期刊文献+
共找到4,021篇文章
< 1 2 202 >
每页显示 20 50 100
Tetrathiafulvalene esters with high redox potentials and improved solubilities for non-aqueous redox flow battery applications
1
作者 Weikang Hu Jiaqi Xu +3 位作者 Nanjie Chen Zongcai Deng Yuekun Lai Dongyang Chen 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期899-908,共10页
The exploitation of high performance redox-active substances is critically important for the development of non-aqueous redoxflow batteries.Herein,three tetrathiofulvalene(TTF)derivatives with different substitution gr... The exploitation of high performance redox-active substances is critically important for the development of non-aqueous redoxflow batteries.Herein,three tetrathiofulvalene(TTF)derivatives with different substitution groups,namely TTF diethyl ester(TTFDE),TTF tetramethyl ester(TTFTM),and TTF tetraethyl ester(TTFTE),are prepared and their energy storage properties are evaluated.It has been found that the redox potential and solubility of these TTF derivatives in conventional carbonate electrolytes increases with the number of ester groups.The battery with a catholyte of 0.2 mol L^(-1) of TTFTE delivers a specific capacity of more than 10 Ah L^(-1) at the current density of 0.5 C with two discharge voltage platforms locating at as high as 3.85 and 3.60 V vs.Li/Liþ.Its capacity retention can be improved from 2.34 Ah L^(-1) to 3.60 Ah L^(-1) after 100 cycles by the use of an anion exchange membrane to block the crossover of TTF species.The excellent cycling stability of the TIF esters is supported by their well-delocalized electrons,as revealed by the density function theory calculations.Therefore,the introduction of more and larger electron-withdrawing groups is a promising strategy to simultaneously increase the redox-potential and solubility of redox-active ma-terials for non-aqueous redoxflow batteries. 展开更多
关键词 Non-aqueous redox flow batteries Tetrathiofulvarene redox potential SOLUBILITY Substituent effect
下载PDF
Implications of electrode modifications in aqueous organic redox flow batteries
2
作者 Zahid Manzoor Bhat Mohammad Furquan +3 位作者 Muhammad Aurang Zeb Gul Sial Umair Alam Atif Saeed Alzahrani Mohammad Qamar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期499-510,I0011,共13页
Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making t... Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making them very viable contenders for large-scale grid storage applications.Considerable attention has been paid on the development of efficient redox-active molecules and their performance optimization through chemical substitutions at various places on the backbone as part of the pursuit for high-performance RFBs.Despite the fact that electrodes are vital to optimal performance,they have not garnered significant attention.Limited research has been conducted on the effects of electrode modifications to improve the performance of RFBs.The primary emphasis has been given on the impact of electrode engineering to augment the efficiency of aqueous organic RFBs.An overview of electron transfer at the electrode-electrolyte interface is provided.The implications of electrode modification on the performance of redox flow batteries,with a particular focus on the anodic and cathodic half-cells separately,are then discussed.In each section,significant discrepancies surrounding the effects of electrode engineering are thoroughly examined and discussed.Finally,we have presented a comprehensive assessment along with our perspectives on the future trajectory. 展开更多
关键词 redox flow batteries Electrode modification Organic redox molecules Outer sphere and inner sphere
下载PDF
Pairing nitroxyl radical and phenazine with electron-withdrawing/-donating substituents in “water-in-ionic liquid” for high-voltage aqueous redox flow batteries
3
作者 Zhifeng Huang Rolf Hempelmann +2 位作者 Yiqiong Zhang Li Tao Ruiyong Chen 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期713-722,共10页
Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redoxflow batteries(RFBs)due to the advantages of high ionic conductivity,environmentally benign,s... Aqueous redox-active organic materials-base electrolytes are sustainable alternatives to vanadium-based electrolyte for redoxflow batteries(RFBs)due to the advantages of high ionic conductivity,environmentally benign,safety and low cost.However,the underexplored redox properties of organic materials and the narrow thermodynamic electrolysis window of water(1.23 V)hinder their wide applications.Therefore,seeking suitable organic redox couples and aqueous electrolytes with a high output voltage is highly suggested for advancing the aqueous organic RFBs.In this work,the functionalized phenazine and nitroxyl radical with electron-donating and electron-withdrawing group exhibit redox potential of-0.88 V and 0.78 V vs.Ag,respectively,in“water-in-ionic liquid”supporting electrolytes.Raman spectra reveal that the activity of water is largely suppressed in“water-in-ionic liquid”due to the enhanced hydrogen bond interactions between ionic liquid and water,enabling an electrochemical stability window above 3 V.“Water-in-ionic liquid”supporting electrolytes help to shift redox potential of nitroxyl radical and enable the redox activity of functionalized phenazine.The assembled aqueous RFB allows a theoretical cell voltage of 1.66 V and shows a practical discharge voltage of 1.5 V in the“water-in-ionic liquid”electrolytes.Meanwhile,capacity retention of 99.91%per cycle is achieved over 500 charge/discharge cycles.A power density of 112 mW cm^(-2) is obtained at a current density of 30 mA cm^(-2).This work highlights the importance of rationally combining supporting electrolytes and organic molecules to achieve high-voltage aqueous RFBs. 展开更多
关键词 Aqueous redoxflow batteries Water-in-ionic liquid electrolytes High-voltage aqueous batteries Organic redox-active materials
下载PDF
Dual-single-atoms of Pt-Co boost sulfur redox kinetics for ultrafast Li-S batteries 被引量:1
4
作者 Hanyan Wu Xuejie Gao +7 位作者 Xinyang Chen Weihan Li Junjie Li Lei Zhang Yang Zhao Ming Jiang Runcang Sun Xueliang Sun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期53-63,共11页
Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetic... Applications of lithium-sulfur(Li-S)batteries are still limited by the sluggish conversion kinetics from polysulfide to Li_(2)S.Although various single-atom catalysts are available for improving the conversion kinetics,the sulfur redox kinetics for Li-S batteries is still not ultrafast.Herein,in this work,a catalyst with dual-single-atom Pt-Co embedded in N-doped carbon nanotubes(Pt&Co@NCNT)was proposed by the atomic layer deposition method to suppress the shuttle effect and synergistically improve the interconversion kinetics from polysulfides to Li_(2)S.The X-ray absorption near edge curves indicated the reversible conversion of Li_(2)Sx on the S/Pt&Co@NCNT electrode.Meanwhile,density functional theory demonstrated that the Pt&Co@NCNT promoted the free energy of the phase transition of sulfur species and reduced the oxidative decomposition energy of Li_(2)S.As a result,the batteries assembled with S/Pt&Co@NCNT electrodes exhibited a high capacity retention of 80%at 100 cycles at a current density of 1.3 mA cm^(−2)(S loading:2.5 mg cm^(−2)).More importantly,an excellent rate performance was achieved with a high capacity of 822.1 mAh g^(−1) at a high current density of 12.7 mA cm^(−2).This work opens a new direction to boost the sulfur redox kinetics for ultrafast Li-S batteries. 展开更多
关键词 DFT calculation dual-single-atoms of Pt-Co fast Li-sulfur batteries sulfur redox kinetics XANES analysis
下载PDF
Progress and prospects of pH-neutral aqueous organic redox flow batteries:Electrolytes and membranes
5
作者 Kang Peng Gonggen Tang +6 位作者 Chao Zhang Xian Yang Peipei Zuo Zhanfeng Xiang Zhong Yao Zhengjin Yang Tongwen Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期89-109,共21页
Aqueous organic redox flow batteries(AORFBs),which exploit the reversible electrochemical reactions of water-soluble organic electrolytes to store electricity,have emerged as an efficient electrochemical energy storag... Aqueous organic redox flow batteries(AORFBs),which exploit the reversible electrochemical reactions of water-soluble organic electrolytes to store electricity,have emerged as an efficient electrochemical energy storage technology for the grid-scale integration of renewable electricity.pH-neutral AORFBs that feature high safety,low corrosivity,and environmental benignity are particularly promising,and their battery performance is significantly impacted by redox-active molecules and ion-exchange membranes(IEMs).Here,representative anolytes and catholytes engineered for use in pH-neutral AORFBs are outlined and summarized,as well as their side reactions that cause irreversible battery capacity fading.In addition,the recent achievements of IEMs for pH-neutral AORFBs are discussed,with a focus on the construction and tuning of ion transport channels.Finally,the critical challenges and potential research opportunities for developing practically relevant pH-neutral AORFBs are presented. 展开更多
