We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat swi...We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat switches and dilution units. Our prototype has been running continuously and stably for more than 100 hours below 10 m K, with a minimum temperature of 7.6 m K and a cooling power of 450 μW at 100 m K. At the same time, we have also made progress in the application of dilution refrigerators, such as quantum computing, low-temperature detector, and magnet integration. These indicators and test results indicate good prospects for application in physics, astronomy, and quantum information.展开更多
We present a simple hot press-based method for processing La(Fe,Si)13-based compounds consisting of La–Fe–Co–Si–C particles and phenolic resin. The magnetic entropy change △S per unit mass for the La Fe_(10.87)Co...We present a simple hot press-based method for processing La(Fe,Si)13-based compounds consisting of La–Fe–Co–Si–C particles and phenolic resin. The magnetic entropy change △S per unit mass for the La Fe_(10.87)Co_(0.63)Si_(1.5)C_(0.2)/phenolic resin compounds have nearly the same magnitude with the base materials. With the content of phenolic resin of 5.0 wt%, the compound conductivity is 3.13 W·m^(-1)·K^(-1). In order to measure the cooling performance of La(Fe,Si)13-based compounds,the La(Fe_(11.6-x)Co_(x))Si_(1.4)C_(0.15)(x =0.60, 0.65, 0.75, 0.80, 0.85)/phenolic resin compounds were pressed into thin plates and tested in a hybrid refrigerator that combines the active magnetic refrigeration effect with the Stirling cycle refrigeration effect. The test results showed that a maximum cooling power of 41 W was achieved over a temperature span of 30 K.展开更多
We investigate the finite-time performance of a quantum endoreversible Carnot engine cycle and its inverse operation-Carnot refrigeration cycle,employing a spin-1/2 system as the working substance.The thermal machine ...We investigate the finite-time performance of a quantum endoreversible Carnot engine cycle and its inverse operation-Carnot refrigeration cycle,employing a spin-1/2 system as the working substance.The thermal machine is alternatively driven by a hot boson bath of inverse temperatureβ_(h)and a cold boson bath at inverse temperatureβ_(c)(>βh).While for the engine model the hot bath is constructed to be squeezed,in the refrigeration cycle the cold bath is established to be squeezed,with squeezing parameter r.We obtain the analytical expressions for both efficiency and power in heat engines and for coefficient of performance and cooling rate in refrigerators.We find that,in the high-temperature limit,the efficiency at maximum power is bounded by the analytical valueη_(+)=√sech(2r)(1-η_(C)),and the coefficient of performance at the maximum figure of merit is limited byε_(+)=√sech(2r)(1+ε_(C))/sech(2r)(1+ε_(C))-εC)-1,whereη_(C)=1-β_(h)/β_(c)andε_(C)=β_(h)/(β_(c)-β_(h))are the respective Carnot values of the engines and refrigerators.These analytical results are identical to those obtained from the Carnot engines based on harmonic systems,indicating that the efficiency at maximum power and coefficient at maximum figure of merit are independent of the working substance.展开更多
This paper deals with the evaluation of the Coefficient of Performance (COP) of solar adsorption refrigeration. In the literature, simulation models to predict the thermal behaviour and the coefficient of performance ...This paper deals with the evaluation of the Coefficient of Performance (COP) of solar adsorption refrigeration. In the literature, simulation models to predict the thermal behaviour and the coefficient of performance of these systems are uncommon. This is why we suggest a model to simulate the operation of the machine in a typical hot and dry climate of the city of Ouagadougou. The objective is to provide a model for calculating the COP from the measurement of the ambient temperature and the irradiation of a given site. Starting from mathematical modelling, a resolution and simulation were made with COMSOL software based on the Dubinin-Astakhov adsorption model, the heat transfer balance equations, and the Linear Driving Force (LDF) model to describe the thermal behaviour of the system. A one-week measurement sequence on the adsorption solar refrigerator at the Albert Schweitzer Ecological Centre (CEAS) validated the numerical results. The measurement shows that for the days with high sunshine, the temperature of the reaction medium reaches 110°C, and the pressure reaches 500 mbar. This leads to a production of cold that allows it to reach the temperature of -5°C at the evaporator. Under these conditions, the COP is worth 14%. These results are obtained both by numerical simulation using the COMSOL 5.1 software and after a measurement session on the solar refrigerator available to the CEAS. We obtained an experimental and theoretical coefficient of performance varying between 9% and 14% with a difference of between 0% and 3%. We conclude that our model is suitable to estimate the COP of any device based on its thermal properties, the ambient temperature and the irradiation of a given site.展开更多
