Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy pre...Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy prediction system(DLEPS)is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes.This study aimed to explore the protective effect and potential mechanisms of cinobufotalin(CB),a traditional Chinese medicine(TCM),on bone loss.Methods:DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis.Micro-CT,histological and morphological analysis were applied for the bone protective detection of CB,and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells(hBMMSCs)were also investigated.The underlying mechanism was verified using qRT-PCR,Western blot(WB),immunofluorescence(IF),etc.Results:A safe concentration(0.25mg/kg in vivo,0.05μM in vitro)of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs.Both BMPs/SMAD and Wnt/β-catenin signaling pathways participated in CB-induced osteogenic differentiation,further regulating the expression of osteogenesis-associated factors,and ultimately promoting osteogenesis.Conclusion:Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss,further promoting osteogenic differentiation/function of hBMMSCs,with BMPs/SMAD and Wnt/β-catenin signaling pathways involved.展开更多
BACKGROUND Helicobacter pylori(H.pylori)is the primary risk factor for gastric cancer(GC),the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis.GC has a high mortality rate and treatment cost,and th...BACKGROUND Helicobacter pylori(H.pylori)is the primary risk factor for gastric cancer(GC),the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis.GC has a high mortality rate and treatment cost,and there are no drugs to prevent the progression of gastric precancerous lesions to GC.Therefore,it is necessary to find a novel drug that is inexpensive and preventive to against GC.AIM To explore the effects of H.pylori and Moluodan on the Wnt/β-Catenin signaling pathway and precancerous lesions of GC(PLGC).METHODS Mice were divided into the control,N-methyl-N-nitrosourea(MNU),H.pylori+MNU,and Moluodan groups.We first created an H.pylori infection model in the H.pylori+MNU and Moluodan groups.A PLGC model was created in the remaining three groups except for the control group.Moluodan was fed to mice in the Moloudan group ad libitum.The general condition of mice were observed during the whole experiment period.Gastric tissues of mice were grossly and microscopically examined.Through quantitative real-time PCR(qRT-PCR)and Western blotting analysis,the expression of relevant genes were detected.RESULTS Mice in the H.pylori+MNU group showed the worst performance in general condition,gastric tissue visual and microscopic observation,followed by the MNU group,Moluodan group and the control group.QRT-PCR and Western blotting analysis were used to detect the expression of relevant genes,the results showed that the H.pylori+MNU group had the highest expression,followed by the MNU group,Moluodan group and the control group.CONCLUSION H.pylori can activate the Wnt/β-catenin signaling pathway,thereby facilitating the development and progression of PLGC.Moluodan suppressed the activation of the Wnt/β-catenin signaling pathway,thereby decreasing the progression of PLGC.展开更多
Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluor...Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B.展开更多
Objective:Uterine corpus endometrial carcinoma(UCEC),a kind of gynecologic malignancy,poses a significant risk to women’s health.The precise mechanism underlying the development of UCEC remains elusive.Zinc finger pr...Objective:Uterine corpus endometrial carcinoma(UCEC),a kind of gynecologic malignancy,poses a significant risk to women’s health.The precise mechanism underlying the development of UCEC remains elusive.Zinc finger protein 554(ZNF554),a member of the Krüppel-associated box domain zinc finger protein superfamily,was reported to be dysregulated in various illnesses,including malignant tumors.This study aimed to examine the involvement of ZNF554 in the development of UCEC.Methods:The expression of ZNF554 in UCEC tissues and cell lines were examined by qRT-PCR and Western blot assay.Cells with stably overexpressed or knocked-down ZNF554 were established through lentivirus infection.CCK-8,wound healing,and Transwell invasion assays were employed to assess cell proliferation,migration,and invasion.Propidium iodide(PI)staining combined with fluorescence-activated cell sorting(FACS)flow cytometer was utilized to detect cell cycle distribution.qRT-PCR and Western blotting were conducted to examine relative mRNA and protein levels.Chromatin immunoprecipitation assay and luciferase reporter assay were used to explore the regulatory role of ZNF554 in RNA binding motif 5(RBM5).Results:The expression of ZNF554 was found to be reduced in both UCEC samples and cell lines.Decreased expression of ZNF554 was associated with higher tumor stage,decreased overall survival,and reduced disease-free survival in UCEC.ZNF554 overexpression suppressed cell proliferation,migration,and invasion,while also inducing cell cycle arrest.In contrast,a decrease in ZNF554 expression resulted in the opposite effect.Mechanistically,ZNF554 transcriptionally regulated RBM5,leading to the deactivation of the Wingless(WNT)/β-catenin signaling pathway.Moreover,the findings from rescue studies demonstrated that the inhibition of RBM5 negated the impact of ZNF554 overexpression onβ-catenin and p-glycogen synthase kinase-3β(p-GSK-3β).Similarly,the deliberate activation of RBM5 reduced the increase inβ-catenin and p-GSK-3βcaused by the suppression of ZNF554.In vitro experiments showed that ZNF554 overexpression-induced decreases in cell proliferation and migration were counteracted by RBM5 knockdown.Additionally,when RBM5 was overexpressed,it hindered the improvements in cell proliferation and migration caused by reducing the ZNF554 levels.Conclusion:ZNF554 functions as a tumor suppressor in UCEC.Furthermore,ZNF554 regulates UCEC progression through the RBM5/WNT/β-catenin signaling pathway.ZNF554 shows a promise as both a prognostic biomarker and a therapeutic target for UCEC.展开更多
