期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
Packing,compressibility,and crushability of rockfill materials with polydisperse particle size distributions and implications for dam engineering 被引量:1
1
作者 Chao-min Shen Si-hong Liu +3 位作者 Liu-jiang Wang Ji-du Yu Hao Wei Ping Wu 《Water Science and Engineering》 EI CAS CSCD 2022年第4期358-366,共9页
In rockfill dam engineering,particle breakage of rockfill materials is one of the major factors resulting in dam settlement.In this study,one-dimensional compression tests on a series of coarse granular materials with... In rockfill dam engineering,particle breakage of rockfill materials is one of the major factors resulting in dam settlement.In this study,one-dimensional compression tests on a series of coarse granular materials with artificially-graded particle size distributions(PSDs)were carried out.The tests focused on understanding the role of initial PSDs in the dense packing density,compressibility and crushability of coarse granular materials.The effects of fractal dimension(D)and size polydispersity(θ)of PSDs were quantitatively analyzed.Two different loading stages were identified from the logarithms of the stress-strain relationships,with the turning point marked as the yield stress.A similar effect of initial PSDs was observed on the packing density and low-pressure modulus of coarse granular materials.The packing density and low-pressure modulus increased monotonically withθ,and their peak values were attained at a D value of approximately 2.2.However,there was no unique correspondence between the dense packing density and low-pressure modulus.The particle breakage was influenced differently by the initial PSDs,and it decreased with the values of D andθ.The emergence of the unique ultimate state was also identified from both the compression curves and PSDs of the samples after the tests.The potential implications of the test results in the design of both low and high rockfill dams were also demonstrated. 展开更多
关键词 rockfill materials Packing density COMPRESSIBILITY Particle breakage rockfill dam
下载PDF
Effects of particle size on crushing and deformation behaviors of rockfill materials 被引量:24
2
作者 Yang Xiao Minqiang Meng +3 位作者 Ali Daouadji Qingsheng Chen ZhijunWu Xiang Jiang 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第2期375-388,共14页
Strength and deformation behaviors of rockfill materials,key factors for determining the stability of dams,pertain strongly to the grain crushing characteristics.In this study,single-particle crushing tests were carri... Strength and deformation behaviors of rockfill materials,key factors for determining the stability of dams,pertain strongly to the grain crushing characteristics.In this study,single-particle crushing tests were carried out on rockfill materials with nominal particle diameters of 2.5 mm,5 mm and 10 mm to investigate the particle size effect on the single-particle strength and the relationship between the characteristic stress and probability of non-failure.Test data were found to be described by the Weibull distribution with the Weibull modulus of 3.24.Assemblies with uniform nominal grains were then subjected to one-dimensional compression tests at eight levels of vertical stress with a maximum of 100 MPa.The yield stress in one-dimensional compression tests increased with decreasing the particle size,which could be estimated from the single-particle crushing tests.The void ratio-vertical stress curve could be predicted by an exponential function.The particle size distribution curve increased obviously with applied stresses less than 16 MPa and gradually reached the ultimate fractal grading.The relative breakage index became constant with stress up to 64 MPa and was obtained from the ultimate grading at the fractal dimension(a?2:7).A hyperbolical function was also found useful for describing the relationship between the relative breakage index and input work during one-dimensional compression tests. 展开更多
关键词 Grain crushing Single-particle strength One-dimensional compression rockfill materials Weibull distribution
下载PDF
Numerical stress-deformation analysis of cut-off wall in clay-core rockfill dam on thick overburden 被引量:12
3
作者 Si-hong Liu Liu-jiang Wang +1 位作者 Zi-jian Wang Erich Bauer 《Water Science and Engineering》 EI CAS CSCD 2016年第3期219-226,共8页