This paper establishes the energy selective electron (ESE) engine with double resonances as a refrigerator in one dimensional (1D) system. It consists of two infinitely large electron reservoirs with different tem...This paper establishes the energy selective electron (ESE) engine with double resonances as a refrigerator in one dimensional (1D) system. It consists of two infinitely large electron reservoirs with different temperatures and chemical potentials, and they are perfectly thermally insulated from each other and interaction only via a double 'idealized energy filter' whose widths are all finite. Taking advantage of the density of state and Fermi distribution in the 1D system, the heat flux into each reservoir may then be calculated. Moreover, the coefficient of performance may be derived from the expressions for the heat flux into the hot and cold reservoirs. The performance characteristic curves are plotted by numerical analysis. The influences of the resonances widths, the energy position of resonance and the space of two resonances on performance of the ESE refrigerator are discussed. The results obtained here have theoretical significance for the understanding of thermodynamic performance of the micro-nano devices.展开更多
A reciprocating magnetic refrigerator was developed based on the active magnetic regeneration technology. Rare earth metal Gd and intermetallic compound LaFe11.2Co0.7Si1.1 were used as the magnetic operating materials...A reciprocating magnetic refrigerator was developed based on the active magnetic regeneration technology. Rare earth metal Gd and intermetallic compound LaFe11.2Co0.7Si1.1 were used as the magnetic operating materials in the machine. The particles of the magnetic operating materials, with diameter of 0.5-2 mm and total mass of 950 g, were mounted in the cooling bed. A magnetic field was assembled using NdFeB rare earth permanent magnets. It had the magnetic field space of Φ 34×200 and the magnetic induction of 1.5 T. The water at pH=10 is used as a heat transfer fluid. When the ambient temperature is 296 K, a temperature span of 18 K was achieved after operation of 45 min at a frequency of 0.178 Hz. The temperature span and the output power increase significantly with the increasing velocity of heat transfer.展开更多
Based on electron transport theory, the performance of kx and kr filtered thermoelectric refrigerators with two resonances are studied in this paper. The performance characteristic curves between the cooling rate and ...Based on electron transport theory, the performance of kx and kr filtered thermoelectric refrigerators with two resonances are studied in this paper. The performance characteristic curves between the cooling rate and the coefficient of performance are plotted by numerical calculation. It is shown that the maximum cooling rate of the thermoelectric refrigerator with two resonances increases but the maximum coefficient of performance decreases compared with those with one resonance. No matter which resonance mechanism is used (kx or kr filtered), the cooling rate and the performance coefficient of the kr filtered refrigerator are much better than those of the kx filtered one.展开更多
In order to investigate dynamic behaviors of a 500W@ 4.5K helium refrigerator,the process simulator has been completed. The cryogenic process model is described and main components are customized. The realtime communi...In order to investigate dynamic behaviors of a 500W@ 4.5K helium refrigerator,the process simulator has been completed. The cryogenic process model is described and main components are customized. The realtime communication between the process model and the control system has been achieved. Compared with the preliminary experimental data,the errors of temperatures during the process of 300 K-80 K are less than 10%.The process model is validated to predict the cool-down process very well. The controller parameters are tuned in simulation and applied to the actual refrigerator suitably. Based on the dynamic simulation,the operation of Joule-Thomson( JT) by pass valve has been optimized. And the cool- down process from 300 K to 4. 5 K has been simulated under the control programs. Simulation results indicate that this dynamic simulator based on actual control architecture is available to process control and operation optimization for the helium refrigerators.展开更多