The liver is the most common site of metastases in patients with colorectal cancer.Colorectal liver metastases(CRLMs)are the result of molecular mechanisms that involve different cells of the liver microenvironment.Th...The liver is the most common site of metastases in patients with colorectal cancer.Colorectal liver metastases(CRLMs)are the result of molecular mechanisms that involve different cells of the liver microenvironment.The aberrant activation of Wingless/It(Wnt)/β-catenin signals downstream of Wnt ligands initially drives the oncogenic transformation of the colon epithelium,but also the progression of metastatization through the epithelial-mesenchymal transition/mesenchymalepithelial transition interactions.In liver microenvironment,metastatic cells can also survive and adapt through dormancy,which makes them less susceptible to pro-apoptotic signals and therapies.Treatment of CRLMs is challenging due to its variability and heterogeneity.Advances in surgery and oncology have been made in the last decade and a pivotal role for Wnt/β-catenin pathway has been recognized in chemoresistance.At the state of art,there is a lack of clear understanding of why and how this occurs and thus where exactly the opportunities for developing anti-CRLMs therapies may lie.In this review,current knowledge on the involvement of Wnt signaling in the development of CRLMs was considered.In addition,an overview of useful biomarkers with a revision of surgical and non-surgical therapies currently accepted in the clinical practice for colorectal liver metastasis patients were provided.展开更多
[Objectives] To explore the therapeutic effect and mechanism of Qigongwan on PCOS model rats by detecting the changes in sex hormone levels in rats with polycystic ovary syndrome (PCOS), and observing the effects of o...[Objectives] To explore the therapeutic effect and mechanism of Qigongwan on PCOS model rats by detecting the changes in sex hormone levels in rats with polycystic ovary syndrome (PCOS), and observing the effects of ovarian pathological morphological changes, apoptosis and expression of Wnt/β-β catenin signaling pathway protein. [Methods] Ten of 40 female SD rats were randomly selected as the normal group, and the other 30 rats were treated with letrozole combined with high-fat diet to establish the PCOS rat model. After successful modeling, the model group was randomly divided into Qigongwan group, positive Daying-35 (Ethinylestradiol and Cyproterone Acetate Tablets) group and model group, with 10 rats in each group. Qigongwan group was given 14.7 g/(kg·d) by gavage, Daying-35 group was given 0.21 mg/(kg·d) by oral gavage, and normal group and model group were given the same amount of distilled water, and the intervention lasted for 21 d. ELISA method was used to detect the levels of hormones such as follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), estradiol (E 2) and progesterone (P) in serum. HE staining was used to observe the pathological morphological changes of ovarian tissues;TUNEL staining was used to observe apoptosis of ovarian tissue granule cells;the expression of Wnt, β-catenin protein in rat ovarian tissue was detected by immunohistochemistry. [Results] (i) Compared with the model group, Qigongwan group and Daying-35 group could significantly increase serum E 2 and P levels, significantly reduce serum T levels ( P <0.01), significantly reduce serum LH levels and LH/FSH ratio ( P <0.01), and increase serum FSH levels ( P <0.05) in different degrees. (ii)The results of HE staining showed that compared with the model group, Qigongwan and Daying-35 groups could improve follicular development and reduce atretic follicles in different degrees. Compared with Daying-35 group, the number of GC layers in Qigongwan group was significantly increased. (iii) The results of TUNEL staining showed that compared with the model group, the rate of TUNEL-positive cells in the Qigongwan group and Daying-35 group decreased significantly ( P <0.01). (iv) The immunohistochemical results showed that compared with the model group, the expression levels of wnt and β-catenin in the Qigongwan group and the Daying-35 group increased in different degrees ( P <0.05), and the expression range increased. [Conclusions] Qigongwan can regulate the secretion level of sex hormones such as FSH and LH, improve the pathological damage of ovarian tissue, and inhibit apoptosis of ovarian granule cells, and its mechanism may be related to the activation of Wnt/β-catenin signaling pathway.展开更多
Diabetic nephropathy(DN)is the most serious microvascular complication of diabetes mellitus,which is highly prevalent worldwide.Abnormal activation of Wnt/β-catenin signaling pathway is an important mechanism of rena...Diabetic nephropathy(DN)is the most serious microvascular complication of diabetes mellitus,which is highly prevalent worldwide.Abnormal activation of Wnt/β-catenin signaling pathway is an important mechanism of renal damage induced by hyperglycemia.Many studies have shown that TCM has the advantages of high efficiency and safety in the prevention and treatment of DN.Some TCM monomers and compounds repair podocyte function and inhibit transdifferentiation process by inhibiting the activation of Wnt/β-catenin signaling pathway,thus playing a protective role in kidney.Based on this,this paper will review the existing research results and related mechanisms of TCM intervention in Wnt/β-catenin signaling pathway in the treatment of DN,in order to promote the more effective and reasonable application of TCM in clinical practice.展开更多
The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining ro...The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRPS), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.展开更多
Liver cancer is the fifth and seventh most common cause of cancer in men and women,respectively.Wnt/β-catenin signalling has emerged as a critical player in both the development of normal liver as well as an oncogeni...Liver cancer is the fifth and seventh most common cause of cancer in men and women,respectively.Wnt/β-catenin signalling has emerged as a critical player in both the development of normal liver as well as an oncogenic driver in hepatocellular carcinoma(HCC).Based on the current understanding,this article summarizes the possible mechanisms for the aberrant activation of this pathway with specific focus on HCC.Furthermore,we will discuss the role of dickkopfs(DKKs)in regulating Wnt/β-catenin signalling,which is poorly understood and understudied.DKKs are a family of secreted proteins that comprise at least four members,namely DKK1-DKK4,which act as inhibitors of Wnt/β-catenin signalling.Nevertheless,not all members antagonize Wnt/β-catenin signalling.Their functional significance in hepatocarcinogenesis remains to be further characterized for which these studies should provide new insights into the regulatory role of DKKs in Wnt/β-catenin signalling in hepatic carcinogenesis.Because of the important oncogenic roles,there are an increasing number of therapeutic molecules targetingβ-catenin and the Wnt/β-catenin pathway for potential therapy of HCC.展开更多