The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden laye... The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden layer, the frictional force induced by the differential settlement between the cut-off wall and surrounding soils, and the water pressure. Thus, reduction of the stress of the cut-off wall has become one of the main problems for consideration in engineering design. In this paper, numerical analysis of a core rockfill dam built on a thick overburden layer was conducted and some factors influencing the stress-strain behaviors of the cut-off wall were investigated. The factors include the improvement of the overburden layer, the modeling approach for interfacial contact between the cut-off wall and surrounding soils, the modulus of the cut-off wall concrete, and the connected pattern between the cut-off wall and the clay core. The result shows that improving the overburden layer,selecting plastic concrete with a low modulus and high strength, and optimizing the connection between the cut-off wall and the clay core of the dam are effective measures of reducing the deformations and compressive stresses of the cut-off wall. In addition, both the Goodman element and the mud-layer element are suitable for simulating the interfacial contact between the cut-off wall and surrounding soils. 展开更多
关键词 OVERBURDEN layer Core rockfill DAM CUT-OFF wall NUMERICAL ANALYSIS Stress and deformation ANALYSIS
下载PDF
Long-term deformation analysis of Shuibuya concrete face rockfill dam based on response surface method and improved genetic algorithm 被引量:12
4
作者 Fu-hai Yao Shao-heng Guan +4 位作者 He Yang Yuan Chen Huan-feng Qiu Gang Ma Qi-wen Liu 《Water Science and Engineering》 EI CAS CSCD 2019年第3期196-204,共9页
Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained fr... Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM. 展开更多
关键词 SHUIBUYA rockfill DAM Parameter BACK analysis Response surface method Duncan EB model TIME-DEPENDENT deformation
下载PDF
Technical Progress on Researches for the Safety of High Concrete-Faced Rockfill Dams 被引量:25
5
作者 Hongqi Ma Fudong Chi 《Engineering》 SCIE EI 2016年第3期332-339,共8页
The concrete-faced rockfill dam(CFRD) is an important dam type in the selection of high dams to be constructed in Western China,owing to its direct utilization of local materials,good adaptability,and distinct economi... The concrete-faced rockfill dam(CFRD) is an important dam type in the selection of high dams to be constructed in Western China,owing to its direct utilization of local materials,good adaptability,and distinct economic advantages.Over the past decades,China has gained successful experience in the construction of 200 m CFRDs,providing the necessary technical accumulation for the development of 250–300 m ultra-high CFRDs.This paper summarizes these successful experiences and analyzes the problems of a number of major 200 m CFRDs around the world.In addition,it discusses the key technologies and latest research progress regarding safety in the construction of 250–300 m ultra-high CFRDs,and suggests focuses and general ideas for future research. 展开更多
关键词 High concrete-faced rockfill dam SAFETY Technical progress
下载PDF
Numerical simulation of seismic damage and cracking of concrete slabs of high concrete face rockfill dams 被引量:7
6
作者 Wei-jun Cen Lang-sheng Wen +1 位作者 Zi-qi Zhang Kun Xiong 《Water Science and Engineering》 EI CAS CSCD 2016年第3期205-211,共7页
Based on the damage constitutive model for concrete, the Weibull distribution function was used to characterize the random distribution of the mechanical properties of materials by finely subdividing concrete slab ele... Based on the damage constitutive model for concrete, the Weibull distribution function was used to characterize the random distribution of the mechanical properties of materials by finely subdividing concrete slab elements, and a concrete random mesoscopic damage model was established. The seismic response of a 100-m high concrete face rockfill dam(CFRD), subjected to ground motion with different intensities, was simulated with the three-dimensional finite element method(FEM), with emphasis on exploration of damage and the cracking process of concrete slabs during earthquakes as well as analysis of dynamic damage and cracking characteristics during strong earthquakes. The calculated results show that the number of damaged and cracking elements on concrete slabs grows with the duration of earthquakes. With increasing earthquake intensity, the damaged zone and cracking zone on concrete slabs grow wider. During a 7.0-magnitude earthquake, the stress level of concrete slabs is low for the CFRD, and there is almost no damage or slight damage to the slabs. While during a 9.0-magnitude strong earthquake, the percentages of damaged elements and macrocracking elements continuously ascend with the duration of the earthquake, peaking at approximately 26% and 5% at the end of the earthquake, respectively. The concrete random mesoscopic damage model can depict the entire process of sprouting, growing, connecting, and expanding of cracks on a concrete slab during earthquakes. 展开更多
关键词 CONCRETE face rockfill dam Random MESOSCOPIC DAMAGE model SEISMIC response Dynamic DAMAGE to CONCRETE SLAB Macrocracking Numerical simulation
下载PDF
Nonlinear regression model for peak-failure strength of rockfill materials in general stress space 被引量:6
7
作者 Yang Xiao Minqiang Meng +3 位作者 Hui Chen Xiang He Jinyu Ran Weicheng Shi 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1699-1709,共11页