In this paper,the process modeling and dynamic simulation for the EAST helium refrigerator has been completed.The cryogenic process model is described and the main components are customized in detail.The process model...In this paper,the process modeling and dynamic simulation for the EAST helium refrigerator has been completed.The cryogenic process model is described and the main components are customized in detail.The process model is controlled by the PLC simulator,and the realtime communication between the process model and the controllers is achieved by a customized interface.Validation of the process model has been confirmed based on EAST experimental data during the cool down process of 300-80 K.Simulation results indicate that this process simulator is able to reproduce dynamic behaviors of the EAST helium refrigerator very well for the operation of long pulsed plasma discharge.The cryogenic process simulator based on control architecture is available for operation optimization and control design of EAST cryogenic systems to cope with the long pulsed heat loads in the future.展开更多
Based on an isotropic two spin-1/2 qubits Heisenberg model with the Dzyaloshinskii-Moriya interaction in an ex- ternal magnetic field, we have constructed an entangled quantum refrigerator. Expressions for the basic t...Based on an isotropic two spin-1/2 qubits Heisenberg model with the Dzyaloshinskii-Moriya interaction in an ex- ternal magnetic field, we have constructed an entangled quantum refrigerator. Expressions for the basic thermodynamic quantities, i.e., the heat exchanged, the net work input, and the coefficient of performance, are derived. Some intriguing features and their qualitative explanations in zero and non zero magnetic fields are given. The influence of the thermal entanglement on the refrigerator is investigated. The results obtained here have general significance and will be helpful to understand the performance of an entangled quantum refrigerator.展开更多
Disassembly and recycling of E-waste creates a series of environmental problems. The selection of a technologically reliable, environmentally friendly, economically affordable and socially acceptable recycling technol...Disassembly and recycling of E-waste creates a series of environmental problems. The selection of a technologically reliable, environmentally friendly, economically affordable and socially acceptable recycling technology for E-waste is a significant question. This study establishes a Monte-Carlo mathematical model of cost minimization, given the constraints of environmentally sound handling of the e-waste, in the context of Crystal Ball risk assessment and evaluation software. By following the streams of the different treatment processes, which consist of various technologies including disassembly, recycling and disposal, the econom-ics of various possibilities were identified and the optimal recycling technology proposed. The key factors of the proposed scenarios were determined by using sensitivity analysis. The results of this study show that, for discarded refrigerators, the operating life span plays the key role. The model supports maintenance and resale of the short lived refrigerators. For the longer lived refrigerators material recycling is recommended by the model. Sensitivity analysis shows that purchase cost, plastic sale price, condenser sale price and disassembly costs are the main effects. This study provides a significant technical support for policy making in E-waste management.展开更多
This paper establishes a model of a nonlinear diode refrigerator consisting of two diodes switched in the opposite directions and located in two heat reservoirs with different temperatures. Based on the theory of ther...This paper establishes a model of a nonlinear diode refrigerator consisting of two diodes switched in the opposite directions and located in two heat reservoirs with different temperatures. Based on the theory of thermal fluctuations, the expressions of the heat flux absorbed from the heat reservoirs are derived. After the heat leak between the two reservoirs is considered, the cooling rate and the coefficient of performance are obtained analytically. The influence of the heat leak and the temperature ratio on the performance characteristics of the refrigerator is analysed in detail.展开更多
With thermal fluctuation strongly suppressed,low temperature environment is essential for studies of condensed matter physics and developments of quantum technologies.Ultra-low temperature below 20 m K has demonstrate...With thermal fluctuation strongly suppressed,low temperature environment is essential for studies of condensed matter physics and developments of quantum technologies.Ultra-low temperature below 20 m K has demonstrated its importance and significance in physical sciences and information techniques.Dilution refrigeration is by far the best feasible and reliable method to generate and keep lattice temperature in this range.With a potential shortage of helium supply,cryogen-free dilution refrigerator(CFDR),eliminating the necessity of regular helium refill,becomes the main facility for the purpose of creating ultralow temperature environments.Here we describe our successful construction of a CFDR which reached a base temperature of around 10.9 m K for continuous circulation and 8.6 m K for single-shot operation.We describe its operating mechanism and the designs of key components,especially some unique designs including heat switch and alumina thermal link.Possible improvements in the future are also discussed.展开更多