关键词 Aqueous organic redox flow battery pH-Neutral ANOLYTE CATHOLYTE Membrane
下载PDF
Perspectives on aqueous organic redox flow batteries
6
作者 Fulong Zhu Qiliang Chen Yongzhu Fu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1641-1649,共9页
Aqueous organic redoxflow batteries(AORFBs)have pioneered new routes for large-scale energy storage.The tunable nature of redox-active organic molecules provides a robust foundation for creating innovative AORFBs with ... Aqueous organic redoxflow batteries(AORFBs)have pioneered new routes for large-scale energy storage.The tunable nature of redox-active organic molecules provides a robust foundation for creating innovative AORFBs with exceptional performance.Molecular engineering endows various organic molecules with considerable advantages in solubility,stability,and redox potential.Advanced characterizations have enabled a comprehensive understanding of the redox reaction and degradation mechanisms of these organic molecules.Computational chemistry and machine learning have guided the development of new organic molecules.The practical application of AORFBs will depend on the complementary efforts of multiple parties.This paper consolidates the current design principles of molecular engineering,degradation mechanisms,characterization techniques,and the utilization of computational chemistry.It also offers perspectives and forecasts the necessary attributes and strategic efforts for the next-generation AORFBs,aiming to provide the research community with a deeper understanding. 展开更多
关键词 POTENTIAL redox exceptional
下载PDF
Achieving asymmetric redox chemistry for oxygen evolution reaction through strong metal-support interactions
7
作者 Shihao Wang Meiling Fan +4 位作者 Hongfei Pan Jiahui Lyu Jinsong Wu Haolin Tang Haining Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期526-535,共10页
Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redo... Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability. 展开更多
关键词 Reaction redox chemistry Strong metal-support interactions Layered double hydroxides ELECTROCATALYSTS Water electrolysis
下载PDF
Multiple-dimensioned defect engineering for graphite felt electrode of vanadium redox flow battery
8
作者 Yingqiao Jiang Yinhui Wang +7 位作者 Gang Cheng Yuehua Li Lei Dai Jing Zhu Wei Meng Jingyu Xi Ling Wang Zhangxing He 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期143-153,共11页
The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledim... The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledimensioned defect,including nano-scale etching and atomic-scale N,O codoping,was used to modify GF by the molten salt system.NH_(4)Cl and KClO_(3) were added simultaneously to the system to obtain porous N/O co-doped electrode(GF/ON),where KClO_(3) was used to ultra-homogeneously etch,and O-functionalize electrode,and NH4Cl was used as N dopant,respectively.GF/ON presents better electrochemical catalysis for VO_(2)+/VO_(2)+ and V3+/V2+ reactions than only O-functionalized electrodes(GF/O)and GF.The enhanced electrochemical properties are attributed to an increase in active sites,surface area,and wettability,as well as the synergistic effect of N and O,which is also supported by the density functional theory calculations.Further,the cell using GF/ON shows higher discharge capacity,energy efficiency,and stability for cycling performance than the pristine cell at 140 mA cm^(−2) for 200 cycles.Moreover,the energy efficiency of the modified cell is increased by 9.7% from 55.2% for the pristine cell at 260 mA cm^(−2).Such an ultra-homogeneous etching with N and O co-doping through“boiling”molten salt medium provides an effective and practical application potential way to prepare superior electrodes for VRFB. 展开更多
关键词 graphite felt molten salt N O co-doping ultra-homogeneous etching vanadium redox flow battery
下载PDF
