Traditional medicine(TM)has played an essential part in maternity services around the world,which has led to increased utilization among pregnant women.Herbs,herbal preparations,and completed herbal products are examp...Traditional medicine(TM)has played an essential part in maternity services around the world,which has led to increased utilization among pregnant women.Herbs,herbal preparations,and completed herbal products are examples of TMs that contain active substances such as plant parts or other plant components that are thought to have therapeutic advantages.This study review aimed to identify the herbs commonly used,reasons for use,and effect of use,to make adequate recommendations on herbal medicine use as a remedy for pregnancy and labor.Incorporating evidence from reviews,personal correspondence,and diaries,this study demonstrates that about 80%of people used TM such as herbal remedies for sickness diagnosis,prevention,treatment,and promotion of general well‑being.Due to its accessibility,cost,and availability,TM is usually used by expectant mothers.Examples of TM used in pregnancy and labor include honey,aloe,raspberry,jute mallow,and hibiscus leaves.It is important to note that its use in pregnancy and labor can be beneficial or harmful to both mother and child.Lack of standardization,financial risk,lack of safety,and effectiveness are challenges to TM.There is a need of creating awareness of the safe use and effects of TM in pregnancy and labor through the provision of health education programs for women in the community.展开更多
Objective:To evaluate the potential prophylactic activity of traditional polyherbal remedy against malaria.Methods:A traditional polyherbal remedy against malaria from Odisha,India was evaluated for its potential prop...Objective:To evaluate the potential prophylactic activity of traditional polyherbal remedy against malaria.Methods:A traditional polyherbal remedy against malaria from Odisha,India was evaluated for its potential prophylactic activity using in vitro hepatic cell lines assay and the murine malaria system Plasmodium yoelii yoelii/Anopheles stephensi.Results:The polyherbal extract inhibited the Plasmodium yoelii hepatic stages in vitro(IC500.74 mg/m L),a therapeutic index of 9.54.In mice treated with the aqueous extract(2 000 mg/kg/day),peak parasitaemia values were 81%lower in the experimental2.35%±0.14%as compared to controls 12.62%±0.52%(P<0.001),suggesting significant prophylactic activity.Conclusions:The observations provide a proof of concept for a traditional malaria prophylactic remedy used by tribal populations in India.展开更多
Malaria is one of the six major seriousepidemic diseases prevalent in tropical andsubtropical areas.Beginning from 1967,specialinstititutions,organized by professional researchworkers,were established for searching an...Malaria is one of the six major seriousepidemic diseases prevalent in tropical andsubtropical areas.Beginning from 1967,specialinstititutions,organized by professional researchworkers,were established for searching antima-larial drugs through research work in chemistryand traditional Chinese medicine.As early as in770-221 BC,the“Recipes for Treating 52 Kindsof Diseases”,a textual relic unearthed inMawangdui,described the application of artemisiaannue as an antimalarial remedy.In 341,Dr.Ge Hong of the Iin Dynasty recorded,in his“Handbook of Prescriptions for EmergencyTreatment”,artemisia annua as an ideal anti-malarial drug.展开更多
treat,cure,heal,remedy 这四个词都是指由患病或受伤恢复到健康状况,尤指靠医疗的功效,但在实际应用中是有区别的。现分述如下: 一、treat 1.treat:vt.医治、治疗;强调治疗的动作或医治的过程,不涉及治疗的结果。 1)The dentist is tre...treat,cure,heal,remedy 这四个词都是指由患病或受伤恢复到健康状况,尤指靠医疗的功效,但在实际应用中是有区别的。现分述如下: 一、treat 1.treat:vt.医治、治疗;强调治疗的动作或医治的过程,不涉及治疗的结果。 1)The dentist is treating my teeth. 牙医师在治疗我的牙齿。 2)Which doctor is treating you for tis trouble?展开更多
Asovereign remedy for coronary heart disease, the traditional Chinese patent medicine Shan Hai Dan, in the form of tablets, capsules, oral jelly, drinks and health wine, and produced by the Shan Hai Dan Industrial Ent...Asovereign remedy for coronary heart disease, the traditional Chinese patent medicine Shan Hai Dan, in the form of tablets, capsules, oral jelly, drinks and health wine, and produced by the Shan Hai Dan Industrial Enterprise Group. is a discovery made by Zhao Guoxin, professor at the Si’an Traditional Chinese Medicine and展开更多