The preliminary design of a multi-barrels pellet injector with cycle refrigerator as an advanced plasma-fuelling tool for HL-2A tokamak has been proposed. The design aims at precise temperature control, easy operation...The preliminary design of a multi-barrels pellet injector with cycle refrigerator as an advanced plasma-fuelling tool for HL-2A tokamak has been proposed. The design aims at precise temperature control, easy operation with high reliability and high flexibility. GM-cycle refrigerator and pipe-gun structure have been employed to produce 25 pellets in 25 gun barrels simultaneously and the design aims. have been accomplished. Prime design principle, engineering parameters, structure and layout of the cryostat components as well as calculation of heat load for the cryostat are presented.展开更多
An entangled quantum refrigerator working with a three-qubit one-dimensional isotropic Heisenberg XX model in a constant external magnetic field is constructed in this paper. Based on the quantum first law of thermody...An entangled quantum refrigerator working with a three-qubit one-dimensional isotropic Heisenberg XX model in a constant external magnetic field is constructed in this paper. Based on the quantum first law of thermodynamics, the expressions for several basic thermodynamic quantities such as the heat transferred, the net work and the coefficient of performance are derived. Moreover, the influence of the thermal entanglement on the basic thermodynamic quantities is investigated. Several interesting features of the variation of the basic thermodynamic quantities with the thermal entanglement in zero and nonzero magnetic field are obtained.展开更多
We describe a single level quantum dot driven by an external stochastic force which works as a nano-thermoelectric refrigerator. Based on the model, expressions for the cooling rate, power input, and coefficient of pe...We describe a single level quantum dot driven by an external stochastic force which works as a nano-thermoelectric refrigerator. Based on the model, expressions for the cooling rate, power input, and coefficient of performance (COP) are derived. The effects of the energy level and energy space on the refrigerator are revealed. The optimal performance characteristics are analyzed by numerical calculation. Furthermore, the practical operating regions of the refrigerator are determined.展开更多
We investigate the thermodynamic performance of a nanosized photoelectric refrigerator consisting of two single energy levels embedded between two reservoirs at different temperatures.Based on the quantum master equat...We investigate the thermodynamic performance of a nanosized photoelectric refrigerator consisting of two single energy levels embedded between two reservoirs at different temperatures.Based on the quantum master equation,expressions for the cooling power and coefficient of performance(COP)of the refrigerator are derived.The characteristic curves between the cooling power and COP are plotted.Moreover,the optimal performance parameters are analyzed by the numerical calculation and graphic method.The influence of the nonradiative processes on the performance characteristics and optimal performance parameters are discussed in detail.展开更多
R134a and R152a are two promising refrigerants to replace R12 that depletes the ozone layer. This paper presents how to determine the charge accurately when R134a or R152a is used to replace R12 for household refriger...R134a and R152a are two promising refrigerants to replace R12 that depletes the ozone layer. This paper presents how to determine the charge accurately when R134a or R152a is used to replace R12 for household refrigerators. A lot of experiments are done on a household refrigerator in order to choose a correct void fraction correlation for density calculations in two phase region. For HFC 152a, Hughmark model is fairly accurate, whose error is -6.0% or so. For HFC 134a, both Tandon model and Premoli model can get good results, their errors are around -1.8%, -2.4% respectively.展开更多
The effect of the circulation fan installed in fresh food compartment on energy consumption of natural convective refrigerator/freezers (RFs) was experimentally studied. Five different RF models with different cycles ...The effect of the circulation fan installed in fresh food compartment on energy consumption of natural convective refrigerator/freezers (RFs) was experimentally studied. Five different RF models with different cycles were tested. The experimental results showed that the energy consumption of the single-loop cycle RF increased by 2.4%~3.8%, that of the bypass two-circuit cycle RF decreased by 1.0%, and that of the two-circuit cycle RF with its evaporators in parallel when the geometry parameters of refrigeration system and the refrigerant charge were not changed after the circulation fan was installed decreased by 3.3%. When the optimization on the refrigerant charge and the evaporator was carried out, the energy consumption of the single-loop cycle RF , the bypass two-circuit cycle RF and the two-circuit cycle RF with its evaporators in parallel, decreased by 1.0%~6.4%, 3.25% and 3.26% respectively. The present conclusions will provide a guideline to the optimum design for the RF with the circulation fan.展开更多
