期刊文献+
共找到268,955篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进启发式RRT的AUV路径规划
1
作者 齐本胜 李岩 +2 位作者 苗红霞 陈家林 李成林 《系统仿真学报》 北大核心 2025年第1期245-256,共12页
针对复杂水下环境中水下自主航行器(autonomous underwater vehicle,AUV)路径规划问题,提出一种改进启发式快速随机扩展树(rapidly-exploring random trees,RRT)的路径规划算法。针对路径点采样过程中缺乏目标导向性的问题,采用目标点... 针对复杂水下环境中水下自主航行器(autonomous underwater vehicle,AUV)路径规划问题,提出一种改进启发式快速随机扩展树(rapidly-exploring random trees,RRT)的路径规划算法。针对路径点采样过程中缺乏目标导向性的问题,采用目标点概率偏置采样策略与目标偏向扩展策略,可使目标节点在随机采样时成为采样点。在路径点扩展过程中,使非目标采样点的扩展结点位置偏向于目标点的方向,从而增强算法在随机采样与扩展过程中的目标搜索能力。为解决水下路径规划过程中存在过多无效搜索空间的问题,在随机采样过程中引入启发式采样策略,构建包含所有初始路径的采样空间子集,减小采样空间范围,从而提高算法的空间搜索效率。针对AUV在水下环境中抗洋流扰动能力不足的问题,采用速度矢量合成法,使AUV速度矢量与洋流速度矢量合成后指向期望路径的方向,从而抵消水流的影响。在山峰地形中叠加多个Lamb涡流模拟水下流场环境,进行多次仿真实验。实验结果表明:改进启发式RRT算法解决了采样过程中随机性问题,显著缩小了搜索空间,兼顾了路径的安全性与平滑性,并使AUV具有良好的抗洋流扰动能力。 展开更多
关键词 水下自主航行器 路径规划 偏向扩展 启发式rrt 速度矢量合成
下载PDF
基于改进APF-QRRT^(*)策略的移动机器人路径规划
2
作者 刘文浩 余胜东 +4 位作者 吴鸿源 胡文科 李小鹏 蔡博凡 马金玉 《电光与控制》 北大核心 2025年第1期21-26,33,共7页
针对Q-RRT^(*)算法在路径规划过程中无法兼顾可达性和安全性的问题,提出一种改进APF-QRRT^(*)(IAPF-QRRT^(*))路径规划策略。IAPF-QRRT^(*)策略通过Q-RRT^(*)算法获得一组连接起点到终点的离散关键路径点,较传统的快速搜索随机树(RRT^(... 针对Q-RRT^(*)算法在路径规划过程中无法兼顾可达性和安全性的问题,提出一种改进APF-QRRT^(*)(IAPF-QRRT^(*))路径规划策略。IAPF-QRRT^(*)策略通过Q-RRT^(*)算法获得一组连接起点到终点的离散关键路径点,较传统的快速搜索随机树(RRT^(*))算法具备更好的初始解和更快的收敛速度。改进传统人工势场(APF)方法获得一种新的无势正交向量场,在一定条件下使整体排斥向量场与吸引向量场正交,并将其作用于关键路径点,从而提高路径的安全性。将IAPF-QRRT^(*)策略与其他算法比较,通过数值模拟实验证明了所提策略的有效性。 展开更多
关键词 移动机器人 路径规划 人工势场法 Q-rrt^(*)算法 安全性
下载PDF
应用改进APF-Informed-RRT*算法的配送无人机航迹规划
3
作者 刘玉梦 任彦 +3 位作者 王静宇 赵利云 王琦 单俊茹 《中国测试》 北大核心 2025年第1期173-180,共8页
为加快末端物流配送的效率,提出一种配送无人机的航迹规划问题。针对传统快速搜索随机树(rapidlysearch random tree,RRT)算法在航迹规划中存在的盲目性和路径不平滑等问题,将人工势场法(artificial potential field,APF)与Informed-RRT... 为加快末端物流配送的效率,提出一种配送无人机的航迹规划问题。针对传统快速搜索随机树(rapidlysearch random tree,RRT)算法在航迹规划中存在的盲目性和路径不平滑等问题,将人工势场法(artificial potential field,APF)与Informed-RRT*算法融合,提出一种自适应步长增长策略的改进APF-Informed-RRT*算法。首先在选择新节点时,考虑到障碍物和目标点的影响,提出一种自适应步长增长策略来解决采样的盲目性;其次采用三次B样条对拐点处进行平滑处理;最后分别采用RRT*算法、Informed-RRT*算法和改进APF-Informed-RRT*算法在两种环境中进行仿真实验。结果表明,改进APF-Informed-RRT*算法相较于RRT*算法和Informed-RRT*算法,在运行时间、迭代次数以及路径平滑上都得到提升。 展开更多
关键词 末端物流配送 航迹规划 人工势场法 Informed-rrt*算法
下载PDF
RRT Autonomous Detection Algorithm Based on Multiple Pilot Point Bias Strategy and Karto SLAM Algorithm
4
作者 Lieping Zhang Xiaoxu Shi +3 位作者 Liu Tang Yilin Wang Jiansheng Peng Jianchu Zou 《Computers, Materials & Continua》 SCIE EI 2024年第2期2111-2136,共26页