Nablus-Al Bathan Road which connects Nablus City and Jordan Valley in the West Bank of Palestinian Territories, was widened, reconstructed and rehabilitated in 2009, however, between 2010 and 2012 road defects at seve...Nablus-Al Bathan Road which connects Nablus City and Jordan Valley in the West Bank of Palestinian Territories, was widened, reconstructed and rehabilitated in 2009, however, between 2010 and 2012 road defects at several locations were observed. To fix these defects especially at station 2</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">+</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">100 of the road, soil replacement in the body of the road and big boulders to support the edge of the road were used. Unfortunately, large settlement occurred in the part of the road under maintenance and more sliding and slope instability occurred in the road at station 2</span><span style="font-family:""></span><span style="font-family:Verdana;">+</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">100 during the remedial measures. Studies were carried out to find the causes of this problem. These included surveying of the area, geotechnical studies</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">(making trial pits, performing geophysical se</span><span style="font-family:Verdana;">ismic exploration and digging out several boreholes), in addition to slope stability analysis. It was found that the main causes of landslides were types of soils at the site, high slopes, groundwater recharged from rainfall and changing of weights (cut and fill). Remedy measures were suggested to overcome sliding problem based on available resources and local technology.展开更多
The building of Mali's first drug factory by a Chinese company in 2015 marked a major turning point in the continent'spharmaceutical industryNOT so long ago,Sanankoroba was a deserted place.But today,a top-grade dru...The building of Mali's first drug factory by a Chinese company in 2015 marked a major turning point in the continent'spharmaceutical industryNOT so long ago,Sanankoroba was a deserted place.But today,a top-grade drug factory proudly stands in this small town located near the capital Bamako in south Mali.The factory is owned by the Malian Branch of Humanwell Healthcare(Group)Co.Ltd.,a Chinese pharmaceutical company whose decision to enter the African market dates back to 2009.展开更多
The discharge of nuclear-contaminated water containing radionuclides into the ocean by Japan will lead to its integration into the entire ecosystem through processes of circulation and biomagnification,eventually ente...The discharge of nuclear-contaminated water containing radionuclides into the ocean by Japan will lead to its integration into the entire ecosystem through processes of circulation and biomagnification,eventually entering the human body via the food chain.This poses a substantial risk of irreversible damage to both the ecosystem and human health,a situation that will worsen with the ongoing discharge of such water.The respect and protection of human rights represent an international consensus,and safeguarding fundamental human rights is a substantial obligation that states must undertake in accordance with both international and domestic law.Since the Fukushima nuclear disaster,Japan has continuously violated its international legal obligations to protect human rights in several areas,including the resettlement of disaster victims,the reduction of nuclear radiation levels,and the handling of contaminated water.Such actions have compromised and will continue to compromise the basic human rights of not only its citizens but also those of people worldwide,including environmental rights,the right to life,development rights,and food rights.In the aftermath of the Fukushima meltdown,the public and workers involved in handling nuclear contaminants have been continually exposed to high radiation levels,endangering their rights to life,development,and health.Japan’s inadequate efforts in victim resettlement and environmental restoration have jeopardized the environmental and food rights of its citizens to live healthily and access food in an environment unaffected by nuclear radiation.The release of nuclear-contaminated water poses a risk of Japan’s nuclear pollution to the people of neighboring countries and the global population at large.The principle of human rights underpins the theory of a community with a shared future for humanity,and human rights are a crucial