The dynamic stability analysis of an irreversible refrigerator working at the minimum power input P for given cooling load R was investigated.An irreversible refrigerator model was established based on coupled differe...The dynamic stability analysis of an irreversible refrigerator working at the minimum power input P for given cooling load R was investigated.An irreversible refrigerator model was established based on coupled differential equations.The global asymptotic stability characteristics were proved by constructing Lyapunov function based on Lyapunov stability theory and analyzed by sketching global phase portraits.The influence of parameters such as initial and operating parameters were studied for different values.It was found that an equilibrium point of nonlinear system was the global stability point,and the temperature of the working fluids converged to the stability value as time t approximated to positive infinite.Besides,numerical integrations were carried out to corroborate the global asymptotic stability properties of the system.Finally,the dynamic stability and the thermodynamic properties of the system were analyzed.It was found that the energetic characteristics and the dynamic stability properties were deteriorated as the dimensionless cooling load R~* and the thermal conductance ratio b increased.展开更多
基金supported by the Beijing Commission of Science and Technology(Grant No.Z211100004021012)Special Research Assistant Program of the Chinese Academy of Sciences(Grant No.E3VP021RX4)。
文摘We have successfully developed cryogen-free dilution refrigerators with medium cooling power that can be applied to quantum experiments. Breakthroughs have been made in some key technologies and components of heat switches and dilution units. Our prototype has been running continuously and stably for more than 100 hours below 10 m K, with a minimum temperature of 7.6 m K and a cooling power of 450 μW at 100 m K. At the same time, we have also made progress in the application of dilution refrigerators, such as quantum computing, low-temperature detector, and magnet integration. These indicators and test results indicate good prospects for application in physics, astronomy, and quantum information.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52171054 and 52171195)the National Natural Science Foundation for Distinguished Young Scholars (Grant No. 51925605)。
文摘We present a simple hot press-based method for processing La(Fe,Si)13-based compounds consisting of La–Fe–Co–Si–C particles and phenolic resin. The magnetic entropy change △S per unit mass for the La Fe_(10.87)Co_(0.63)Si_(1.5)C_(0.2)/phenolic resin compounds have nearly the same magnitude with the base materials. With the content of phenolic resin of 5.0 wt%, the compound conductivity is 3.13 W·m^(-1)·K^(-1). In order to measure the cooling performance of La(Fe,Si)13-based compounds,the La(Fe_(11.6-x)Co_(x))Si_(1.4)C_(0.15)(x =0.60, 0.65, 0.75, 0.80, 0.85)/phenolic resin compounds were pressed into thin plates and tested in a hybrid refrigerator that combines the active magnetic refrigeration effect with the Stirling cycle refrigeration effect. The test results showed that a maximum cooling power of 41 W was achieved over a temperature span of 30 K.
基金the National Natural Science Foundation of China(Grant No.11875034)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology.
文摘We investigate the finite-time performance of a quantum endoreversible Carnot engine cycle and its inverse operation-Carnot refrigeration cycle,employing a spin-1/2 system as the working substance.The thermal machine is alternatively driven by a hot boson bath of inverse temperatureβ_(h)and a cold boson bath at inverse temperatureβ_(c)(>βh).While for the engine model the hot bath is constructed to be squeezed,in the refrigeration cycle the cold bath is established to be squeezed,with squeezing parameter r.We obtain the analytical expressions for both efficiency and power in heat engines and for coefficient of performance and cooling rate in refrigerators.We find that,in the high-temperature limit,the efficiency at maximum power is bounded by the analytical valueη_(+)=√sech(2r)(1-η_(C)),and the coefficient of performance at the maximum figure of merit is limited byε_(+)=√sech(2r)(1+ε_(C))/sech(2r)(1+ε_(C))-εC)-1,whereη_(C)=1-β_(h)/β_(c)andε_(C)=β_(h)/(β_(c)-β_(h))are the respective Carnot values of the engines and refrigerators.These analytical results are identical to those obtained from the Carnot engines based on harmonic systems,indicating that the efficiency at maximum power and coefficient at maximum figure of merit are independent of the working substance.