A nonlinear regression model for peak-failure strength prediction of rockfill materials is proposed. It is based on the relationship between the peak-failure stress ratio and the normalized confining pressure as well ... A nonlinear regression model for peak-failure strength prediction of rockfill materials is proposed. It is based on the relationship between the peak-failure stress ratio and the normalized confining pressure as well as the relationship between the normalized peak-failure stress ratio and the exponent function of the intermediate principal stress ratio. This model can well predict the variations of the peak-failure stress ratio with the initial confining pressure and the intermediate principal stress ratio for different rockfill materials under different general stress paths. Comparisons of the measured and predicted results show that the peak-failure strength under the constant-p' and constant-b path is larger than that under the constant-σ'_3 and constant-b path. The predictive capacity of the proposed model for the peakfailure stress ratio is better than that for the peak-failure friction angle. 展开更多
关键词 STRESS PATH rockfill material Strength FRICTION ANGLE STRESS ratio
下载PDF
Assessment of digital image correlation method in determining large scale cemented rockfill strains 被引量:6
8
作者 Bob A.Lingga Derek B.Apel +1 位作者 Mohammadali Sepehri Yuanyuan Pu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第5期771-776,共6页
A conventional contact method(using linear transducers)and a non-contact method are deployed to measure the axial and lateral deformations of large scale cylindrical cemented rockfill specimens.Experimental works inco... A conventional contact method(using linear transducers)and a non-contact method are deployed to measure the axial and lateral deformations of large scale cylindrical cemented rockfill specimens.Experimental works incorporating two pinhole cameras to create one stereovision by digital image correlation shows that the non-contact method is as reliable for testing large cylindrical specimens as measurements done by using linear variable displacement transformer and string potentiometer.Considering this particular large specimen,the experiment resulted in the acceptable mean difference between lateral strain using both methods is 5.1 percent,and 14.5 percent for the axial strain.This occurrence is inevitable due to the heterogeneity of the concrete system and the placement of the monitoring point in digital image correlation method,although the comparison of stress-strain relationship in both methods still indicates a conformity.Based on the results of the present experiments,the authors recommend the noncontact method for a detailed investigation of the material behavior during the uniaxial compressive strength tests.Full field strain measurement enables this digital method to examine local strains near cracks at any point,a very useful tool for studying material deformation behavior. 展开更多
关键词 Experimental testing CEMENTED rockfill Digital image correlation Strain measurement MINE BACKFILL
下载PDF
Seepage simulation of high concrete-faced rockfill dams based on generalized equivalent continuum model 被引量:6
9
作者 Shou-kai Chen Qi-dong He Ji-gang Cao 《Water Science and Engineering》 EI CAS CSCD 2018年第3期250-257,共8页
This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock m... This research focused on the three-dimensional(3 D) seepage field simulation of a high concrete-faced rockfill dam(CFRD) under complex hydraulic conditions. A generalized equivalent continuum model of fractured rock mass was used for equivalent continuous seepage field analysis based on the improved node virtual flow method. Using a high CFRD as an example, the generalized equivalent continuum range was determined, and a finite element model was established based on the terrain and geological conditions, as well as structural face characteristics of the dam area. The equivalent seepage coefficients of different material zones or positions in the dam foundation were calculated with the Snow model or inverse analysis. Then, the 3 D seepage field in the dam area was calculated under the normal water storage conditions, and the corresponding water head distribution, seepage flow, seepage gradient, and seepage characteristics in the dam area were analyzed. The results show that the generalized equivalent continuum model can effectively simulate overall seepage patterns of the CFRD under complex hydraulic conditions and provide a reference for seepage analysis of similar CFRDs. 展开更多
关键词 Concrete-faced rockfill dam(CFRD) GENERALIZED equivalent CONTINUUM model Node virtual flow method Fractured rock mass SEEPAGE field SEEPAGE coefficient
下载PDF
Seismic responses of high concrete face rockfill dams:A case study 被引量:6
10
作者 Sheng-shui Chen Zhong-zhi Fu +1 位作者 Kuang-ming Wei Hua-qiang Han 《Water Science and Engineering》 EI CAS CSCD 2016年第3期195-204,共10页