area of China’s active participation in United Nations affairs and global governance.By voicing concerns over Japan’s potential human rights violations globally,China demonstrates its role as a responsible major country.In response to Japan’s breach of legal obligations and human rights violations,China can adopt a reasoned and beneficial approach,including calling on the international community to hold Japan criminally accountable for crimes against humanity under the Rome Statute and advancing scholarly discussions on ecocide and crimes against the marine environment.Furthermore,China should persist in seeking advisory opinions from the International Court of Justice and strive for substantive accountability,utilizing the mechanisms of international human rights organizations to make its voice heard.展开更多
Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailora...Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths.展开更多
Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with ...Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with its legal responsibilities,decides to implement a restoration project for all sites related to the mining and processing of uranium ores.The Malargüe Site is located within the Province of Mendoza in the city of Malargüe.It is the first site to successfully complete its remediation.The activities consist of relocation of tailings to an engineering repository.The tailings management(encapsulation) and rehabilitation of the area was finished in June 2017.The remediation alternative for the ore tailings was selected after conducting comparative studies and submitted the project to the society for consideration.The objective of the encapsulation of the mineral tails is to isolate them from the environment,also proceeding with the decontamination and rehabilitation of the area (landscaping,post-closure monitoring and 20 years monitoring period).Encapsulation consisted of the construction of a containment cell for the mine tailings,to isolate them and prevent pollutants from entering the environment through the transfer routes.To clean the impacted areas,the soil was removed,it was incorporated into the encapsulation,and the filling was carried out with natural soils from the area.Remediation prevents radon transfer to the environment,as ^(222)Ra is an alpha emitter with a half-life of four days,which produces its own radioactive progeny.Radon progeny are solids,and when a ^(222)Ra nucleus emits an alpha particle into the air,the resulting ^(218)Po nucleus,momentarily electrically charged,adheres to any dust particle.Remediation prevents the discharge into the air containing radon and also containing dust particles charged with intensely radioactive radon progeny.The tasks mentioned make it possible to decrease radon emanation,reduce radiological risks to the public and prevent the entry of rainwater into the system.In addition,the containment system prevents the discharge of contaminated liquids into the environment,avoiding contamination of the groundwater.All these activities are according to the concepts of sustainability.展开更多
Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materi...Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation.展开更多
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen...Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.展开更多
Multiphase microfluidic has emerged as a powerful platform to produce novel materials with tailor-designed functionalities,as microfluidic fabrication provides precise controls over the size,component,and structure of...Multiphase microfluidic has emerged as a powerful platform to produce novel materials with tailor-designed functionalities,as microfluidic fabrication provides precise controls over the size,component,and structure of resultant materials.Recently,functional materials with well-defined micro-/nanostructures fabricated by microfluidics find important applications as environmental and energy materials.This review first illustrated in detail how different structures or shapes of droplet and jet templates are formed by typical configurations of microfluidic channel networks and multiphase flow systems.Subsequently,recent progresses on several representative energy and environmental applications,such as water purification,water collecting and energy storage,were overviewed.Finally,it is envisioned that integrating microfluidics and other novel materials will play increasing important role in contributing environmental remediation and energy storage in near future.展开更多
Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drain...Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drainage(AMD)through oxidation pyrite minerals.The current study entailed assessing the potential production of AMD from an opencast coal mining region in Northeast part of India.In order to have a comprehensive overview of the AMD problem in Makum coalfield,the physico-chemical,geochemical,and petrological characteristics of the coal and overburden(OB)samples collected from the Makum coalfield(Northeast India)were thoroughly investigated.The maceral compositions reveal that coal features all three groups of macerals(liptinite,vitrinite,and inertinite),with a high concentration of liptinite indicating the coal of perhydrous,thereby rendering it more reactive.Pyrite(FeS_(2))oxidation kinetics were studied by conducting the aqueous leaching experiments of coal and(OB)samples to interpret the chemical weathering under controlled laboratory conditions of various temperature and time periods,and to replicate the actual mine site leaching.Inductively coupled plasma-optical emission spectroscopy(ICP-OES)was operated to detect the disposal of some precarious elements from coal and OB samples to the leachates during our controlled leaching experiment.The Rare earth element(REE)enrichment in the samples shows the anthropogenic incorporation of the REE in the coal and OB.These experiments reveal the change in conductivity,acid producing tendency,total dissolved solid(TDS),total Iron(Fe)and dissolved Sulfate(SO_(4)^(2−))ions on progress of the leaching experiments.Moreover,the discharge of FeS_(2) via atmospheric oxidation in laboratory condition undergoes a significant growth with the rise of temperature of the reaction systems in the environment and follows pseudo first order kinetics.A bio-remediative strategies is also reported in this paper to mitigate AMD water by employing size-segregated powdered limestone and water hyacinth plant in an indigenously developed site-specific prototype station.Apart from neutralisation of AMD water,this eco-friendly AMD remediation strategy demonstrates a reduction in PHEs concentrations in the treated AMD water.展开更多
Since hydrate resources play a part of the stratigraphic framework structure in sediments,establishing a safe and economic method for hydrates exploitation remains the primary challenge to this day.Among the proposed ...Since hydrate resources play a part of the stratigraphic framework structure in sediments,establishing a safe and economic method for hydrates exploitation remains the primary challenge to this day.Among the proposed methods,the spontaneous displacement of CH_(4) from hydrate cages by CO_(2) seems to be a perfect mechanism to address gas production and CO_(2) storage,especially in today's strong demand for carbon reduction and replacing clean energy.After extensive lab researches,in the past decade,injecting a mixture of CO_(2) and small molecule gas has become a key means to enhance displacement efficiency and has great potential for application.However,there is a lack of in-depth research on gas flow in the reservoir,while the injected gas always passes through low-saturated hydrate areas with high permeability and then occurs gas channel in a short term,finally resulting in the decreases in gas production efficiency and produced gas quality.Therefore,we explored a new injection-production mode of alternate injection of N2 and CO_(2) in order to fully coordinate the advantages of N_(2) in enhanced hydrate decomposition and CO_(2) in solid storage and heat compensation.These alternate"taking"and"storing"processes perfectly repair the problem of the gas channel,achieving self-regulation effect of CH_(4) recovery and CO_(2) storage.The 3-D experimental results show that compared to the mixed gas injection,CH_(4) recovery is increased by>50%and CO_(2) storage is increased by>70%.Additionally,this alternate injection mode presented a better performance in CH_(4) concentration of produced gas and showed outstanding N_(2) utilization efficiency.Further,we analyzed its self-adaptive gas flow mechanism and proposed an application model of"one injection and multiple production".We look forward to this study accelerating the application of CO_(2)-CH_(4) replacement technology.展开更多
Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In t...Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In this study,we attempted to construct sediment samples with different residual CH_(4) hydrate amounts and reservoir conditions,and then investigate the potentials of both CO_(2) storage and enhanced CH_(4) recovery in depleted gas hydrate deposits in the permafrost and ocean zones,respectively.The results demonstrate that CO_(2) hydrate formation rate can be significantly improved due to the presence of residual hydrate seeds;However,excessive residual hydrates in turn lead to the decrease in CO_(2) storage efficiency.Affected by the T-P conditions of the reservoir,the storage amount of liquid CO_(2) can reach 8 times that of gaseous CO_(2),and CO_(2) stored in hydrate form reaches 2-4 times.Additionally,we noticed two other advantages of this method.One is that CO_(2) injection can enhance CH_(4) recovery rate and increases CH_(4) recovery by 10%-20%.The second is that hydrate saturation in the reservoir can be restored to 20%-40%,which means that the solid volume of the reservoir avoids serious shrinkage.Obviously,this is crucial for protecting the goaf stability.In summary,this approach is greatly promising for high-efficient CO_(2) storage and safe exploitation of gas hydrate.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
文摘Traditional medicine(TM)has played an essential part in maternity services around the world,which has led to increased utilization among pregnant women.Herbs,herbal preparations,and completed herbal products are examples of TMs that contain active substances such as plant parts or other plant components that are thought to have therapeutic advantages.This study review aimed to identify the herbs commonly used,reasons for use,and effect of use,to make adequate recommendations on herbal medicine use as a remedy for pregnancy and labor.Incorporating evidence from reviews,personal correspondence,and diaries,this study demonstrates that about 80%of people used TM such as herbal remedies for sickness diagnosis,prevention,treatment,and promotion of general well‑being.Due to its accessibility,cost,and availability,TM is usually used by expectant mothers.Examples of TM used in pregnancy and labor include honey,aloe,raspberry,jute mallow,and hibiscus leaves.It is important to note that its use in pregnancy and labor can be beneficial or harmful to both mother and child.Lack of standardization,financial risk,lack of safety,and effectiveness are challenges to TM.There is a need of creating awareness of the safe use and effects of TM in pregnancy and labor through the provision of health education programs for women in the community.
基金Aquarius Group of Companies,SingaporeETC CAPTURED Programme,the Netherlands(Grant No.DGIS/D)
文摘Objective:To evaluate the potential prophylactic activity of traditional polyherbal remedy against malaria.Methods:A traditional polyherbal remedy against malaria from Odisha,India was evaluated for its potential prophylactic activity using in vitro hepatic cell lines assay and the murine malaria system Plasmodium yoelii yoelii/Anopheles stephensi.Results:The polyherbal extract inhibited the Plasmodium yoelii hepatic stages in vitro(IC500.74 mg/m L),a therapeutic index of 9.54.In mice treated with the aqueous extract(2 000 mg/kg/day),peak parasitaemia values were 81%lower in the experimental2.35%±0.14%as compared to controls 12.62%±0.52%(P<0.001),suggesting significant prophylactic activity.Conclusions:The observations provide a proof of concept for a traditional malaria prophylactic remedy used by tribal populations in India.
文摘Malaria is one of the six major seriousepidemic diseases prevalent in tropical andsubtropical areas.Beginning from 1967,specialinstititutions,organized by professional researchworkers,were established for searching antima-larial drugs through research work in chemistryand traditional Chinese medicine.As early as in770-221 BC,the“Recipes for Treating 52 Kindsof Diseases”,a textual relic unearthed inMawangdui,described the application of artemisiaannue as an antimalarial remedy.In 341,Dr.Ge Hong of the Iin Dynasty recorded,in his“Handbook of Prescriptions for EmergencyTreatment”,artemisia annua as an ideal anti-malarial drug.
文摘treat,cure,heal,remedy 这四个词都是指由患病或受伤恢复到健康状况,尤指靠医疗的功效,但在实际应用中是有区别的。现分述如下: 一、treat 1.treat:vt.医治、治疗;强调治疗的动作或医治的过程,不涉及治疗的结果。 1)The dentist is treating my teeth. 牙医师在治疗我的牙齿。 2)Which doctor is treating you for tis trouble?