文摘This paper deals with the evaluation of the Coefficient of Performance (COP) of solar adsorption refrigeration. In the literature, simulation models to predict the thermal behaviour and the coefficient of performance of these systems are uncommon. This is why we suggest a model to simulate the operation of the machine in a typical hot and dry climate of the city of Ouagadougou. The objective is to provide a model for calculating the COP from the measurement of the ambient temperature and the irradiation of a given site. Starting from mathematical modelling, a resolution and simulation were made with COMSOL software based on the Dubinin-Astakhov adsorption model, the heat transfer balance equations, and the Linear Driving Force (LDF) model to describe the thermal behaviour of the system. A one-week measurement sequence on the adsorption solar refrigerator at the Albert Schweitzer Ecological Centre (CEAS) validated the numerical results. The measurement shows that for the days with high sunshine, the temperature of the reaction medium reaches 110°C, and the pressure reaches 500 mbar. This leads to a production of cold that allows it to reach the temperature of -5°C at the evaporator. Under these conditions, the COP is worth 14%. These results are obtained both by numerical simulation using the COMSOL 5.1 software and after a measurement session on the solar refrigerator available to the CEAS. We obtained an experimental and theoretical coefficient of performance varying between 9% and 14% with a difference of between 0% and 3%. We conclude that our model is suitable to estimate the COP of any device based on its thermal properties, the ambient temperature and the irradiation of a given site.
基金supported by National Natural Science Foundation of China (Grant No 10765004)Science and Technology Foundation of Jiangxi Education Bureau,China
文摘This paper establishes the energy selective electron (ESE) engine with double resonances as a refrigerator in one dimensional (1D) system. It consists of two infinitely large electron reservoirs with different temperatures and chemical potentials, and they are perfectly thermally insulated from each other and interaction only via a double 'idealized energy filter' whose widths are all finite. Taking advantage of the density of state and Fermi distribution in the 1D system, the heat flux into each reservoir may then be calculated. Moreover, the coefficient of performance may be derived from the expressions for the heat flux into the hot and cold reservoirs. The performance characteristic curves are plotted by numerical analysis. The influences of the resonances widths, the energy position of resonance and the space of two resonances on performance of the ESE refrigerator are discussed. The results obtained here have theoretical significance for the understanding of thermodynamic performance of the micro-nano devices.
基金This project was supported financially by the "863"project Ministry of Science and Technology(2002AA324010).
文摘A reciprocating magnetic refrigerator was developed based on the active magnetic regeneration technology. Rare earth metal Gd and intermetallic compound LaFe11.2Co0.7Si1.1 were used as the magnetic operating materials in the machine. The particles of the magnetic operating materials, with diameter of 0.5-2 mm and total mass of 950 g, were mounted in the cooling bed. A magnetic field was assembled using NdFeB rare earth permanent magnets. It had the magnetic field space of Φ 34×200 and the magnetic induction of 1.5 T. The water at pH=10 is used as a heat transfer fluid. When the ambient temperature is 296 K, a temperature span of 18 K was achieved after operation of 45 min at a frequency of 0.178 Hz. The temperature span and the output power increase significantly with the increasing velocity of heat transfer.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10765004 and 11065008)
文摘Based on electron transport theory, the performance of kx and kr filtered thermoelectric refrigerators with two resonances are studied in this paper. The performance characteristic curves between the cooling rate and the coefficient of performance are plotted by numerical calculation. It is shown that the maximum cooling rate of the thermoelectric refrigerator with two resonances increases but the maximum coefficient of performance decreases compared with those with one resonance. No matter which resonance mechanism is used (kx or kr filtered), the cooling rate and the performance coefficient of the kr filtered refrigerator are much better than those of the kx filtered one.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51306195)the Special Foundation of President of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Grant No.YZJJ201308)the Application&Development Project of the Institute of Plasma Physics(Grant No.Y35ETY130G)
文摘In order to investigate dynamic behaviors of a 500W@ 4.5K helium refrigerator,the process simulator has been completed. The cryogenic process model is described and main components are customized. The realtime communication between the process model and the control system has been achieved. Compared with the preliminary experimental data,the errors of temperatures during the process of 300 K-80 K are less than 10%.The process model is validated to predict the cool-down process very well. The controller parameters are tuned in simulation and applied to the actual refrigerator suitably. Based on the dynamic simulation,the operation of Joule-Thomson( JT) by pass valve has been optimized. And the cool- down process from 300 K to 4. 5 K has been simulated under the control programs. Simulation results indicate that this dynamic simulator based on actual control architecture is available to process control and operation optimization for the helium refrigerators.