Cationic ordering transition in oxygen-redox layered oxide cathodes
9
作者 Xinyan Li Ang Gao +10 位作者 Qinghua Zhang Hao Yu Pengxiang Ji Dongdong Xiao Xuefeng Wang Dong Su Xiaohui Rong Xiqian Yu Hong Li Yong-Sheng Hu Lin Gu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期197-206,共10页
Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na... Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na-ion cathodes.Here,we reveal the correlation between cationic ordering transition and OR degradation in ribbon-ordered P3-Na_(0.6)Li_(0.2)Mn_(0.8)O_(2) via in situ structural analysis.Comparing two different voltage windows,the OR capacity can be improved approximately twofold when suppressing the in-plane cationic ordering transition.We find that the intralayer cationic migration is promoted by electrochemical reduction from Mn^(4+)to Jahn–Teller Mn^(3+)and the concomitant NaO_(6) stacking transformation from triangular prisms to octahedra,resulting in the loss of ribbon ordering and electrochemical decay.First-principles calculations reveal that Mn^(4+)/Mn^(3+)charge ordering and alignment of the degenerate eg orbital induce lattice-level collective Jahn–Teller distortion,which favors intralayer Mn-ion migration and thereby accelerates OR degradation.These findings unravel the relationship between in-plane cationic ordering and OR reversibility and highlight the importance of superstructure protection for the rational design of reversible OR-active layered oxide cathodes. 展开更多
关键词 cationic ordering layered oxide cathodes oxygen redox sodium-ion batteries
下载PDF
Tungsten oxide/nitrogen-doped carbon nanotubes composite catalysts for enhanced redox kinetics in lithium-sulfur batteries
10
作者 Deqing He Zihao Xie +2 位作者 Qian Yang Wei Wang Chao Su 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期58-67,共10页
The sluggish redox kinetics of polysulfides in lithium-sulfur(Li-S)batteries are a significant obstacle to their widespread adoption as energy storage devices.However,recent studies have shown that tungsten oxide(WO_(... The sluggish redox kinetics of polysulfides in lithium-sulfur(Li-S)batteries are a significant obstacle to their widespread adoption as energy storage devices.However,recent studies have shown that tungsten oxide(WO_(3))can facilitate the conversion kinetics of polysulfides in Li-S batteries.Herein,we fabricated host materials for sulfur using nitrogen-doped carbon nanotubes(N-CNTs)and WO_(3).We used low-cost components and simple procedures to overcome the poor electrical conductivity that is a disadvantage of metal oxides.The composites of WO_(3) and N-CNTs(WO_(3)/N-CNTs)create a stable framework structure,fast ion diffusion channels,and a 3D electron transport network during electrochemical reaction processes.As a result,the WO_(3)/N-CNT-Li2S6 cathode demonstrates high initial capacity(1162 mA·h·g^(-1) at 0.5℃),excellent rate performance(618 mA·h·g^(-1) at 5.5℃),and a low capacity decay rate(0.093%up to 600 cycles at 2℃).This work presents a novel approach for preparing tungsten oxide/carbon composite catalysts that facilitate the redox kinetics of polysulfide conversion. 展开更多
关键词 Li-S batteries Composites Ion diffusion channels 3D electron transport network redox kinetics
下载PDF
Optical redox imaging of ANT1-de-cient muscles
11
作者 He N.Xu Ryan M.Morrow +3 位作者 Min Feng Huaqing Zhao Douglas Wallace Lin Z.Li 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期135-140,共6页
Adenine nucleotide translocator(ANT)is a mitochondrial protein involved in the exchange of ADP and ATP across the mitochondrial inner membrane.It plays a crucial role in cellular energy metabolism by facilitating the ... Adenine nucleotide translocator(ANT)is a mitochondrial protein involved in the exchange of ADP and ATP across the mitochondrial inner membrane.It plays a crucial role in cellular energy metabolism by facilitating the transport of ATP synthesized within the mitochondria to the cytoplasm.The isoform ANT1 predominately expresses in cardiac and skeletal muscles.Mutations or dysregulation in ANT1 have been implicated in various mitochondrial disorders and neuromuscular diseases.We aimed to examine whether ANT1 deletion may affect mitochondrial redox state in our established ANT1-de-cient mice.Hearts and quadriceps resected from age-matched wild type(WT)and ANT1-de-cient mice were snap-frozen