Seismic responses of the Zipingpu concrete face rockfill dam were analyzed using the finite element method. The dynamic behavior of rockfill materials was modeled with a viscoelastic model and an empirical permanent s... Seismic responses of the Zipingpu concrete face rockfill dam were analyzed using the finite element method. The dynamic behavior of rockfill materials was modeled with a viscoelastic model and an empirical permanent strain model. The relevant parameters were obtained either by back analysis using the field observations or by reference to parameters of similar rockfill materials. The acceleration responses of the dam,the distribution of earthquake-induced settlement, and the gap propagation under the concrete slabs caused by the settlement of the dam were analyzed and compared with site investigations or relevant studies. The mechanism of failure of horizontal construction joints was also analyzed based on numerical results and site observations. Numerical results show that the input accelerations were considerably amplified near the top of the dam, and the strong shaking resulted in considerable settlement of the rockfill materials, with a maximum value exceeding 90 cm at the crest.As a result of the settlement of rockfill materials, the third-stage concrete slabs were separated from the cushion layer. The rotation of the cantilever slabs about the contacting regions, under the combined action of gravity and seismic inertial forces, led to the failure of the construction joints and tensile cracks appeared above the construction joints. The effectiveness and limitations of the so-called equivalent linear method are also discussed. 展开更多
关键词 Concrete face rockfill DAM (CFRD) SEISMIC response Zipingpu PERMANENT strain Construction joint VISCOELASTIC model Finite element method
下载PDF
A simplified physically-based breach model for a high concrete-faced rockfill dam:A case study 被引量:5
11
作者 Qi-ming Zhong Sheng-shui Chen Zhao Deng 《Water Science and Engineering》 EI CAS CSCD 2018年第1期46-52,共7页
A simplified physically-based model was developed to simulate the breaching process of the Gouhou concrete-faced rockfill dam (CFRD), which is the only breach case of a high CFRD in the world. Considering the dam he... A simplified physically-based model was developed to simulate the breaching process of the Gouhou concrete-faced rockfill dam (CFRD), which is the only breach case of a high CFRD in the world. Considering the dam height, a hydraulic method was chosen to simulate the initial scour position on the downstream slope, with the steepening of the downstream slope taken into account; a headcut erosion formula was adopted to simulate the backward erosion as well. The moment equilibrium method was utilized to calculate the ultimate length of a concrete slab under its self-weight and water loads. The calculated results of the Gouhou CFRD breach case show that the proposed model provides reasonable peak breach flow, final breach width, and failure time, with relative errors less than 15% as compared with the measured data. Sensitivity studies show that the outputs of the proposed model are more or less sensitive to different parameters. Three typical parametric models were compared with the proposed model, and the comparison demonstrates that the proposed physically-based breach model performs better and provides more detailed results than the parametric models. 展开更多
关键词 Concrete-faced rockfill dam Physically-based breach model Parametric breach model Sensitivity analysis Gouhou CFRD
下载PDF
An improved hypoplastic constitutive model of rockfill considering effect of stress path 被引量:4
12
作者 相彪 张宗亮 迟世春 《Journal of Central South University》 SCIE EI CAS 2009年第6期1006-1013,共8页
An incrementally nonlinear hypoplastic constitutive model was introduced, which was developed without recourse to the concepts in elastoplasticity theory such as yield surface, plastic potential and the decomposition ... An incrementally nonlinear hypoplastic constitutive model was introduced, which was developed without recourse to the concepts in elastoplasticity theory such as yield surface, plastic potential and the decomposition of the deformation into elastic and plastic parts. Triaxial drained tests on rockfill were conducted on a large scale triaxial apparatus under two types of stress paths, which were the stress paths of constant stress ratio and the complex stress paths with transitional features. Motivated by the effect of stress path, the Gudehus-Bauer hypoplastic model was improved by considering the parameter variations with different ratios of stress increment. Fitting parameter a presents a piecewise linear relationship with cosine of the slope angle θ determined by instantaneous stress path. The improved hypoplastic model can present peak stress increasing and volumetric strain changing from dilatancy to contractancy with the increase of transitional confining pressure σ3t and the decrease of slope angle θ of stress path. Compared with the test data, it is shown that the model is capable of fully considering the effect of stress path on rockfill. 展开更多