基金supported by National Natural Science Foundation of China(No.51306195)Key Laboratory of Cryogenics,Technical Institute of Physics and Chemistry,CAS(No.CRYO201408)
文摘In this paper,the process modeling and dynamic simulation for the EAST helium refrigerator has been completed.The cryogenic process model is described and the main components are customized in detail.The process model is controlled by the PLC simulator,and the realtime communication between the process model and the controllers is achieved by a customized interface.Validation of the process model has been confirmed based on EAST experimental data during the cool down process of 300-80 K.Simulation results indicate that this process simulator is able to reproduce dynamic behaviors of the EAST helium refrigerator very well for the operation of long pulsed plasma discharge.The cryogenic process simulator based on control architecture is available for operation optimization and control design of EAST cryogenic systems to cope with the long pulsed heat loads in the future.
基金Project supported by the Program for Excellent Young Teachers Foundation of Shanghai, China (Grant No. thc-20100036)
文摘Based on an isotropic two spin-1/2 qubits Heisenberg model with the Dzyaloshinskii-Moriya interaction in an ex- ternal magnetic field, we have constructed an entangled quantum refrigerator. Expressions for the basic thermodynamic quantities, i.e., the heat exchanged, the net work input, and the coefficient of performance, are derived. Some intriguing features and their qualitative explanations in zero and non zero magnetic fields are given. The influence of the thermal entanglement on the refrigerator is investigated. The results obtained here have general significance and will be helpful to understand the performance of an entangled quantum refrigerator.
基金Projects 50574094 supported by the National Natural Science Foundation of ChinaCPEUKF06-11 by the Key Laboratory Open Project of Education Ministry of China200600242 by the Science and Technology Innovation Project of Xuzhou
文摘Disassembly and recycling of E-waste creates a series of environmental problems. The selection of a technologically reliable, environmentally friendly, economically affordable and socially acceptable recycling technology for E-waste is a significant question. This study establishes a Monte-Carlo mathematical model of cost minimization, given the constraints of environmentally sound handling of the e-waste, in the context of Crystal Ball risk assessment and evaluation software. By following the streams of the different treatment processes, which consist of various technologies including disassembly, recycling and disposal, the econom-ics of various possibilities were identified and the optimal recycling technology proposed. The key factors of the proposed scenarios were determined by using sensitivity analysis. The results of this study show that, for discarded refrigerators, the operating life span plays the key role. The model supports maintenance and resale of the short lived refrigerators. For the longer lived refrigerators material recycling is recommended by the model. Sensitivity analysis shows that purchase cost, plastic sale price, condenser sale price and disassembly costs are the main effects. This study provides a significant technical support for policy making in E-waste management.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10765004 and 11065008).
文摘This paper establishes a model of a nonlinear diode refrigerator consisting of two diodes switched in the opposite directions and located in two heat reservoirs with different temperatures. Based on the theory of thermal fluctuations, the expressions of the heat flux absorbed from the heat reservoirs are derived. After the heat leak between the two reservoirs is considered, the cooling rate and the coefficient of performance are obtained analytically. The influence of the heat leak and the temperature ratio on the performance characteristics of the refrigerator is analysed in detail.
基金supported by Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-SLH0010)Beijing Natural Science Foundation(Grant No.JQ21002)Beijing Council of Science and Technology(Grant Nos.Z201100008420006 and Z211100004021012)
文摘With thermal fluctuation strongly suppressed,low temperature environment is essential for studies of condensed matter physics and developments of quantum technologies.Ultra-low temperature below 20 m K has demonstrated its importance and significance in physical sciences and information techniques.Dilution refrigeration is by far the best feasible and reliable method to generate and keep lattice temperature in this range.With a potential shortage of helium supply,cryogen-free dilution refrigerator(CFDR),eliminating the necessity of regular helium refill,becomes the main facility for the purpose of creating ultralow temperature environments.Here we describe our successful construction of a CFDR which reached a base temperature of around 10.9 m K for continuous circulation and 8.6 m K for single-shot operation.We describe its operating mechanism and the designs of key components,especially some unique designs including heat switch and alumina thermal link.Possible improvements in the future are also discussed.