文摘Asovereign remedy for coronary heart disease, the traditional Chinese patent medicine Shan Hai Dan, in the form of tablets, capsules, oral jelly, drinks and health wine, and produced by the Shan Hai Dan Industrial Enterprise Group. is a discovery made by Zhao Guoxin, professor at the Si’an Traditional Chinese Medicine and
文摘Nablus-Al Bathan Road which connects Nablus City and Jordan Valley in the West Bank of Palestinian Territories, was widened, reconstructed and rehabilitated in 2009, however, between 2010 and 2012 road defects at several locations were observed. To fix these defects especially at station 2</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">+</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">100 of the road, soil replacement in the body of the road and big boulders to support the edge of the road were used. Unfortunately, large settlement occurred in the part of the road under maintenance and more sliding and slope instability occurred in the road at station 2</span><span style="font-family:""></span><span style="font-family:Verdana;">+</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">100 during the remedial measures. Studies were carried out to find the causes of this problem. These included surveying of the area, geotechnical studies</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">(making trial pits, performing geophysical se</span><span style="font-family:Verdana;">ismic exploration and digging out several boreholes), in addition to slope stability analysis. It was found that the main causes of landslides were types of soils at the site, high slopes, groundwater recharged from rainfall and changing of weights (cut and fill). Remedy measures were suggested to overcome sliding problem based on available resources and local technology.
文摘The building of Mali's first drug factory by a Chinese company in 2015 marked a major turning point in the continent'spharmaceutical industryNOT so long ago,Sanankoroba was a deserted place.But today,a top-grade drug factory proudly stands in this small town located near the capital Bamako in south Mali.The factory is owned by the Malian Branch of Humanwell Healthcare(Group)Co.Ltd.,a Chinese pharmaceutical company whose decision to enter the African market dates back to 2009.
基金supported by the Major Com-missioned Project of Social Science Planning Fund of Liaoning Prov-ince,China:“Research on Legal Issues of Cross-border Nuclear Dam-age Compensation in the Context of Japan’s Discharge of Nuclear Sewage”[Grant No.L23ZD072].
文摘The discharge of nuclear-contaminated water containing radionuclides into the ocean by Japan will lead to its integration into the entire ecosystem through processes of circulation and biomagnification,eventually entering the human body via the food chain.This poses a substantial risk of irreversible damage to both the ecosystem and human health,a situation that will worsen with the ongoing discharge of such water.The respect and protection of human rights represent an international consensus,and safeguarding fundamental human rights is a substantial obligation that states must undertake in accordance with both international and domestic law.Since the Fukushima nuclear disaster,Japan has continuously violated its international legal obligations to protect human rights in several areas,including the resettlement of disaster victims,the reduction of nuclear radiation levels,and the handling of contaminated water.Such actions have compromised and will continue to compromise the basic human rights of not only its citizens but also those of people worldwide,including environmental rights,the right to life,development rights,and food rights.In the aftermath of the Fukushima meltdown,the public and workers involved in handling nuclear contaminants have been continually exposed to high radiation levels,endangering their rights to life,development,and health.Japan’s inadequate efforts in victim resettlement and environmental restoration have jeopardized the environmental and food rights of its citizens to live healthily and access food in an environment unaffected by nuclear radiation.The release of nuclear-contaminated water poses a risk of Japan’s nuclear pollution to the people of neighboring countries and the global population at large.The principle of human rights underpins the theory of a community with a shared future for humanity,and human rights are a crucial area of China’s active participation in United Nations affairs and global governance.By voicing concerns over Japan’s potential human rights violations globally,China demonstrates its role as a responsible major country.In response to Japan’s breach of legal obligations and human rights violations,China can adopt a reasoned and beneficial approach,including calling on the international community to hold Japan criminally accountable for crimes against humanity under the Rome Statute and advancing scholarly discussions on ecocide and crimes against the marine environment.Furthermore,China should persist in seeking advisory opinions from the International Court of Justice and strive for substantive accountability,utilizing the mechanisms of international human rights organizations to make its voice heard.
文摘Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths.