in liquid nitrogen.The Chance redox scanner was utilized to perform 3D optical redox imaging.Each sample underwent scanning across 3–5 sections.Global averaging analysis showed no signi-cant differences in the redox indices(NADH,flavin adenine dinucleotide containing-flavoproteins Fp,and the redox ratio Fp/(NADH+Fp)between WT and ANT1-de-cient groups.However,quadriceps had higher Fp than hearts in both groups(p¼0:0004 and 0.01,respectively).Furthermore,the quadriceps were also more oxidized(a higher redox ratio)than hearts in WT group(p¼0:004).NADH levels were similar in all cases.Our data suggest that under non-stressful physical condition,the ANT1-de-cient muscle cells were in the same mitochondrial state as WT ones and that the signi-cant difference in the mitochondrial redox state between quadriceps and hearts found in WT might be diminished in ANT1-de-cient ones.Redox imaging of muscles under physical stress can be conducted in future. 展开更多
关键词 ANT1 redox ratio FLAVOPROTEINS
下载PDF
Catalytically altering the redox pathway of sulfur in propylene carbonate electrolyte using dual-nitrogen/oxygen-containing carbon
12
作者 Linghui Yu Heng Zhang +9 位作者 Luyuan Paul Wang Samuel Jun Hoong Ong Shibo Xi Bo Chen Rui Guo Ting Wang Yonghua Du Wei Chen Ovadia Lev Zhichuan J.Xu 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期224-233,共10页
Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility ... Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility feature of some carbonate solvents also makes them very promising for overcoming the shuttle effects of LSBs.However,regular sulfur electrodes experience undesired electrochemical mechanisms in carbonate electrolytes due to side reactions.In this study,we report a catalytic redox mechanism of sulfur in propylene carbonate(PC)electrolyte based on a compari-son study.The catalytic mechanism is characterized by the interactions between polysulfides and dual N/O functional groups on the host carbon,which largely prevents side reactions between polysulfides and the carbonate electrolyte.Such a mechanism coupled with the low-polysulfide-solubility feature leads to stable cycling of LSBs in PC electrolyte.Favorable dual N/O functional groups are identified via a density functional theory study.This work provides an alternative route for enabling LSBs in carbonate electrolytes. 展开更多
关键词 Energy storage Lithium-sulfur battery Catalytic redox reaction Porous carbon Carbonate electrolyte
下载PDF
Linear paired electrolysis of furfural to furoic acid at both anode and cathode in a multiple redox mediated system
13
作者 Xinxin Li Linchuan Cong +4 位作者 Haibo Lin Fangbing Liu Xiangxue Fu Hai-Chao Xu Nan Lin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期104-113,共10页
Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we r... Implementing a new energy-saving electrochemical synthesis system with high commercial value is a strategy of the sustainable development for upgrading the bulk chemicals preparation technology in the future.Here,we report a multiple redox-mediated linear paired electrolysis system,combining the hydrogen peroxide mediated cathode process with the I2 mediated anode process,and realize the conversion of furfural to furoic acid in both side of the dividedflow cell simultaneously.By reasonably controlling the cathode potential,the undesired water splitting reaction and furfural reduction side reactions are avoided.Under the galvanostatic electrolysis,the two-mediated electrode processes have good compatibility,which reduce the energy consumption by about 22%while improving the electronic efficiency by about 125%.This system provides a green electrochemical synthesis route with commercial prospects. 展开更多
关键词 Multiple redox mediated system Linear paired electrolysis FURFURAL Furoic acid
下载PDF
Atomic Ni directional-substitution on ZnIn_(2)S_(4) nanosheet to achieve the equilibrium of elevated redox capacity and efficient carrier-kinetics performance in photocatalysis
14
作者 Haibin Huang Guiyang Yu +5 位作者 Xingze Zhao Boce Cui Jinshi Yu Chenyang Zhao Heyuan Liu Xiyou Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期272-281,I0007,共11页