文摘The preliminary design of a multi-barrels pellet injector with cycle refrigerator as an advanced plasma-fuelling tool for HL-2A tokamak has been proposed. The design aims at precise temperature control, easy operation with high reliability and high flexibility. GM-cycle refrigerator and pipe-gun structure have been employed to produce 25 pellets in 25 gun barrels simultaneously and the design aims. have been accomplished. Prime design principle, engineering parameters, structure and layout of the cryostat components as well as calculation of heat load for the cryostat are presented.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10765004 and 11065008
文摘An entangled quantum refrigerator working with a three-qubit one-dimensional isotropic Heisenberg XX model in a constant external magnetic field is constructed in this paper. Based on the quantum first law of thermodynamics, the expressions for several basic thermodynamic quantities such as the heat transferred, the net work and the coefficient of performance are derived. Moreover, the influence of the thermal entanglement on the basic thermodynamic quantities is investigated. Several interesting features of the variation of the basic thermodynamic quantities with the thermal entanglement in zero and nonzero magnetic field are obtained.
基金the Program for Excellent Young Teachers of Shanghai under Grant No thc-20100036.
文摘We describe a single level quantum dot driven by an external stochastic force which works as a nano-thermoelectric refrigerator. Based on the model, expressions for the cooling rate, power input, and coefficient of performance (COP) are derived. The effects of the energy level and energy space on the refrigerator are revealed. The optimal performance characteristics are analyzed by numerical calculation. Furthermore, the practical operating regions of the refrigerator are determined.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11065008 and 11365015.
文摘We investigate the thermodynamic performance of a nanosized photoelectric refrigerator consisting of two single energy levels embedded between two reservoirs at different temperatures.Based on the quantum master equation,expressions for the cooling power and coefficient of performance(COP)of the refrigerator are derived.The characteristic curves between the cooling power and COP are plotted.Moreover,the optimal performance parameters are analyzed by the numerical calculation and graphic method.The influence of the nonradiative processes on the performance characteristics and optimal performance parameters are discussed in detail.
基金the Fund of Natural Science of China,the Fund for
文摘R134a and R152a are two promising refrigerants to replace R12 that depletes the ozone layer. This paper presents how to determine the charge accurately when R134a or R152a is used to replace R12 for household refrigerators. A lot of experiments are done on a household refrigerator in order to choose a correct void fraction correlation for density calculations in two phase region. For HFC 152a, Hughmark model is fairly accurate, whose error is -6.0% or so. For HFC 134a, both Tandon model and Premoli model can get good results, their errors are around -1.8%, -2.4% respectively.
文摘The effect of the circulation fan installed in fresh food compartment on energy consumption of natural convective refrigerator/freezers (RFs) was experimentally studied. Five different RF models with different cycles were tested. The experimental results showed that the energy consumption of the single-loop cycle RF increased by 2.4%~3.8%, that of the bypass two-circuit cycle RF decreased by 1.0%, and that of the two-circuit cycle RF with its evaporators in parallel when the geometry parameters of refrigeration system and the refrigerant charge were not changed after the circulation fan was installed decreased by 3.3%. When the optimization on the refrigerant charge and the evaporator was carried out, the energy consumption of the single-loop cycle RF , the bypass two-circuit cycle RF and the two-circuit cycle RF with its evaporators in parallel, decreased by 1.0%~6.4%, 3.25% and 3.26% respectively. The present conclusions will provide a guideline to the optimum design for the RF with the circulation fan.
基金the Fundamental Research Fund for the Central Universities,China(No.2011011302)National Natural Science Foundation of China(No.51078068)
文摘The dynamic stability analysis of an irreversible refrigerator working at the minimum power input P for given cooling load R was investigated.An irreversible refrigerator model was established based on coupled differential equations.The global asymptotic stability characteristics were proved by constructing Lyapunov function based on Lyapunov stability theory and analyzed by sketching global phase portraits.The influence of parameters such as initial and operating parameters were studied for different values.It was found that an equilibrium point of nonlinear system was the global stability point,and the temperature of the working fluids converged to the stability value as time t approximated to positive infinite.Besides,numerical integrations were carried out to corroborate the global asymptotic stability properties of the system.Finally,the dynamic stability and the thermodynamic properties of the system were analyzed.It was found that the energetic characteristics and the dynamic stability properties were deteriorated as the dimensionless cooling load R~* and the thermal conductance ratio b increased.