关键词 HYPOPLASTICITY constitutive model stress path triaxial drained test rockfill
下载PDF
A simple permanent deformation model of rockfill materials 被引量:4
13
作者 De-gao Zou Jing-mao Liu +2 位作者 Xian-jing Kong Chen-guang Zhou Qing-po Yang 《Water Science and Engineering》 EI CAS CSCD 2018年第4期302-309,共8页
Existing experimental results have shown that using a semi-log linear relationship between the permanent volumetric strain and cyclic number underestimates the volumetric deformation of rockfill materials with a large... Existing experimental results have shown that using a semi-log linear relationship between the permanent volumetric strain and cyclic number underestimates the volumetric deformation of rockfill materials with a large cyclic number, and that the error increases with the confining pressure. The existing permanent deformation models are not suitable for the seismic safety analysis of high dams during strong earthquakes. In this study, a series of large-scale triaxial cyclic loading tests of rockfill materials were performed, and a new permanent deformation model of rockfill materials was developed and validated with three kinds of rockfill materials. The results show that the proposed model can properly reflect the general features of the permanent deformation of rockfill materials. The main features of the model are as follows:(1) relations between the cyclic number and permanent volumetric/shear strain are described by hyperbolic functions, which can avoid underestimating the volumetric deformation occurring during strong earthquakes;(2) the model can capture the effect of the mean effective stress on the permanent volumetric strain, with greater confining pressure correlating to greater permanent volumetric deformation, and the permanent volumetric strain under low confining pressure near the dam crest can be well represented; and(3) the model can reflect the effect of the consolidation stress ratio on the permanent shear strain. 展开更多
关键词 rockfill materials Permanent deformation Triaxial test Cyclic loading Consolidation stress ratio
下载PDF
Shear properties of cemented rockfills 被引量:3
14
作者 Bob A.Lingga Derek B.Apel 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期635-644,共10页
Application of cemented rockfilling to underground mining could not be separated from the corresponding backfill’s shear strength properties. The shear of cemented rockfill(CRF)-rock wall and the shear interaction oc... Application of cemented rockfilling to underground mining could not be separated from the corresponding backfill’s shear strength properties. The shear of cemented rockfill(CRF)-rock wall and the shear interaction occurring within CRFs both have some disadvantageous failure chances. In this study,we tried to investigate the complete shear properties of CRFs using direct shear and triaxial tests of cemented granite rockfill. Large-scale triaxial testing was held to accommodate the large CRF sample.Direct shear testing on the prepared flat and smooth surfaces was assessed with brief conversions and their corrections were used to approximate the shear strength envelopes of CRF joint interfaces. Two types of CRFs with the same aggregate size and distribution but different unconfined compressive strengths(UCSs) due to different mixture designs indicated insignificant differences between their basic friction angles, and also their asperity inclination angles. Nevertheless, investigation between direct shear test and triaxial test showed that the specimen with higher UCS tended to have a slightly lower friction angle but a higher cohesion than the other one. 展开更多
关键词 Cemented rockfill (CRF) Shear tests Shear strength Friction angle COHESION Backfill interface
下载PDF
Real-Time Spreading Thickness Monitoring of High-core Rockfill Dam Based on K-nearest Neighbor Algorithm 被引量:4
15
作者 Denghua Zhong Rongxiang Du +2 位作者 Bo Cui Binping Wu Tao Guan 《Transactions of Tianjin University》 EI CAS 2018年第3期282-289,共8页
During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and... During the storehouse surface rolling construction of a core rockfilldam, the spreading thickness of dam face is an important factor that affects the construction quality of the dam storehouse' rolling surface and the overallquality of the entire dam. Currently, the method used to monitor and controlspreading thickness during the dam construction process is artificialsampling check after spreading, which makes it difficult to monitor the entire dam storehouse surface. In this paper, we present an in-depth study based on real-time monitoring and controltheory of storehouse surface rolling construction and obtain the rolling compaction thickness by analyzing the construction track of the rolling machine. Comparatively, the traditionalmethod can only analyze the rolling thickness of the dam storehouse surface after it has been compacted and cannot determine the thickness of the dam storehouse surface in realtime. To solve these problems, our system monitors the construction progress of the leveling machine and employs a real-time spreading thickness monitoring modelbased on the K-nearest neighbor algorithm. Taking the LHK core rockfilldam in Southwest China as an example, we performed real-time monitoring for the spreading thickness and conducted real-time interactive queries regarding the spreading thickness. This approach provides a new method for controlling the spreading thickness of the core rockfilldam storehouse surface. 展开更多
