominant microstructural factors among closely correlated variables.Our findings underscore the significant role of grain size refinement in strengthening and the predominance of the ternary Ca_(2)Mg_(6)Zn_(3)phase in corrosion behavior.This suggests that achieving an optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration of ternary phases.This thorough investigation furnishes valuable insights into the intricate interplay of processing,structure,and properties in magnesium alloys,thereby advancing the development of superior biodegradable implant materials.
基金National Natural Science Foundation of China(Grant Nos:42150710531,42192551,61827901)supported this study.
文摘Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment occurs remains a challenging topic in TC intensity change research.Based on the simulation outputs of North Atlantic Hurricane Wilma(2005)and western North Pacific Typhoon Rammasun(2014),vortex track oscillations at different vertical levels and their associated role in vortex alignment are examined to improve our understanding of the vortex alignment during RI of TCs with initial hurricane intensity.It is found that vortex tracks at different vertical levels oscillate consistently in speed and direction during the RI of the two simulated TCs.While the consistent track oscillation reduces the oscillation tilt during RI,the reduction of vortex tilt results mainly from the mean track before RI.It is also found that the vortex tilt is primarily due to the mean vortex track before and after RI.The track oscillations are closely associated with wavenumber-1 vortex Rossby waves that are dominant wavenumber-1 circulations in the TC inner-core region.This study suggests that the dynamics of the wavenumber-1 vortex Rossby waves play an important role in the regulation of the physical processes associated with the track oscillation and vertical alignment of TCs.
基金supported by the National Natural Science Foundation of China (grant number: 51771202, 51971225, 52001225)Key Research of Frontier Science, Chinese Academy of Science (grant number: QYZDY-SSW-JSC207)+1 种基金Ji Hua Laboratory (X210141TL210)Guangdong Province (2021B0301030003)
文摘Mg-6Zn-1Y(at.%)ribbons with strengthening precipitates of multi-type nanoquasicrystals were prepared by melt-spinning followed by aging treatments.Microstructural evolution of the rapidly solidified ribbons during isothermal aging was comprehensively studied using various electron microscopy techniques.Two new kinds of decagonal quasicrystals were formed in aged ribbons,in addition to precipitation of nanometer icosahedral quasicrystals.Atomic-resolution observations reveal that both decagonal quasicrystals can be modeled by quasiperiodic tiling with decagonal clusters of 2.5 nm in diameter,but overlap of neighboring clusters in both decagonal quasicrystals is different from the Gummelt model observed in other quasicrystals.A shell composed of complex Laves Mg-Zn domains was formed surrounding each decagonal quasicrystal precipitate upon prolonged aging.In addition,all kinds of nanoprecipitates exhibit excellent structure and size stability at 573 K.Our findings may have implications for not only fundamental studies about quasicrystals,but also microstructural manipulation of high-performance Mg alloys.
基金the National Natural Science Foundation of China(52304236)the Natural Science Foundation of Shandong Province(ZR2021QE076)for the financial support to this research extracted from the project.
文摘Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 μl·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater.
基金financially supported by the National Natural Science Foundation of China(No.51974018the Open Foundation of the State Key Laboratory of Process Automation in Mining and Metallurgy(No.BGRIMM-KZSKL-2022-9).
文摘Slurry electrolysis(SE),as a hydrometallurgical process,has the characteristic of a multitank series connection,which leads to various stirring conditions and a complex solid suspension state.The computational fluid dynamics(CFD),which requires high computing resources,and a combination with machine learning was proposed to construct a rapid prediction model for the liquid flow and solid concentration fields in a SE tank.Through scientific selection of calculation samples via orthogonal experiments,a comprehensive dataset covering a wide range of conditions was established while effectively reducing the number of simulations and providing reasonable weights for each factor.Then,a prediction model of the SE tank was constructed using the K-nearest neighbor algorithm.The results show that with the increase in levels of orthogonal experiments,the prediction accuracy of the model improved remarkably.The model established with four factors and nine levels can accurately predict the flow and concentration fields,and the regression coefficients of average velocity and solid concentration were 0.926 and 0.937,respectively.Compared with traditional CFD,the response time of field information prediction in this model was reduced from 75 h to 20 s,which solves the problem of serious lag in CFD applied alone to actual production and meets real-time production control requirements.