Objective:Recent research has indicated that altered promoter methylation of oncogenes and tumor suppressor genes is an important mechanism in lung cancer development and progression.In this study,we investigated the ...Objective:Recent research has indicated that altered promoter methylation of oncogenes and tumor suppressor genes is an important mechanism in lung cancer development and progression.In this study,we investigated the association between promoter methylation of TMEM88,a possible inhibitor of the Wnt/β-Catenin signaling,and the survival of patients with nonsmall cell lung cancer(NSCLC).Methods:Twelve pairs of tumor and adjacent non-tumor samples were used for microarray analyses of DNA methylation and gene expression.For validation,more than two hundred additional samples were analyzed for methylation using bisulfite pyrosequencing and for gene expression using q RT-PCR.Then the cell function were tested by wound healing,transwell,CCK8 and cell cycle assay.Results:Our analysis of patient specimens showed that TMEM88 methylation was higher in NSCLC tumors(82.2%±10.3,P<0.01)compared with the adjacent normal tissues(65.9%±7.2).The survival analysis revealed that patients with high TMEM88methylation had a shorter overall survival(46 months)compared with patients with low TMEM88 methylation(>56 months;P=0.021).In addition,we found that demethylation treatment could inhibit tumor cell proliferation,migration,and invasion,which was supportive of an association between methylation and survival.Conclusions:Based on these consistent observations,we concluded that TMEM88 may play an important role in NSCLC progression and that promoter methylation of TMEM88 may serve as a biomarker for NSCLC prognosis and treatment.展开更多
AIM: To elucidate the role of Wnt/β-catenin signaling pathway in pancreatic development of rat embryo. METHODS: The mRNAs of β-catenin, APC, cyclin D1 genes were amplified by means of semiquantitative reverse tran...AIM: To elucidate the role of Wnt/β-catenin signaling pathway in pancreatic development of rat embryo. METHODS: The mRNAs of β-catenin, APC, cyclin D1 genes were amplified by means of semiquantitative reverse transcription polymerase chain reaction (RTPCR) from embryonic pancreas in different periods and normal pancreas of rat, respectively. Protein expression of these genes in embryonic pancreas of E14.5-E18.5 was examined by immunohistochemical method. RESULTS: In embryonic pancreas of E14.5, the transcript amplification of β-catenin and cyclinD1 genes was detected. In embryonic pancreas of E18.5, the transcription levels of β-catenin and cyclinD1 genes became much higher than in other periods. But in adult rat pancreas the transcription of cyclinD1 gene could not be observed. Only until E18.5, the transcript amplification of mRNA of APC gene could be detected. Surprisingly, the transcription level of APC gene became much higher in adult rat pancreas than in embryonic pancreas. By means of immunohistochemical staining, identical results were obtained to the above by RP-PCR, except for β-catenin protein in adult rat pancreas. CONCLUSION: Active Wnt/β-catenin signaling occurs in rat embryonic pancreas and is probably important for pancreatic development and organ formation.展开更多
AIM: To study the anti-tumor effect of caffeic acid phenethyl ester (CAPE) and the influence of CAPE on β-catenin associated signaling pathway in SW480 colorectal cancer (CRC) cells. METHODS: SW480 cells were t...AIM: To study the anti-tumor effect of caffeic acid phenethyl ester (CAPE) and the influence of CAPE on β-catenin associated signaling pathway in SW480 colorectal cancer (CRC) cells. METHODS: SW480 cells were treated with CAPE at serial concentrations. The proliferative status of cells was measured by methabenzthiazuron (MTT) assay. Cell cycle and cell apoptosis were analyzed using flow cytometry (FCM). Western blotting assay was used to evaluate the protein level of β-catenin, c-myc and cyclinD1. β-catenin localization was determined by indirect immunofluorescence. RESULTS: CAPE displayed a strong inhibitory effect in a significant dose- and time-dependent manner on SW480 cell growth. FCM analysis showed that the ratio of G0/G1 phase cells increased, S phase ratio decreased and apoptosis rate increased after SW480 cells were exposed to CAPE for 24 h. Pretreatment of SW480 cells with CAPE significantly suppressed β-catenin, c-myc and cyclinD1 protein expression. CAPE treatment was associated with decreased accumulation of β-catenin protein in nucleus and cytoplasm, and concurrently increased its accumulation on the surface of cell membrane. CONCLUSION: CAPE can inhibit SW480 cell proliferation by inducing cell cycle arrest and apoptosis. Decreased β-catenin and the associated signaling pathway target gene expression may mediate the anti-tumor effects of CAPE.展开更多
Objective:To study the mechanism of effect of miR-21 via Wnt/ β-catenin signaling pathway in human A549 lung cancer cells and Lewis lung carcinoma in mice.Methods:The effect of miR-21 on A549 cells were detected by M...Objective:To study the mechanism of effect of miR-21 via Wnt/ β-catenin signaling pathway in human A549 lung cancer cells and Lewis lung carcinoma in mice.Methods:The effect of miR-21 on A549 cells were detected by MTT method.MiR-21 expression levels were overexpressed or inhibited in A549 cells by transfecting with miR-21 mimics or inhibitors.Correlation among key molecules(Wnt1,β-catenin.CyclinD1 and miR-21) of mRNA and protein levels in Wnt/β-catenin signaling pathway were studied by Real-time PCR and Western blot hybridization assay.Invasive ability of A549 cells was determined via Transwell chamber cell invasion assay;the role of miR-21 in A549 cells was explored via the Wnt/β-catenin signaling pathway.A Lewis lung carcinoma animal model was established to detect miR-21 expressions in tumor animals and controlled animal tissues,and verify expression changes of the above moleculesin the Wnt / β-catenin signaling pathway was determined in the animal level.Results:MTT assay results showed that miR-21 overexpression could markedly enhance cell absorbance value;that is,miR-21 could increase the ability proliferation of A549 cells.