文摘Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with its legal responsibilities,decides to implement a restoration project for all sites related to the mining and processing of uranium ores.The Malargüe Site is located within the Province of Mendoza in the city of Malargüe.It is the first site to successfully complete its remediation.The activities consist of relocation of tailings to an engineering repository.The tailings management(encapsulation) and rehabilitation of the area was finished in June 2017.The remediation alternative for the ore tailings was selected after conducting comparative studies and submitted the project to the society for consideration.The objective of the encapsulation of the mineral tails is to isolate them from the environment,also proceeding with the decontamination and rehabilitation of the area (landscaping,post-closure monitoring and 20 years monitoring period).Encapsulation consisted of the construction of a containment cell for the mine tailings,to isolate them and prevent pollutants from entering the environment through the transfer routes.To clean the impacted areas,the soil was removed,it was incorporated into the encapsulation,and the filling was carried out with natural soils from the area.Remediation prevents radon transfer to the environment,as ^(222)Ra is an alpha emitter with a half-life of four days,which produces its own radioactive progeny.Radon progeny are solids,and when a ^(222)Ra nucleus emits an alpha particle into the air,the resulting ^(218)Po nucleus,momentarily electrically charged,adheres to any dust particle.Remediation prevents the discharge into the air containing radon and also containing dust particles charged with intensely radioactive radon progeny.The tasks mentioned make it possible to decrease radon emanation,reduce radiological risks to the public and prevent the entry of rainwater into the system.In addition,the containment system prevents the discharge of contaminated liquids into the environment,avoiding contamination of the groundwater.All these activities are according to the concepts of sustainability.
基金supported by the National Natural Science Foundation of China(52161145409,21976116)SAFEA of China("Belt and Road”Innovative Talent Exchange Foreign Expert Project#2023041004L)(High-end Foreign Expert Project#G2023041021L)the Alexander-von-Humboldt Foundation of Germany(GroupLinkage Program)。
文摘Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation.
基金the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province(No.2023JH2/101600002)+2 种基金the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group(No.KJBLM202202)the Fundamental Research Funds for the Central Universities(Nos.N2201023 and N2325009).
文摘Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.
基金supported by National Natural Science Foundation of China(Grant No.52172283,22108147,22078197)Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012506,2023A1515011827)+1 种基金Shenzhen Science and Technology Program(JCYJ20220818095801003,RCYX20221008092902010)Shenzhen Natural Science Fund(the Stable Support Plan Program 20220810120421001).
文摘Multiphase microfluidic has emerged as a powerful platform to produce novel materials with tailor-designed functionalities,as microfluidic fabrication provides precise controls over the size,component,and structure of resultant materials.Recently,functional materials with well-defined micro-/nanostructures fabricated by microfluidics find important applications as environmental and energy materials.This review first illustrated in detail how different structures or shapes of droplet and jet templates are formed by typical configurations of microfluidic channel networks and multiphase flow systems.Subsequently,recent progresses on several representative energy and environmental applications,such as water purification,water collecting and energy storage,were overviewed.Finally,it is envisioned that integrating microfluidics and other novel materials will play increasing important role in contributing environmental remediation and energy storage in near future.
文摘Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drainage(AMD)through oxidation pyrite minerals.The current study entailed assessing the potential production of AMD from an opencast coal mining region in Northeast part of India.In order to have a comprehensive overview of the AMD problem in Makum coalfield,the physico-chemical,geochemical,and petrological characteristics of the coal and overburden(OB)samples collected from the Makum coalfield(Northeast India)were thoroughly investigated.The maceral compositions reveal that coal features all three groups of macerals(liptinite,vitrinite,and inertinite),with a high concentration of liptinite indicating the coal of perhydrous,thereby rendering it more reactive.Pyrite(FeS_(2))oxidation kinetics were studied by conducting the aqueous leaching experiments of coal and(OB)samples to interpret the chemical weathering under controlled laboratory conditions of various temperature and time periods,and to replicate the actual mine site leaching.Inductively coupled plasma-optical emission spectroscopy(ICP-OES)was operated to detect the disposal of some precarious elements from coal and OB samples to the leachates during our controlled leaching experiment.The Rare earth element(REE)enrichment in the samples shows the anthropogenic incorporation of the REE in the coal and OB.These experiments reveal the change in conductivity,acid producing tendency,total dissolved solid(TDS),total Iron(Fe)and dissolved Sulfate(SO_(4)^(2−))ions on progress of the leaching experiments.Moreover,the discharge of FeS_(2) via atmospheric oxidation in laboratory condition undergoes a significant growth with the rise of temperature of the reaction systems in the environment and follows pseudo first order kinetics.A bio-remediative strategies is also reported in this paper to mitigate AMD water by employing size-segregated powdered limestone and water hyacinth plant in an indigenously developed site-specific prototype station.Apart from neutralisation of AMD water,this eco-friendly AMD remediation strategy demonstrates a reduction in PHEs concentrations in the treated AMD water.