关键词 Core rockfill dam Dam storehouse surface construction Spreading thickness K-nearest neighbor algorithm Real-time monitor
下载PDF
Dynamic response of concrete face rockfill dam affected by polarity reversal of near-fault earthquake 被引量:3
16
作者 Jiang Qiuting Zou Degao +1 位作者 Han Huichao Liu Jingmao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第1期81-99,共19页
In China,an increasing number of high concrete face rockfill dams(CFRDs)are located in high intensity earthquake zones,some of which are close to the seismic fault line.Recordings suggest that near-fault ground motion... In China,an increasing number of high concrete face rockfill dams(CFRDs)are located in high intensity earthquake zones,some of which are close to the seismic fault line.Recordings suggest that near-fault ground motions are characterized by large one-sided velocity pulses.The conventional dynamic analysis of dams,however,neglects the features of strong ground movements.In this study,under different ground motion levels some numerical dynamic studies considering the one-sided broadband pulses of near-fault earthquakes are presented for CFRDs based on a generalized plasticity model for rockfill materials.The results indicate that the displacements of dam crest corresponding to positive and reverse input of near-fault ground motion make a significant difference,while the displacements of the dam crest under artificial seismic waves are similar.Furthermore,using the horizontal and vertical components as simultaneous excitations near the faults,the displacements of the dam crest before and after reversing the motion produce a larger difference than that using a single component.More importantly,the difference of horizontal displacements of the dam crest caused by polarity reversal of near-fault ground motions increases with the increase of earthquake intensity.Due to the randomness and uncertainties of earthquakes,using a stochastic near-field motion input as excitation without considering the polarity(i.e.,positive vs reversed waveform),does not necessarily obtain a conservative result. 展开更多
关键词 near-fault ground motion polarity high concrete face rockfill dam dynamic response
下载PDF
Discrete Element Modelling of Dynamic Behaviour of Rockfills forResisting High Speed Projectile Penetration 被引量:3
17
作者 Tingting Zhao Y.T.Feng +2 位作者 Jie Zhang Zhihua Wang Zhiyong Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第5期721-735,共15页
This paper presents a convex polyhedral based discrete element method for modelling the dynamic behaviour ofrockfills for resisting high speed projectile penetration. The contact between two convex polyhedra is define... This paper presents a convex polyhedral based discrete element method for modelling the dynamic behaviour ofrockfills for resisting high speed projectile penetration. The contact between two convex polyhedra is defined by theMinkowski overlap and determined by the GJK and EPA algorithm. The contact force is calculated by a Minkowskioverlap based normal model. The rotational motion of polyhedral particles is solved by employing a quaternionbased orientation representation scheme. The energy-conserving nature of the polyhedral DEM method ensures arobust and effective modelling of convex particle systems. The method is applied to simulate the dynamic behaviourof a rockfill system under impact of a high speed projectile. The rockfill sample is generated by a three-dimensionalVoronoi meso method with a specific particle size distribution. The penetrating process of the projectile strikingthe rockfill target is simulated. Some physical quantities associated with the projectile such as the residual velocity,penetration resistance, and deflection angle are monitored which can reflect the influence of the characteristics ofthe rockfill target on its anti-penetration performance. It can be concluded that the developed polyhedral DEMmethod is a very promising numerical approach in analysing the dynamic behaviour of rockfill systems subject tohigh speed projectile impact. 展开更多
关键词 Discrete element method minkowski overlap polyhedral particles rockfill protection system high speed projectile penetration
下载PDF