β-catenin and CyclinD1 expression levels were significantly higher in miR-21 mimic transfected cells(P<0.05),and Wnt 1 gene had no significant change.Wnt 1,β-catenin and CyclinD1 gene expression showed no significant change when miR-21 expression was suppressed,compared with controls.After cells were transfected with miR-21 mimics,cell invasion assay revealed that the perforated cells was significantly higher than the perforated cells in the control group(P<0.01).Lewis lung assay revealed that miR-21 expression levels in the Lewis lung carcinoma were significantly higher;and at the same time.Wnt1,β-catenin and CyclinD1 gene expression levels were significantly increased,compared to controls.Conclusions:In A549 human lung cancer cells and Lewis lung carcinoma in mice,key molecules β-catenin and CyclinD1 of miR-21 expressions and the Wnt/ β-catenin signaling pathway are positively correlated.展开更多
BACKGROUND Colorectal cancer(CRC)is one of the most common malignancies worldwide.AIM To explore the expression of microRNA miR-19a-3p and Forkhead box F2(FOXF2)in patients with CRC and the relevant mechanisms.METHODS...BACKGROUND Colorectal cancer(CRC)is one of the most common malignancies worldwide.AIM To explore the expression of microRNA miR-19a-3p and Forkhead box F2(FOXF2)in patients with CRC and the relevant mechanisms.METHODS Sixty-two CRC patients admitted to the hospital were enrolled into the study group,and sixty healthy people from the same period were assigned to the control group.Elbow venous blood was sampled from the patients and healthy individuals,and blood serum was saved for later analysis.MiR-19a-3p mimics,miR-19a-3p inhibitor,miR-negative control,small interfering-FOXF2,and short hairpin-FOXF2 were transfected into HT29 and HCT116 cells.Then quantitative polymerase chain reaction was performed to quantify the expression of miR-19a-3p and FOXF2 in HT29 and HCT116 cells,and western blot(WB)analysis was conducted to evaluate the levels of FOXF2,glycogen synthase kinase 3 beta(GSK-3β),phosphorylated GSK-3β(p-GSK-3β),β-catenin,p-β-catenin,α-catenin,Ncadherin,E-cadherin,and vimentin.The MTT,Transwell,and wound healing assays were applied to analyze cell proliferation,invasion,and migration,respectively,and the dual luciferase reporter assay was used to determine the correlation of miR-19a-3p with FOXF2.RESULTS The patients showed high serum levels of miR-19a-3p and low levels of FOXF2,and the area under the curves of miR-19a-3p and FOXF2 were larger than 0.8.MiR-19a-3p and FOXF2 were related to sex,tumor size,age,tumor-nodemetastasis staging,lymph node metastasis,and differentiation of CRC patients.Silencing of miR-19a-3p and overexpression of FOXF2 suppressed the epithelialmesenchymal transition,invasion,migration,and proliferation of cells.WB analysis revealed that silencing of miR-19a-3p and FOXF2 overexpression significantly suppressed the expression of p-GSK-3β,β-catenin,N-cadherin,and vimentin;and increased the levels of GSK-3β,p-β-catenin,α-catenin,and Ecadherin.The dual luciferase reporter assay confirmed that there was a targeted correlation of miR-19a-3p with FOXF2.In addition,a rescue experiment revealed that there were no differences in cell proliferation,invasion,and migration in HT29 and HCT116 cells co-transfected with miR-19a-3p-mimics+sh-FOXF2 and miR-19a-3p-inhibitor+si-FOXF2 compared to the miR-negative control group.CONCLUSION Inhibiting miR-19a-3p expression can upregulate the FOXF2-mediated Wnt/β-catenin signaling pathway,thereby affecting the epithelial-mesenchymal transition,proliferation,invasion,and migration of cells.Thus,miR-19a-3p is likely to be a therapeutic target in CRC.展开更多
The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guid- ance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the...The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guid- ance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the Wnt/β-catenin signaling pathway after spinal cord iniury, by intraperitoneally injecting spinal cord injured rats with rapamycin over 2 days. Western blot analysis and immunofluorescence staining were used to detect the expression levels of β-catenin protein, caspase-3 protein and brain-derived neurotrophic factor protein, components of the Wnt/β-catenin signaling pathway. Rapamycin increased the levels of β-catenin and brain-derived neurotrophic factor in the injured spinal cord, improved the pathological morphology at the injury site, reduced the loss of motor neurons, and promoted motor functional recovery in rats after spinal cord injury. Our experimental fndings suggest that the neuroprotective effect of rapamycin intervention is mediated through activation of the Wnt/β-catenin signaling pathway after spinal cord injury.展开更多
基金Beijing Natural Science Foundation,Grant/Award Number:L222145 and L222030Emerging Engineering Interdisciplinary Project and the Fundamental Research Funds for the Central Universities,Grant/Award Number:PKU2022XGK008Peking University Medicine Fund of Fostering Young Scholars’Scientific&Technological Innovation,Grant/Award Number:BMU2022PY010。
文摘Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy prediction system(DLEPS)is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes.This study aimed to explore the protective effect and potential mechanisms of cinobufotalin(CB),a traditional Chinese medicine(TCM),on bone loss.Methods:DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis.Micro-CT,histological and morphological analysis were applied for the bone protective detection of CB,and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells(hBMMSCs)were also investigated.The underlying mechanism was verified using qRT-PCR,Western blot(WB),immunofluorescence(IF),etc.Results:A safe concentration(0.25mg/kg in vivo,0.05μM in vitro)of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs.Both BMPs/SMAD and Wnt/β-catenin signaling pathways participated in CB-induced osteogenic differentiation,further regulating the expression of osteogenesis-associated factors,and ultimately promoting osteogenesis.Conclusion:Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss,further promoting osteogenic differentiation/function of hBMMSCs,with BMPs/SMAD and Wnt/β-catenin signaling pathways involved.