A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of... A Rapid-exploration Random Tree(RRT)autonomous detection algorithm based on the multi-guide-node deflection strategy and Karto Simultaneous Localization and Mapping(SLAM)algorithm was proposed to solve the problems of low efficiency of detecting frontier boundary points and drift distortion in the process of map building in the traditional RRT algorithm in the autonomous detection strategy of mobile robot.Firstly,an RRT global frontier boundary point detection algorithm based on the multi-guide-node deflection strategy was put forward,which introduces the reference value of guide nodes’deflection probability into the random sampling function so that the global search tree can detect frontier boundary points towards the guide nodes according to random probability.After that,a new autonomous detection algorithm for mobile robots was proposed by combining the graph optimization-based Karto SLAM algorithm with the previously improved RRT algorithm.The algorithm simulation platform based on the Gazebo platform was built.The simulation results show that compared with the traditional RRT algorithm,the proposed RRT autonomous detection algorithm can effectively reduce the time of autonomous detection,plan the length of detection trajectory under the condition of high average detection coverage,and complete the task of autonomous detection mapping more efficiently.Finally,with the help of the ROS-based mobile robot experimental platform,the performance of the proposed algorithm was verified in the real environment of different obstacles.The experimental results show that in the actual environment of simple and complex obstacles,the proposed RRT autonomous detection algorithm was superior to the traditional RRT autonomous detection algorithm in the time of detection,length of detection trajectory,and average coverage,thus improving the efficiency and accuracy of autonomous detection. 展开更多
关键词 Autonomous detection rrt algorithm mobile robot ROS Karto SLAM algorithm
下载PDF
改进RRT-Connect算法的机器人路径规划研究
5
作者 陈志澜 唐昊阳 《计算机科学与探索》 北大核心 2025年第2期396-405,共10页
针对标准RRT-Connect算法在路径规划中存在的路径冗长、转折较多和区域通过性欠缺问题,提出了一种新的改进RRT-Connect算法(TRRT-Connect)。采用改进RRT算法搜索并添加一个中间根节点,实现同时扩展四棵随机树,加快算法收敛速度。在随机... 针对标准RRT-Connect算法在路径规划中存在的路径冗长、转折较多和区域通过性欠缺问题,提出了一种新的改进RRT-Connect算法(TRRT-Connect)。采用改进RRT算法搜索并添加一个中间根节点,实现同时扩展四棵随机树,加快算法收敛速度。在随机点的选取上使用目标偏置策略,在新节点的生成上叠加引力场,同时融合贪婪搜索策略。结合新的动态步长调节方法,通过识别扫描区域内障碍物的个数动态选择合适的步长。对生成的初始路径使用双向剪枝优化方法,加快剪枝效率,剔除路径上的冗余节点。对路径转折处进行光滑处理,减少路径转折。在三种不同环境地图中进行仿真对比实验,结果表明,TRRT-Connect算法与标准RRT-Connect算法相比较,在路径长度、迭代次数和节点数上有较大改善,在密集障碍物区域的通过性较好,路径更加光滑且无转折,证明了该算法的有效性。同时将TRRT-Connect算法应用于现场实例仿真中,使得移动机器人的运输路径长度相较于传统固定路径降低了15.4%,且路径光滑,进一步验证了该算法的实用性。 展开更多
关键词 rrt-Connect算法 动态步长调节 双向剪枝优化 路径规划
下载PDF
基于改进RRT算法与三维碰撞检测的冗余机械臂高效路径规划
6
作者 张瑞雪 蒋序帆 +3 位作者 尹旭悦 骆晓萌 韦乃琨 祁超 《船舶标准化工程师》 2025年第1期66-73,共8页