It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced ... It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced into the lattice of hexagonal ZnIn_(2)S_(4) nanosheets(Ni/ZnIn_(2)S_(4))via directionalsubstituting Zn atom with the facile hydrothermal method.The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction.Besides the optimized light absorption range,the elevation of Efand ECBendows Ni/ZnIn_(2)S_(4) photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction.Moreover,ultrafast transient absorption spectroscopy,as well as a series of electrochemical tests,demonstrates that Ni/ZnIn_(2)S_(4) possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn_(2)S_(4).These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity,in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn_(2)S_(4).Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges,but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion. 展开更多
关键词 ZnIn_(2)S_(4) SUBSTITUTION Carrier kinetics redox capacity PHOTOCATALYSIS
下载PDF
Designing ultrastable P2/O3-type layered oxides for sodium ion batteries by regulating Na distribution and oxygen redox chemistry
15
作者 Jieyou Huang Weiliang Li +3 位作者 Debin Ye Lin Xu Wenwei Wu Xuehang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期466-476,共11页
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas... P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs. 展开更多
关键词 Sodium-ion batteries P2/O3-type layered oxides Na distribution Oxygen redox chemistry Hydrostability
下载PDF
Analysis of the electron transfer pathway in small laccase by EPR and UV-vis spectroscopy coupled with redox titration
16
作者 Lu Yu Aokun Liu +3 位作者 Jian Kuang Ruotong Wei Zhiwen Wang Changlin Tian 《Magnetic Resonance Letters》 2024年第3期52-59,共8页
Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer betwe... Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer between substrate, copper centers, and O2is one of the key steps in the catalytic turnover of SLAC. However, limited research has been conducted on the electron transfer pathway of SLAC and SLAC-catalyzed reactions, hindering further engineering of SLAC to produce tunable biocatalysts for novel applications. Herein, the combinational use of electron paramagnetic resonance(EPR) and ultraviolet-visible(UV-vis) spectroscopic methods coupled with redox titration were employed to monitor the electron transfer processes and obtain further insights into the electron transfer pathway in SLAC. The reduction potentials for type 1 copper(T1Cu), type 2 copper(T2Cu) and type 3copper(T3Cu) were determined to be 367 ± 2 mV, 378 ± 5 m V and 403 ± 2 mV,respectively. Moreover, the reduction potential of a selected substrate of SLAC, hydroquinone(HQ), was determined to be 288 mV using cyclic voltammetry(CV). In this way, an electron transfer pathway was identified based on the reduction potentials. Specifically,electrons are transferred from HQ to T1Cu, then to T2Cu and T3Cu, and finally to O2.Furthermore, superhyperfine splitting observed via EPR during redox titration indicated a modification in the covalency of T2Cu upon electron uptake, suggesting a conformational alteration in the protein environment surrounding the copper sites, which could potentially influence the reduction potential of the copper sites during catalytic processes. The results presented here not only provide a comprehensive method for analyzing the electron transfer pathway in metalloenzymes through reduction potential measurements, but also offer valuable insights for further engineering and directed evolution studies of SLAC in the aim for biotechnological and industrial applications. 展开更多
关键词 Electron paramagnetic resonance redox titration Electron transfer Reduction Potential Small laccase
下载PDF
A Review on Engineering Transition Metal Compound Catalysts to Accelerate the Redox Kinetics of Sulfur Cathodes for Lithium–Sulfur Batteries
17
作者 Liping Chen Guiqiang Cao +8 位作者 Yong Li Guannan Zu Ruixian Duan Yang Bai Kaiyu Xue Yonghong Fu Yunhua Xu Juan Wang Xifei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期300-332,共33页
Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review f... Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping,bimetallic/bi-anionic TMCs,and TMCs-based heterostructure composites.It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band,d/p-band center,electron filling,and valence state.Moreover,the elec-tronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity,electron filling,and ion radius,resulting in electron redistribution,bonds reconstruction,induced vacancies due to the electronic interaction and changed crystal structure such as lat-tice spacing and lattice distortion.Different from the aforementioned two strategies,heterostructures are constructed by two types of TMCs with different Fermi energy levels,which causes built-in electric field and electrons transfer through the interface,and induces electron redistribution and arranged local atoms to regulate the electronic structure.Additionally,the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out.It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries. 展开更多
关键词 Lithium–sulfur battery redox kinetic Transition metal compounds catalyst Multiple metals/anions
下载PDF
Insights into the hydrogen evolution reaction in vanadium redox flow batteries:A synchrotron radiation based X-ray imaging study
18
作者 Kerstin Köble Alexey Ershov +7 位作者 Kangjun Duan Monja Schilling Alexander Rampf Angelica Cecilia TomášFaragó Marcus Zuber Tilo Baumbach Roswitha Zeis 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期132-144,共13页
The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble fo... The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems. 展开更多
关键词 Vanadium redox flow battery Synchrotron X-ray imaging Tomography Hydrogen evolution reaction Gas bubbles Deep learning
下载PDF
Correlation of Microbiological Stability with Redox Processes in White Wines
19
作者 Gheorghe Duca Rodica Sturza +1 位作者 Natalia Vladei Ecaterina Covaci 《Food and Nutrition Sciences》 CAS 2024年第3期211-223,共13页
In this paper, the authors analyzed the correlation between the microbiological stability of white wines and the content of sulfur dioxide, which influences the main redox processes that take place in the technologica... In this paper, the authors analyzed the correlation between the microbiological stability of white wines and the content of sulfur dioxide, which influences the main redox processes that take place in the technological stages of the wine. The consecutive, parallel and spontaneous development of several redox processes and their impact on the quality, microbiological and crystalline stability of white wines were examined. The reduction of additive and subtractive technological interventions, of the amounts of adjuvants (sulphurous anhydride) is essential for the production of organic wines. 展开更多
关键词 White Wines ACETOBACTER Sulfur Dioxide redox Processes OXYGEN
下载PDF
Unraveling the coordination behavior and transformation mechanism of Cr^(3+) in Fe–Cr redox flow battery electrolytes
20
作者 Xiaojun Zhao Xinwei Niu +6 位作者 Xinyuan Liu Chongchong Wu Xinyu Duan Zhiqi Ma Yan Xu Hao Li Weijie Yang 《Materials Reports(Energy)》 EI 2024年第2期54-63,共10页
Currently,the iron chromium redox flow battery(ICRFB)has become a research hotspot in the energy storage field owing to its low cost and easily-scaled-up.However,the activity of electrolyte is still ambiguous due to i... Currently,the iron chromium redox flow battery(ICRFB)has become a research hotspot in the energy storage field owing to its low cost and easily-scaled-up.However,the activity of electrolyte is still ambiguous due to its complicated solution environment.Herein,we performed a pioneering investigation on the coordination behavior and transformation mechanism of Cr^(3+)in electrolyte and prediction of impurity ions impact through quantum chemistry computations.Based on the structure and symmetry of electrostatic potential distribution,the activity of different Cr^(3+)complex ions is confirmed as[Cr(H2O)5Cl]^(2+)>[Cr(H2O)4Cl2]+>[Cr(H2O)6]^(3+).The transformation mechanism between[Cr(H2O)6]^(3+)and[Cr(H2O)5Cl]^(2+)is revealed.We find the metal impurity ions(especially Mg^(2+))can exacerbate the electrolyte deactivation by reducing the transformation energy barrier from[Cr(H2O)5Cl]^(2+)(24.38 kcal mol^(−1))to[Cr(H2O)6]^(3+)(16.23 kcal mol^(−1)).The solvent radial distribution and mean square displacement in different solvent environments are discussed and we conclude that the coordination configuration limits the diffusivity of Cr^(3+).This work provides new insights into the activity of electrolyte,laying a fundamental sense for the electrolyte in ICRFB. 展开更多
关键词 Fe-Cr redox flow battery COORDINATION ELECTROLYTE Quantum chemistry computation
下载PDF
上一页 1 2 202 下一页 到第
使用帮助 返回顶部