基金All procedures involving animals were reviewed and approved by the Institutional Animal Care and Use Committee of the Southwest Medical University(Protocol No.SWMU20230818).
文摘BACKGROUND Helicobacter pylori(H.pylori)is the primary risk factor for gastric cancer(GC),the Wnt/β-Catenin signaling pathway is closely linked to tumourigenesis.GC has a high mortality rate and treatment cost,and there are no drugs to prevent the progression of gastric precancerous lesions to GC.Therefore,it is necessary to find a novel drug that is inexpensive and preventive to against GC.AIM To explore the effects of H.pylori and Moluodan on the Wnt/β-Catenin signaling pathway and precancerous lesions of GC(PLGC).METHODS Mice were divided into the control,N-methyl-N-nitrosourea(MNU),H.pylori+MNU,and Moluodan groups.We first created an H.pylori infection model in the H.pylori+MNU and Moluodan groups.A PLGC model was created in the remaining three groups except for the control group.Moluodan was fed to mice in the Moloudan group ad libitum.The general condition of mice were observed during the whole experiment period.Gastric tissues of mice were grossly and microscopically examined.Through quantitative real-time PCR(qRT-PCR)and Western blotting analysis,the expression of relevant genes were detected.RESULTS Mice in the H.pylori+MNU group showed the worst performance in general condition,gastric tissue visual and microscopic observation,followed by the MNU group,Moluodan group and the control group.QRT-PCR and Western blotting analysis were used to detect the expression of relevant genes,the results showed that the H.pylori+MNU group had the highest expression,followed by the MNU group,Moluodan group and the control group.CONCLUSION H.pylori can activate the Wnt/β-catenin signaling pathway,thereby facilitating the development and progression of PLGC.Moluodan suppressed the activation of the Wnt/β-catenin signaling pathway,thereby decreasing the progression of PLGC.
基金supported by the Zhejiang Province Traditional Chinese Medicine Health Science and Technology Program(2023ZL570).
文摘Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B.
基金supported by the Science-Technology Foundation for Middle-aged and Young Scientists of Wannan Medical College(No.WK2021F19)the 2023 Wannan Medical College Research Fund(No.WK2023ZZD18).
文摘Objective:Uterine corpus endometrial carcinoma(UCEC),a kind of gynecologic malignancy,poses a significant risk to women’s health.The precise mechanism underlying the development of UCEC remains elusive.Zinc finger protein 554(ZNF554),a member of the Krüppel-associated box domain zinc finger protein superfamily,was reported to be dysregulated in various illnesses,including malignant tumors.This study aimed to examine the involvement of ZNF554 in the development of UCEC.Methods:The expression of ZNF554 in UCEC tissues and cell lines were examined by qRT-PCR and Western blot assay.Cells with stably overexpressed or knocked-down ZNF554 were established through lentivirus infection.CCK-8,wound healing,and Transwell invasion assays were employed to assess cell proliferation,migration,and invasion.Propidium iodide(PI)staining combined with fluorescence-activated cell sorting(FACS)flow cytometer was utilized to detect cell cycle distribution.qRT-PCR and Western blotting were conducted to examine relative mRNA and protein levels.Chromatin immunoprecipitation assay and luciferase reporter assay were used to explore the regulatory role of ZNF554 in RNA binding motif 5(RBM5).Results:The expression of ZNF554 was found to be reduced in both UCEC samples and cell lines.Decreased expression of ZNF554 was associated with higher tumor stage,decreased overall survival,and reduced disease-free survival in UCEC.ZNF554 overexpression suppressed cell proliferation,migration,and invasion,while also inducing cell cycle arrest.In contrast,a decrease in ZNF554 expression resulted in the opposite effect.Mechanistically,ZNF554 transcriptionally regulated RBM5,leading to the deactivation of the Wingless(WNT)/β-catenin signaling pathway.Moreover,the findings from rescue studies demonstrated that the inhibition of RBM5 negated the impact of ZNF554 overexpression onβ-catenin and p-glycogen synthase kinase-3β(p-GSK-3β).Similarly,the deliberate activation of RBM5 reduced the increase inβ-catenin and p-GSK-3βcaused by the suppression of ZNF554.In vitro experiments showed that ZNF554 overexpression-induced decreases in cell proliferation and migration were counteracted by RBM5 knockdown.Additionally,when RBM5 was overexpressed,it hindered the improvements in cell proliferation and migration caused by reducing the ZNF554 levels.Conclusion:ZNF554 functions as a tumor suppressor in UCEC.Furthermore,ZNF554 regulates UCEC progression through the RBM5/WNT/β-catenin signaling pathway.ZNF554 shows a promise as both a prognostic biomarker and a therapeutic target for UCEC.