为了解决冗余机械臂在复杂环境中的路径规划和避障问题,提出一种基于改进快速扩展随机树(Rapidly Exploring Random Tree,RRT)算法与三维碰撞检测的高效路径规划方法。利用改进算法生成无碰撞的平滑路径,对机器人姿态进行求解,并通过碰... 为了解决冗余机械臂在复杂环境中的路径规划和避障问题,提出一种基于改进快速扩展随机树(Rapidly Exploring Random Tree,RRT)算法与三维碰撞检测的高效路径规划方法。利用改进算法生成无碰撞的平滑路径,对机器人姿态进行求解,并通过碰撞检测验证路径的可行性。改进的RRT算法采用基于概率的控制机制来优化随机点生成策略,结合路径平滑算法减少路径节点,同时引入三维碰撞检测技术以确保路径的有效性和安全性。试验结果表明:该方法在二维和三维复杂场景中均能显著提升路径规划效率,成功率和路径平滑性明显优于传统算法。研究成果可为冗余机械臂在复杂环境中的路径规划提供高效、可靠的解决方案,有助于进一步提升其在实际应用中的稳定性和适用性。 展开更多
关键词 冗余机械臂 路径规划 改进rrt算法 三维碰撞检测
下载PDF
A Path Planning Algorithm Based on Improved RRT Sampling Region
7
作者 Xiangkui Jiang Zihao Wang Chao Dong 《Computers, Materials & Continua》 SCIE EI 2024年第9期4303-4323,共21页
For the problem of slow search and tortuous paths in the Rapidly Exploring Random Tree(RRT)algorithm,a feedback-biased sampling RRT,called FS-RRT,is proposedbasedon RRT.Firstly,toimprove the samplingefficiency of RRT ... For the problem of slow search and tortuous paths in the Rapidly Exploring Random Tree(RRT)algorithm,a feedback-biased sampling RRT,called FS-RRT,is proposedbasedon RRT.Firstly,toimprove the samplingefficiency of RRT to shorten the search time,the search area of the randomtree is restricted to improve the sampling efficiency.Secondly,to obtain better information about obstacles to shorten the path length,a feedback-biased sampling strategy is used instead of the traditional random sampling,the collision of the expanding node with an obstacle generates feedback information so that the next expanding node avoids expanding within a specific angle range.Thirdly,this paper proposes using the inverse optimization strategy to remove redundancy points from the initial path,making the path shorter and more accurate.Finally,to satisfy the smooth operation of the robot in practice,auxiliary points are used to optimize the cubic Bezier curve to avoid path-crossing obstacles when using the Bezier curve optimization.The experimental results demonstrate that,compared to the traditional RRT algorithm,the proposed FS-RRT algorithm performs favorably against mainstream algorithms regarding running time,number of search iterations,and path length.Moreover,the improved algorithm also performs well in a narrow obstacle environment,and its effectiveness is further confirmed by experimental verification. 展开更多
关键词 rrt inversive optimization path planning feedback bias sampling mobile robots
下载PDF
Path Planning for Robotic Arms Based on an Improved RRT Algorithm
8
作者 Wei Liu Zhennan Huang +1 位作者 Yingpeng Qu Long Chen 《Open Journal of Applied Sciences》 2024年第5期1214-1236,共23页