基金financially supported by the National Natural Science Foundation of ChinaChina(Nos.22378424,22127812,U20B6005,52004136)+1 种基金the Science Foundation of China University of Petroleum,Beijing(No.2462023BJRC017)Hunan Provincial Department of Education Scientific Research Project(No.22B0310)。
文摘Since hydrate resources play a part of the stratigraphic framework structure in sediments,establishing a safe and economic method for hydrates exploitation remains the primary challenge to this day.Among the proposed methods,the spontaneous displacement of CH_(4) from hydrate cages by CO_(2) seems to be a perfect mechanism to address gas production and CO_(2) storage,especially in today's strong demand for carbon reduction and replacing clean energy.After extensive lab researches,in the past decade,injecting a mixture of CO_(2) and small molecule gas has become a key means to enhance displacement efficiency and has great potential for application.However,there is a lack of in-depth research on gas flow in the reservoir,while the injected gas always passes through low-saturated hydrate areas with high permeability and then occurs gas channel in a short term,finally resulting in the decreases in gas production efficiency and produced gas quality.Therefore,we explored a new injection-production mode of alternate injection of N2 and CO_(2) in order to fully coordinate the advantages of N_(2) in enhanced hydrate decomposition and CO_(2) in solid storage and heat compensation.These alternate"taking"and"storing"processes perfectly repair the problem of the gas channel,achieving self-regulation effect of CH_(4) recovery and CO_(2) storage.The 3-D experimental results show that compared to the mixed gas injection,CH_(4) recovery is increased by>50%and CO_(2) storage is increased by>70%.Additionally,this alternate injection mode presented a better performance in CH_(4) concentration of produced gas and showed outstanding N_(2) utilization efficiency.Further,we analyzed its self-adaptive gas flow mechanism and proposed an application model of"one injection and multiple production".We look forward to this study accelerating the application of CO_(2)-CH_(4) replacement technology.
基金financially supported by the National Natural Science Foundation of China,China(22378424,52004136,22127812,U20B6005)the Science Foundation of China University of Petroleum Beijing(2462023BJRC017)Hunan Provincial Department of Education Scientific Research Project(22B0310).
文摘Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In this study,we attempted to construct sediment samples with different residual CH_(4) hydrate amounts and reservoir conditions,and then investigate the potentials of both CO_(2) storage and enhanced CH_(4) recovery in depleted gas hydrate deposits in the permafrost and ocean zones,respectively.The results demonstrate that CO_(2) hydrate formation rate can be significantly improved due to the presence of residual hydrate seeds;However,excessive residual hydrates in turn lead to the decrease in CO_(2) storage efficiency.Affected by the T-P conditions of the reservoir,the storage amount of liquid CO_(2) can reach 8 times that of gaseous CO_(2),and CO_(2) stored in hydrate form reaches 2-4 times.Additionally,we noticed two other advantages of this method.One is that CO_(2) injection can enhance CH_(4) recovery rate and increases CH_(4) recovery by 10%-20%.The second is that hydrate saturation in the reservoir can be restored to 20%-40%,which means that the solid volume of the reservoir avoids serious shrinkage.Obviously,this is crucial for protecting the goaf stability.In summary,this approach is greatly promising for high-efficient CO_(2) storage and safe exploitation of gas hydrate.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.