文摘The liver is the most common site of metastases in patients with colorectal cancer.Colorectal liver metastases(CRLMs)are the result of molecular mechanisms that involve different cells of the liver microenvironment.The aberrant activation of Wingless/It(Wnt)/β-catenin signals downstream of Wnt ligands initially drives the oncogenic transformation of the colon epithelium,but also the progression of metastatization through the epithelial-mesenchymal transition/mesenchymalepithelial transition interactions.In liver microenvironment,metastatic cells can also survive and adapt through dormancy,which makes them less susceptible to pro-apoptotic signals and therapies.Treatment of CRLMs is challenging due to its variability and heterogeneity.Advances in surgery and oncology have been made in the last decade and a pivotal role for Wnt/β-catenin pathway has been recognized in chemoresistance.At the state of art,there is a lack of clear understanding of why and how this occurs and thus where exactly the opportunities for developing anti-CRLMs therapies may lie.In this review,current knowledge on the involvement of Wnt signaling in the development of CRLMs was considered.In addition,an overview of useful biomarkers with a revision of surgical and non-surgical therapies currently accepted in the clinical practice for colorectal liver metastasis patients were provided.
基金Supported by Central Level Public Welfare Scientific Research Institute"Advantageous Diseases-Hospital Preparations-New Drug Preparation Research and Development Project"(ZZZ15-XY-CT-01)Major Gynecology Program of Science and Technology Innovation Project,China Academy of Chinese Medical Sciences(CI2021A02408).
文摘[Objectives] To explore the therapeutic effect and mechanism of Qigongwan on PCOS model rats by detecting the changes in sex hormone levels in rats with polycystic ovary syndrome (PCOS), and observing the effects of ovarian pathological morphological changes, apoptosis and expression of Wnt/β-β catenin signaling pathway protein. [Methods] Ten of 40 female SD rats were randomly selected as the normal group, and the other 30 rats were treated with letrozole combined with high-fat diet to establish the PCOS rat model. After successful modeling, the model group was randomly divided into Qigongwan group, positive Daying-35 (Ethinylestradiol and Cyproterone Acetate Tablets) group and model group, with 10 rats in each group. Qigongwan group was given 14.7 g/(kg·d) by gavage, Daying-35 group was given 0.21 mg/(kg·d) by oral gavage, and normal group and model group were given the same amount of distilled water, and the intervention lasted for 21 d. ELISA method was used to detect the levels of hormones such as follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), estradiol (E 2) and progesterone (P) in serum. HE staining was used to observe the pathological morphological changes of ovarian tissues;TUNEL staining was used to observe apoptosis of ovarian tissue granule cells;the expression of Wnt, β-catenin protein in rat ovarian tissue was detected by immunohistochemistry. [Results] (i) Compared with the model group, Qigongwan group and Daying-35 group could significantly increase serum E 2 and P levels, significantly reduce serum T levels ( P <0.01), significantly reduce serum LH levels and LH/FSH ratio ( P <0.01), and increase serum FSH levels ( P <0.05) in different degrees. (ii)The results of HE staining showed that compared with the model group, Qigongwan and Daying-35 groups could improve follicular development and reduce atretic follicles in different degrees. Compared with Daying-35 group, the number of GC layers in Qigongwan group was significantly increased. (iii) The results of TUNEL staining showed that compared with the model group, the rate of TUNEL-positive cells in the Qigongwan group and Daying-35 group decreased significantly ( P <0.01). (iv) The immunohistochemical results showed that compared with the model group, the expression levels of wnt and β-catenin in the Qigongwan group and the Daying-35 group increased in different degrees ( P <0.05), and the expression range increased. [Conclusions] Qigongwan can regulate the secretion level of sex hormones such as FSH and LH, improve the pathological damage of ovarian tissue, and inhibit apoptosis of ovarian granule cells, and its mechanism may be related to the activation of Wnt/β-catenin signaling pathway.
基金National Natural Science Foundation Project (No.81860838)Guangxi Natural Science Foundation Project (No.GXNSFAA297246)。
文摘Diabetic nephropathy(DN)is the most serious microvascular complication of diabetes mellitus,which is highly prevalent worldwide.Abnormal activation of Wnt/β-catenin signaling pathway is an important mechanism of renal damage induced by hyperglycemia.Many studies have shown that TCM has the advantages of high efficiency and safety in the prevention and treatment of DN.Some TCM monomers and compounds repair podocyte function and inhibit transdifferentiation process by inhibiting the activation of Wnt/β-catenin signaling pathway,thus playing a protective role in kidney.Based on this,this paper will review the existing research results and related mechanisms of TCM intervention in Wnt/β-catenin signaling pathway in the treatment of DN,in order to promote the more effective and reasonable application of TCM in clinical practice.
基金supported by NIH grant AR053293the Van Andel Research Institutesupported by the Van Andel Institute Graduate School
文摘The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRPS), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.