Evaluation of behaviors of earth and rockfill dams during construction and initial impounding using instrumentation data and numerical modeling 被引量:2
18
作者 Mohammad Rashidi S. Mohsen Haeri 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期709-725,共17页
In this study,the behavior of Gavoshan dam was evaluated during construction and the first impounding.A two-dimensional(2D) numerical analysis was conducted based on a finite difference method on the largest cross-s... In this study,the behavior of Gavoshan dam was evaluated during construction and the first impounding.A two-dimensional(2D) numerical analysis was conducted based on a finite difference method on the largest cross-section of the dam using the results of instrument measurements and back analysis.These evaluations will be completed in the case that back analysis is carried out in order to control the degree of the accuracy and the level of confidence of the measured behavior since each of the measurements could be controlled by comparing it to the result obtained from the numerical model.Following that,by comparing the results of the numerical analysis with the measured values,it is indicated that there is a proper consistency between these two values.Moreover,it was observed that the dam performance was suitable regarding the induced pore water pressure,the pore water pressure ratio r;,settlement,induced stresses,arching degree,and hydraulic fracturing probability during the construction and initial impounding periods.The results demonstrated that the maximum settlement of the core was 238 cm at the end of construction.In the following 6 years after construction(initial impounding and exploitation period),the accumulative settlement of the dam was 270 cm.It is clear that 88% of the total settlement of the dam took place during dam construction.The reason is that the clay core was smashed in the wet side,i.e.the optimum moisture content.Whereas the average curving ratio was 0.64 during dam construction; at the end of the initial impounding,the maximum amount of curving ratio in the upstream was 0.81,and the minimum(critical) amount in the downstream was 0.52.It was also concluded that this dam is safe in comparison with the behaviors of other similar dams in the world. 展开更多
关键词 Earth and rockfill dams Initial impounding Numerical modeling INSTRUMENTATION SETTLEMENT Pore pressure
下载PDF
GPS Real Time Supervisory System and Application in the Construction of Face Rockfill Dam 被引量:2
19
作者 HUANG Shengxiang LIU Jingnan ZENG Huai’en 《Geo-Spatial Information Science》 2005年第4期240-246,共7页
According to the quality control needs of filling construction of the face rockfill dam, by means of the global satellite positioning technology, the wireless data communication technology, the computer technology and... According to the quality control needs of filling construction of the face rockfill dam, by means of the global satellite positioning technology, the wireless data communication technology, the computer technology and the data processing and analysis technology, and integrating with the roller compaction machine, the GPS real time supervisory system is developed in this paper. It can be used to real timely supervise the construction quality of the roller compaction for filling engineering. The composition and applied characteristics of GPS system, and the key technique problem and solution of the design are discussed. The height accuracy of GPS system is analyzed and the preliminary application is introduced. 展开更多
关键词 GPS filling construction quality control integrated system face rockfill dam
下载PDF
Application of in situ direct shear device to shear strength measurement of rockfill materials 被引量:2
20
作者 Si-hong LIU 《Water Science and Engineering》 EI CAS 2009年第3期48-57,共10页
A simplified in situ direct shear test (DST) was developed for measuring the shear strength of soils in fields. In this test, a latticed sheafing frame replaces the upper half of the shear box used in the convention... A simplified in situ direct shear test (DST) was developed for measuring the shear strength of soils in fields. In this test, a latticed sheafing frame replaces the upper half of the shear box used in the conventional direct shear box test. The latticed shearing frame is directly embedded in the ground to be tested after a construction process and is pulled with a flexible chain while a constant dead load is applied to the sample in the sheafing frame. This simplified in situ DST has been validated by comparing its results with those of triaxial tests on samples with parallel gradations under normal stresses less than 100 kPa. In this study, the DST was further validated by carrying out tests on samples with the same gradations, rather than on samples with parallel gradations, under normal stresses up to 880 kPa. In addition, the DST was performed inside fills in two applications. 展开更多
关键词 in situ direct shear test shear strength rockfill
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部