The burgeoning robotics industry has catalyzed significant strides in the development and deployment of industrial and service robotic arms, positioning path planning as a pivotal facet for augmenting their operationa... The burgeoning robotics industry has catalyzed significant strides in the development and deployment of industrial and service robotic arms, positioning path planning as a pivotal facet for augmenting their operational safety and efficiency. Existing path planning algorithms, while capable of delineating feasible trajectories, often fall short of achieving optimality, particularly concerning path length, search duration, and success likelihood. This study introduces an enhanced Rapidly-Exploring Random Tree (RRT) algorithm, meticulously designed to rectify the issues of node redundancy and the compromised path quality endemic to conventional RRT approaches. Through the integration of an adaptive pruning mechanism and a dynamic elliptical search strategy within the Informed RRT* framework, our algorithm efficiently refines the search tree by discarding branches that surpass the cost of the optimal path, thereby refining the search space and significantly boosting efficiency. Extensive comparative analysis across both two-dimensional and three-dimensional simulation settings underscores the algorithm’s proficiency in markedly improving path precision and search velocity, signifying a breakthrough in the domain of robotic arm path planning. 展开更多
关键词 Robotic Arm Path Planning rrt algorithm Adaptive Pruning Optimization
下载PDF
基于改进Informed-RRT^(*)的机械臂抓取运动规划
9
作者 殷雄 陈炎 +4 位作者 郭文豪 杨子辰 陈汉歆 廖安 姚道金 《工程科学学报》 EI 北大核心 2025年第1期113-120,共8页
为提高工业机械臂对目标物体抓取及对障碍物躲避的效率和成功率,提出一种基于改进抓取信息引导的快速随机树星(GI-RRT^(*))的机械臂路径规划算法.首先,预先设定最大迭代次数和自适应函数,缩短机械臂运动轨迹生成时间,增强采样导向性和质... 为提高工业机械臂对目标物体抓取及对障碍物躲避的效率和成功率,提出一种基于改进抓取信息引导的快速随机树星(GI-RRT^(*))的机械臂路径规划算法.首先,预先设定最大迭代次数和自适应函数,缩短机械臂运动轨迹生成时间,增强采样导向性和质量;其次,基于椭圆形子集直接采样,对采样点位置进行约束,提高采样效率;最后,采用贪心算法删除机械臂运动轨迹的冗余点,并使用三次B样条曲线平滑约束机械臂运动轨迹,提高机械臂运动轨迹的柔顺性.利用生成残差卷积神经网络模型预测,输入深度相机采集的彩色图像和深度图像,输出视场中物体的适当映射抓取位姿.为验证机械臂的抓取效果,选择三指气动柔性夹爪,设计柔性抓取模块,并结合法奥(FR3)协作机械臂构建自主抓取系统,进行二维地图仿真和机械臂样机实验.结果表明,与传统的信息引导的快速随机树星算法相比,GI-RRT^(*)算法运动轨迹长度缩短10.11%,轨迹生成时间缩短62.68%.同时,算法具有较强的鲁棒性.机械臂能独立地避开障碍物、抓取目标物体,满足其自主抓取的需求. 展开更多
关键词 柔性夹爪 机械臂 运动规划 信息引导的快速随机树星算法 神经网络
下载PDF
PSO-RRT机器人可行路径搜索融合算法
10
作者 宋云云 李兴鑫 《智能计算机与应用》 2025年第1期165-170,共6页
针对传统RRT算法在静态障碍环境下进行可行路径搜索时存在采样率低、搜索时间长等问题,提出了PSO-RRT算法。PSO-RRT算法是一种将PSO(粒子群)算法融合RRT(快速扩展随机树)算法中的机器人可行路径搜索算法。该算法主要引入一个采样拒绝率... 针对传统RRT算法在静态障碍环境下进行可行路径搜索时存在采样率低、搜索时间长等问题,提出了PSO-RRT算法。PSO-RRT算法是一种将PSO(粒子群)算法融合RRT(快速扩展随机树)算法中的机器人可行路径搜索算法。该算法主要引入一个采样拒绝率参数改变随机采样方式,使用PSO算法来优化RRT算法中的随机采样拒绝率、扩展步长等参数,以减小RRT算法的平均采样点数和搜索时间,提高搜索效率。在3种不同的障碍环境下进行仿真实验,验证了PSO-RRT融合算法的有效性,其算法的平均采样点数、平均搜索时长、平均路径长度等评价指标较优于对比算法。 展开更多