文摘Liver cancer is the fifth and seventh most common cause of cancer in men and women,respectively.Wnt/β-catenin signalling has emerged as a critical player in both the development of normal liver as well as an oncogenic driver in hepatocellular carcinoma(HCC).Based on the current understanding,this article summarizes the possible mechanisms for the aberrant activation of this pathway with specific focus on HCC.Furthermore,we will discuss the role of dickkopfs(DKKs)in regulating Wnt/β-catenin signalling,which is poorly understood and understudied.DKKs are a family of secreted proteins that comprise at least four members,namely DKK1-DKK4,which act as inhibitors of Wnt/β-catenin signalling.Nevertheless,not all members antagonize Wnt/β-catenin signalling.Their functional significance in hepatocarcinogenesis remains to be further characterized for which these studies should provide new insights into the regulatory role of DKKs in Wnt/β-catenin signalling in hepatic carcinogenesis.Because of the important oncogenic roles,there are an increasing number of therapeutic molecules targetingβ-catenin and the Wnt/β-catenin pathway for potential therapy of HCC.
基金supported by the National Natural Science Foundation of China(Grant No.81573231)the Medical Professionals Crossing Project of Shanghai Jiao Tong University(Grant No.YG2015ZD01)
文摘Objective:Recent research has indicated that altered promoter methylation of oncogenes and tumor suppressor genes is an important mechanism in lung cancer development and progression.In this study,we investigated the association between promoter methylation of TMEM88,a possible inhibitor of the Wnt/β-Catenin signaling,and the survival of patients with nonsmall cell lung cancer(NSCLC).Methods:Twelve pairs of tumor and adjacent non-tumor samples were used for microarray analyses of DNA methylation and gene expression.For validation,more than two hundred additional samples were analyzed for methylation using bisulfite pyrosequencing and for gene expression using q RT-PCR.Then the cell function were tested by wound healing,transwell,CCK8 and cell cycle assay.Results:Our analysis of patient specimens showed that TMEM88 methylation was higher in NSCLC tumors(82.2%±10.3,P<0.01)compared with the adjacent normal tissues(65.9%±7.2).The survival analysis revealed that patients with high TMEM88methylation had a shorter overall survival(46 months)compared with patients with low TMEM88 methylation(>56 months;P=0.021).In addition,we found that demethylation treatment could inhibit tumor cell proliferation,migration,and invasion,which was supportive of an association between methylation and survival.Conclusions:Based on these consistent observations,we concluded that TMEM88 may play an important role in NSCLC progression and that promoter methylation of TMEM88 may serve as a biomarker for NSCLC prognosis and treatment.
文摘AIM: To elucidate the role of Wnt/β-catenin signaling pathway in pancreatic development of rat embryo. METHODS: The mRNAs of β-catenin, APC, cyclin D1 genes were amplified by means of semiquantitative reverse transcription polymerase chain reaction (RTPCR) from embryonic pancreas in different periods and normal pancreas of rat, respectively. Protein expression of these genes in embryonic pancreas of E14.5-E18.5 was examined by immunohistochemical method. RESULTS: In embryonic pancreas of E14.5, the transcript amplification of β-catenin and cyclinD1 genes was detected. In embryonic pancreas of E18.5, the transcription levels of β-catenin and cyclinD1 genes became much higher than in other periods. But in adult rat pancreas the transcription of cyclinD1 gene could not be observed. Only until E18.5, the transcript amplification of mRNA of APC gene could be detected. Surprisingly, the transcription level of APC gene became much higher in adult rat pancreas than in embryonic pancreas. By means of immunohistochemical staining, identical results were obtained to the above by RP-PCR, except for β-catenin protein in adult rat pancreas. CONCLUSION: Active Wnt/β-catenin signaling occurs in rat embryonic pancreas and is probably important for pancreatic development and organ formation.
基金Supported by the National Natural Science Foundation of China, No. 30100228
文摘AIM: To study the anti-tumor effect of caffeic acid phenethyl ester (CAPE) and the influence of CAPE on β-catenin associated signaling pathway in SW480 colorectal cancer (CRC) cells. METHODS: SW480 cells were treated with CAPE at serial concentrations. The proliferative status of cells was measured by methabenzthiazuron (MTT) assay. Cell cycle and cell apoptosis were analyzed using flow cytometry (FCM). Western blotting assay was used to evaluate the protein level of β-catenin, c-myc and cyclinD1. β-catenin localization was determined by indirect immunofluorescence. RESULTS: CAPE displayed a strong inhibitory effect in a significant dose- and time-dependent manner on SW480 cell growth. FCM analysis showed that the ratio of G0/G1 phase cells increased, S phase ratio decreased and apoptosis rate increased after SW480 cells were exposed to CAPE for 24 h. Pretreatment of SW480 cells with CAPE significantly suppressed β-catenin, c-myc and cyclinD1 protein expression. CAPE treatment was associated with decreased accumulation of β-catenin protein in nucleus and cytoplasm, and concurrently increased its accumulation on the surface of cell membrane. CONCLUSION: CAPE can inhibit SW480 cell proliferation by inducing cell cycle arrest and apoptosis. Decreased β-catenin and the associated signaling pathway target gene expression may mediate the anti-tumor effects of CAPE.
