The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a...The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .展开更多
Improving the cracking resistance of steel-normal concrete(NC)composite beams in the negative moment region is one of the main tasks in designing continuous composite beam(CCB)bridges due to the low tensile strength o...Improving the cracking resistance of steel-normal concrete(NC)composite beams in the negative moment region is one of the main tasks in designing continuous composite beam(CCB)bridges due to the low tensile strength of the NC deck at pier supports.This study proposed an innovative structural configuration for the negative bending moment region in a steel-concrete CCB bridge with the aid of ultrahigh performance concrete(UHPC)layer.In order to investigate the feasibility and effectiveness of this new UHPC jointed structure in the negative bending moment region,field load testing was conducted on a newly built full-scale bridge.The newly designed structural configuration was described in detail regarding the structural characteristics(cracking resistance,economy,durability,and constructability).In the field investigation,strains on the surface of the concrete bridge deck,rebar,and steel beam in the negative bending moment region,as well as mid-span deflection,were measured under different load cases.Also,a finite element model for the four-span superstructure of the full-scale bridge was established and validated by the field test results.The simulated results in terms of strains and mid-span deflection showed moderate consistency with the test results.This field test and the finite element model results demonstrated that the new configuration with the UHPC layer provided an effective alternative for the negative bending moment region of the composite beam.展开更多
Carbon fiber reinforced polymer (CFRP) bars were prestressed for the structural strengthening of 8 T-shaped rein-forced concrete (RC) beams of a 21-year-old bridge in China. The ultimate bearing capacity of the existi...Carbon fiber reinforced polymer (CFRP) bars were prestressed for the structural strengthening of 8 T-shaped rein-forced concrete (RC) beams of a 21-year-old bridge in China. The ultimate bearing capacity of the existing bridge after retrofit was discussed on the basis of concrete structures theory. The flexural strengths of RC beams strengthened with CFRP bars were controlled by the failure of concrete in compression and a prestressing method was applied in the retrofit. The field construction processes of strengthening with CFRP bars-including grouting cracks, cutting groove, grouting epoxy and embedding CFRP bars, surface treating, banding with the U-type CFRP sheets, releasing external prestressed steel tendons-were introduced in detail. In order to evaluate the effectiveness of this strengthening method, field tests using vehicles as live load were applied before and after the retrofit. The test results of deflection and concrete strain of the T-shaped beams with and without strengthening show that the capacity of the repaired bridge, including the bending strength and stiffness, is enhanced. The measurements of crack width also indicate that this strengthening method can enhance the durability of bridges. Therefore, the proposed strengthening technology is feasible and effective.展开更多
Bridges, especially highway bridges, are a key factor in nations’ development and flourish. Thus, great care should be taken to maintain and inspect their safety and serviceability. An immediate repair will prevent t...Bridges, especially highway bridges, are a key factor in nations’ development and flourish. Thus, great care should be taken to maintain and inspect their safety and serviceability. An immediate repair will prevent the loss of life and vehicles damage while crossing underpass and overpassing the heavy deteriorated bridges. Reinforced or pre-stressed concrete bridge girders become structurally deficient because of severed reasons including, increasing in the load requirements, corrosion of pre-stressing strands or reinforcement bars and collision of over-height trucks with the bulb of the concrete girders. The purpose of this case study is to evaluate and assess the damages of the highway bridges in Jordan. Since there is no mandatory program in Jordan for inspection of bridges and evaluating their conditions, this paper presents an inspection and assessment of two highway bridges along the desert highway which is the essential nerve connecting Jordan cities, and it also serves as an international road between many middle east countries. These two Bridges have never been investigated or checked since their construction in the late 1980s. The study results showed that the main factor causing the deterioration of these bridges is the collision of the over-height trucks with their elements. Relying on the collected data, solutions and repair methods were introduced to rehabilitate these bridges and assure their structural safety.展开更多
基金National Natural Science Foundation of China Under Grant No.50575101Transportation Science Research Item of Jiangsu Province Under Grant No.06Y20
文摘The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge .
基金The authors would like to acknowledge the following funders for their support to the studies in this paper:the National Key R&D Program of China(No.2018YFC0705406)the National Natural Science Foundation of China(Grant No.51778223)+1 种基金the Major Program of Science and Technology of Hunan Province(No.2017SK1010)the Hunan Provincial Innovation Foundation for Postgraduate(No.CX2017B119).
文摘Improving the cracking resistance of steel-normal concrete(NC)composite beams in the negative moment region is one of the main tasks in designing continuous composite beam(CCB)bridges due to the low tensile strength of the NC deck at pier supports.This study proposed an innovative structural configuration for the negative bending moment region in a steel-concrete CCB bridge with the aid of ultrahigh performance concrete(UHPC)layer.In order to investigate the feasibility and effectiveness of this new UHPC jointed structure in the negative bending moment region,field load testing was conducted on a newly built full-scale bridge.The newly designed structural configuration was described in detail regarding the structural characteristics(cracking resistance,economy,durability,and constructability).In the field investigation,strains on the surface of the concrete bridge deck,rebar,and steel beam in the negative bending moment region,as well as mid-span deflection,were measured under different load cases.Also,a finite element model for the four-span superstructure of the full-scale bridge was established and validated by the field test results.The simulated results in terms of strains and mid-span deflection showed moderate consistency with the test results.This field test and the finite element model results demonstrated that the new configuration with the UHPC layer provided an effective alternative for the negative bending moment region of the composite beam.
基金supported by the National Hi-Tech Research and Development (863) Program of China (No. 2007AA04Z437)the National Natural Science Foundation of China (No. 50808158)the Zhejiang Provincial Natural Science Foundation of China (No. Y107049)
文摘Carbon fiber reinforced polymer (CFRP) bars were prestressed for the structural strengthening of 8 T-shaped rein-forced concrete (RC) beams of a 21-year-old bridge in China. The ultimate bearing capacity of the existing bridge after retrofit was discussed on the basis of concrete structures theory. The flexural strengths of RC beams strengthened with CFRP bars were controlled by the failure of concrete in compression and a prestressing method was applied in the retrofit. The field construction processes of strengthening with CFRP bars-including grouting cracks, cutting groove, grouting epoxy and embedding CFRP bars, surface treating, banding with the U-type CFRP sheets, releasing external prestressed steel tendons-were introduced in detail. In order to evaluate the effectiveness of this strengthening method, field tests using vehicles as live load were applied before and after the retrofit. The test results of deflection and concrete strain of the T-shaped beams with and without strengthening show that the capacity of the repaired bridge, including the bending strength and stiffness, is enhanced. The measurements of crack width also indicate that this strengthening method can enhance the durability of bridges. Therefore, the proposed strengthening technology is feasible and effective.
文摘Bridges, especially highway bridges, are a key factor in nations’ development and flourish. Thus, great care should be taken to maintain and inspect their safety and serviceability. An immediate repair will prevent the loss of life and vehicles damage while crossing underpass and overpassing the heavy deteriorated bridges. Reinforced or pre-stressed concrete bridge girders become structurally deficient because of severed reasons including, increasing in the load requirements, corrosion of pre-stressing strands or reinforcement bars and collision of over-height trucks with the bulb of the concrete girders. The purpose of this case study is to evaluate and assess the damages of the highway bridges in Jordan. Since there is no mandatory program in Jordan for inspection of bridges and evaluating their conditions, this paper presents an inspection and assessment of two highway bridges along the desert highway which is the essential nerve connecting Jordan cities, and it also serves as an international road between many middle east countries. These two Bridges have never been investigated or checked since their construction in the late 1980s. The study results showed that the main factor causing the deterioration of these bridges is the collision of the over-height trucks with their elements. Relying on the collected data, solutions and repair methods were introduced to rehabilitate these bridges and assure their structural safety.