关键词 rrt算法 PSO算法 可行路径 参数优化
下载PDF
Research on Euclidean Algorithm and Reection on Its Teaching
11
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
12
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network
13
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
下载PDF
改进Informed-RRT^(*)算法的移动机器人路径规划
14
作者 葛超 张鑫源 +1 位作者 王红 伦志新 《电光与控制》 北大核心 2025年第1期48-53,共6页
针对Informed-RRT^(*)算法初始路径形成缓慢、失败率高及路径质量差的问题,提出基于人工势场法的选点策略。首先,筛选出优质采样点,同时,引入双向直连的贪心策略和动态步长策略,快速获得初始路径并尽快进入遍历寻优阶段;其次,通过新的... 针对Informed-RRT^(*)算法初始路径形成缓慢、失败率高及路径质量差的问题,提出基于人工势场法的选点策略。首先,筛选出优质采样点,同时,引入双向直连的贪心策略和动态步长策略,快速获得初始路径并尽快进入遍历寻优阶段;其次,通过新的采样策略及评价函数,保证规划路径更优;最后,对路径优化处理,所得路径更适合移动机器人的行驶。仿真实验结果表明,改进算法相比于Informed-RRT^(*)算法性能更优,其中,改进算法在不同环境中的成功率均为100%,同时也证明了在限定采样次数下改进算法的收敛速度、路径质量均优于原算法。 展开更多
关键词 移动机器 路径规划 人工势场法 动态步长 路径优化处理 Informed-rrt^(*)
下载PDF
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China
15
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
下载PDF
Unveiling Effective Heuristic Strategies: A Review of Cross-Domain Heuristic Search Challenge Algorithms
16
作者 Mohamad Khairulamirin Md Razali MasriAyob +5 位作者 Abdul Hadi Abd Rahman Razman Jarmin Chian Yong Liu Muhammad Maaya Azarinah Izaham Graham Kendall 《Computer Modeling in Engineering & Sciences》 2025年第2期1233-1288,共56页
The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamic... The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamically choose heuristics during the search process.Numerous selection hyper-heuristics have different imple-mentation strategies.However,comparisons between them are lacking in the literature,and previous works have not highlighted the beneficial and detrimental implementation methods of different components.The question is how to effectively employ them to produce an efficient search heuristic.Furthermore,the algorithms that competed in the inaugural CHeSC have not been collectively reviewed.This work conducts a review analysis of the top twenty competitors from this competition to identify effective and ineffective strategies influencing algorithmic performance.A summary of the main characteristics and classification of the algorithms is presented.The analysis underlines efficient and inefficient methods in eight key components,including search points,search phases,heuristic selection,move acceptance,feedback,Tabu mechanism,restart mechanism,and low-level heuristic parameter control.This review analyzes the components referencing the competition’s final leaderboard and discusses future research directions for these components.The