基金supported by Key Project of Zhejing Board(2012ZA032)
文摘Objective:To study the mechanism of effect of miR-21 via Wnt/ β-catenin signaling pathway in human A549 lung cancer cells and Lewis lung carcinoma in mice.Methods:The effect of miR-21 on A549 cells were detected by MTT method.MiR-21 expression levels were overexpressed or inhibited in A549 cells by transfecting with miR-21 mimics or inhibitors.Correlation among key molecules(Wnt1,β-catenin.CyclinD1 and miR-21) of mRNA and protein levels in Wnt/β-catenin signaling pathway were studied by Real-time PCR and Western blot hybridization assay.Invasive ability of A549 cells was determined via Transwell chamber cell invasion assay;the role of miR-21 in A549 cells was explored via the Wnt/β-catenin signaling pathway.A Lewis lung carcinoma animal model was established to detect miR-21 expressions in tumor animals and controlled animal tissues,and verify expression changes of the above moleculesin the Wnt / β-catenin signaling pathway was determined in the animal level.Results:MTT assay results showed that miR-21 overexpression could markedly enhance cell absorbance value;that is,miR-21 could increase the ability proliferation of A549 cells.β-catenin and CyclinD1 expression levels were significantly higher in miR-21 mimic transfected cells(P<0.05),and Wnt 1 gene had no significant change.Wnt 1,β-catenin and CyclinD1 gene expression showed no significant change when miR-21 expression was suppressed,compared with controls.After cells were transfected with miR-21 mimics,cell invasion assay revealed that the perforated cells was significantly higher than the perforated cells in the control group(P<0.01).Lewis lung assay revealed that miR-21 expression levels in the Lewis lung carcinoma were significantly higher;and at the same time.Wnt1,β-catenin and CyclinD1 gene expression levels were significantly increased,compared to controls.Conclusions:In A549 human lung cancer cells and Lewis lung carcinoma in mice,key molecules β-catenin and CyclinD1 of miR-21 expressions and the Wnt/ β-catenin signaling pathway are positively correlated.
文摘BACKGROUND Colorectal cancer(CRC)is one of the most common malignancies worldwide.AIM To explore the expression of microRNA miR-19a-3p and Forkhead box F2(FOXF2)in patients with CRC and the relevant mechanisms.METHODS Sixty-two CRC patients admitted to the hospital were enrolled into the study group,and sixty healthy people from the same period were assigned to the control group.Elbow venous blood was sampled from the patients and healthy individuals,and blood serum was saved for later analysis.MiR-19a-3p mimics,miR-19a-3p inhibitor,miR-negative control,small interfering-FOXF2,and short hairpin-FOXF2 were transfected into HT29 and HCT116 cells.Then quantitative polymerase chain reaction was performed to quantify the expression of miR-19a-3p and FOXF2 in HT29 and HCT116 cells,and western blot(WB)analysis was conducted to evaluate the levels of FOXF2,glycogen synthase kinase 3 beta(GSK-3β),phosphorylated GSK-3β(p-GSK-3β),β-catenin,p-β-catenin,α-catenin,Ncadherin,E-cadherin,and vimentin.The MTT,Transwell,and wound healing assays were applied to analyze cell proliferation,invasion,and migration,respectively,and the dual luciferase reporter assay was used to determine the correlation of miR-19a-3p with FOXF2.RESULTS The patients showed high serum levels of miR-19a-3p and low levels of FOXF2,and the area under the curves of miR-19a-3p and FOXF2 were larger than 0.8.MiR-19a-3p and FOXF2 were related to sex,tumor size,age,tumor-nodemetastasis staging,lymph node metastasis,and differentiation of CRC patients.Silencing of miR-19a-3p and overexpression of FOXF2 suppressed the epithelialmesenchymal transition,invasion,migration,and proliferation of cells.WB analysis revealed that silencing of miR-19a-3p and FOXF2 overexpression significantly suppressed the expression of p-GSK-3β,β-catenin,N-cadherin,and vimentin;and increased the levels of GSK-3β,p-β-catenin,α-catenin,and Ecadherin.The dual luciferase reporter assay confirmed that there was a targeted correlation of miR-19a-3p with FOXF2.In addition,a rescue experiment revealed that there were no differences in cell proliferation,invasion,and migration in HT29 and HCT116 cells co-transfected with miR-19a-3p-mimics+sh-FOXF2 and miR-19a-3p-inhibitor+si-FOXF2 compared to the miR-negative control group.CONCLUSION Inhibiting miR-19a-3p expression can upregulate the FOXF2-mediated Wnt/β-catenin signaling pathway,thereby affecting the epithelial-mesenchymal transition,proliferation,invasion,and migration of cells.Thus,miR-19a-3p is likely to be a therapeutic target in CRC.
基金supported by grants from the National Natural Science Foundation of China,No.81171799,81471854a Special Financial Grant from the China Postdoctoral Science Foundation,No.2013T60948
文摘The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guid- ance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the Wnt/β-catenin signaling pathway after spinal cord iniury, by intraperitoneally injecting spinal cord injured rats with rapamycin over 2 days. Western blot analysis and immunofluorescence staining were used to detect the expression levels of β-catenin protein, caspase-3 protein and brain-derived neurotrophic factor protein, components of the Wnt/β-catenin signaling pathway. Rapamycin increased the levels of β-catenin and brain-derived neurotrophic factor in the injured spinal cord, improved the pathological morphology at the injury site, reduced the loss of motor neurons, and promoted motor functional recovery in rats after spinal cord injury. Our experimental fndings suggest that the neuroprotective effect of rapamycin intervention is mediated through activation of the Wnt/β-catenin signaling pathway after spinal cord injury.