effective approaches,identified as having the highest quality index,are mixed search point,iterated search phases,relay hybridization selection,threshold acceptance,mixed learning,Tabu heuristics,stochastic restart,and dynamic parameters.Findings are also compared with recent trends in hyper-heuristics.This work enhances the understanding of selection hyper-heuristics,offering valuable insights for researchers and practitioners aiming to develop effective search algorithms for diverse problem domains. 展开更多
关键词 HYPER-HEURISTICS search algorithms optimization heuristic selection move acceptance learning DIVERSIFICATION parameter control
下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
17
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 Multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
下载PDF
Enhanced Multi-Object Dwarf Mongoose Algorithm for Optimization Stochastic Data Fusion Wireless Sensor Network Deployment
18
作者 Shumin Li Qifang Luo Yongquan Zhou 《Computer Modeling in Engineering & Sciences》 2025年第2期1955-1994,共40页
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ... Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained. 展开更多
关键词 Stochastic data fusion wireless sensor networks network deployment spatiotemporal coverage dwarf mongoose optimization algorithm multi-objective optimization
下载PDF
改进RRT算法的采摘机械臂路径规划 被引量:2
19
作者 赵辉 郑缙奕 +1 位作者 岳有军 王红君 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第1期338-345,共8页
针对采用传统的快速随机扩展树(RRT)算法的采摘机械臂在果园工作环境中搜索路径时间长,最终路径不平滑、拐点多等问题,提出了一种改进的RRT避障算法。改进的算法采用高斯采样策略,减少了采样的随机性,避免产生更多不必要的随机树,增加... 针对采用传统的快速随机扩展树(RRT)算法的采摘机械臂在果园工作环境中搜索路径时间长,最终路径不平滑、拐点多等问题,提出了一种改进的RRT避障算法。改进的算法采用高斯采样策略,减少了采样的随机性,避免产生更多不必要的随机树,增加规划的导向性;再添加A*代价函数去除路径的冗余点,最后使用贪婪算法简化路径,减少拐点,让机械臂可以快速、准确、平稳地沿着最佳路径运动到目标点。仿真表明,改进后的算法有效地减少了路径规划的时间,缩短了路径长度,具有良好的可行性和有效性。 展开更多
关键词 机械臂 rrt 高斯采样 贪婪算法
下载PDF
目标区域引导的RRT^(*)机械臂路径规划算法 被引量:1
20
作者 孟月波 张子炜 +2 位作者 吴磊 刘光辉 徐胜军 《计算机科学与探索》 CSCD 北大核心 2024年第9期2407-2421,共15页
针对传统RRT^(*)算法在机械臂路径规划的过程中存在规划效率低、路径质量不佳、机械臂位姿不当等问题,提出一种目标区域引导的RRT^(*)机械臂路径规划算法(TA-RRT^(*))。在传统RRT^(*)算法基础上,引入目标偏向策略并使用球形子集约束采样... 针对传统RRT^(*)算法在机械臂路径规划的过程中存在规划效率低、路径质量不佳、机械臂位姿不当等问题,提出一种目标区域引导的RRT^(*)机械臂路径规划算法(TA-RRT^(*))。在传统RRT^(*)算法基础上,引入目标偏向策略并使用球形子集约束采样,缩小采样范围并使新节点朝向目标点扩展,增强目标导向性;对新节点采用直连策略,让算法可以更快地收敛从而提升路径生成速度。对初始规划路径去除冗余点并使用三次B样条曲线转换成平滑路径,优化了路径质量。对机械臂进行位姿约束,通过机械臂逆运动学判断机械臂连杆位姿可达性,并利用包络盒模型判断机械臂是否与障碍物碰撞。实验结果表明,在二维以及三维场景下,TA-RRT^(*)算法在采样次数、规划时间、路径长度以及平滑度等方面的性能均优于RRT^(*)算法,验证了该方法的正确性及可行性。机械臂仿真实验以及在真实环境下的测试结果显示,加入位姿约束后机械臂运行规划好的轨迹时,机械臂各个关节在运行规划路径的过程中并未与障碍物发生碰撞且具有良好的稳定性。 展开更多
关键词 rrt^(*)算法 机械臂路径规划 目标区域引导 三次B样条曲线
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部