A new scheme of multibeam Raman amplification(MRA)is proposed in virtue of the collective mode by sharing a common scattered light.Multiple laser beams can provide a higher growth rate,but the overlapping region limit...A new scheme of multibeam Raman amplification(MRA)is proposed in virtue of the collective mode by sharing a common scattered light.Multiple laser beams can provide a higher growth rate,but the overlapping region limits the amplification length.We suggest to use a finite-duration seed to facilitate MRA in a short distance.Through two-dimensional particle-in-cell simulations,we find that two-beam Raman amplification has a much higher growth rate than that of singlebeam one.This growth rate depends on the initial seed amplitude,electron temperature,and seed duration.An empirical criterion,γ0τc=1,whereγ0 is the theoretical growth rate of MRA,is used to choose a proper duration for a higher growth rate.After a total amplification length of 320µm,the two-beam Raman amplification shows nonlinear features of pulse compression and a bow-shape wave front,indicating that the amplification has finally entered the self-similar regime.展开更多
Here we summarize multi-terabit long-haul transmission experiment and distributed Raman amplification (DRA) technologies. As well, we investigate the configuration of dispersion-managed fibers for the DRA-based system...Here we summarize multi-terabit long-haul transmission experiment and distributed Raman amplification (DRA) technologies. As well, we investigate the configuration of dispersion-managed fibers for the DRA-based system from the viewpoint of the fiber non-linear effect and required pumping power.展开更多
This paper discusses optical safety issues in distributed Raman amplification systems. Given the extremely high pump powers, network service operators have critical issues for safety. This paper focuses on both "...This paper discusses optical safety issues in distributed Raman amplification systems. Given the extremely high pump powers, network service operators have critical issues for safety. This paper focuses on both " eye-hazard" and " fire-hazards" .展开更多
We compare different discreted DCF Raman amplifier configurations, including single-stage and dual-stage. The optimum design with respect to SNR degradation, compromise linear and nonlinear impairments.
We experimentally demonstrate an 80-channel wavelength division multiplexing(WDM)transmission system over a 400 km fiber link.Raman amplification results in a non-flat WDM signal spectrum.Therefore,bit allocation opti...We experimentally demonstrate an 80-channel wavelength division multiplexing(WDM)transmission system over a 400 km fiber link.Raman amplification results in a non-flat WDM signal spectrum.Therefore,bit allocation optimization is used to enable different channels to carry different order quadrature amplitude modulation signals according to their optical signal-noise-ratios.A neural network equalizer based on a convolutional neural network(CNN),long shortterm memory(LSTM)network,and fully connected(FC)layer structure is adopted in Rx digital signal processing,in which CNN is used for characteristic extraction,LSTM is used for equalization and demodulation,and FC layers are used for output.After transmission,the bit error rate of all channels is below the 25%soft-decision forward error correction threshold,and the line rate reaches 53.76 Tbit/s.展开更多
We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power...We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power amplifier system. The cascaded SRS is achieved by using a long passive fiber pumped by a pulsed fiber laser cen: tered at wavelength 1064 nm. The amplified spontaneous emission during the amplification process is efficiently suppressed by cutting the length of the passive fiber and by using a double-clad ytterbium-doped fiber amplifier. The generated broadband spectrum spans from 960nm to 1700nm with maximum average output 13.6 W and average spectral power density approximately 17. 7 mW/nm.展开更多
Bisphenol A (BPA) was one of the environmental hormones that would cause endocrine and metabolic disorders in human or wildlife. This paper proposed a method to detect the trace amounts of BPA in water samples by fu...Bisphenol A (BPA) was one of the environmental hormones that would cause endocrine and metabolic disorders in human or wildlife. This paper proposed a method to detect the trace amounts of BPA in water samples by fully utilizing the enrichment and resonance amplification functions of a new dual-functional membrane. In this work, gold nanoparticles (AuNPs) modified by 3-amino-5-mercapto-1,2,4-triazole (AMT) were embedded in nylon66 membrane to produce a dual-functional membrane which could carry out sample enrichment by capturing BPA molecules from water and achieve resonance amplification by connecting BPA to the surfaces of AuNPs. By designing an automatic sampler for large-volume enrichment, the SERS enhancement factor (EF) of the method was further improved to 1.2 × 105. The present method had been successfully applied to detect BPA in drinking water and environmental water by SERS with the detection limit of 0.012 μg/L. It had the potential for on-site detecting of BPA in various water samples.展开更多
Cascaded random Raman fiber lasers(CRRFLs)have been used as a new platform for designing high power and wavelength-agile laser sources.Recently,CRRFL pumped by ytterbium-doped random fiber laser(YRFL)has shown both hi...Cascaded random Raman fiber lasers(CRRFLs)have been used as a new platform for designing high power and wavelength-agile laser sources.Recently,CRRFL pumped by ytterbium-doped random fiber laser(YRFL)has shown both high power output and low relative intensity noise(RIN).Here,by using a wavelength-and bandwidth-tunable point reflector in YRFL,we experimentally investigate the impacts of YRFL on the spectral and RIN properties of the CRRFL.We verify that the bandwidth of the point reflector in YRFL determines the bandwidth and temporal stability of YRFL.It is found that with an increase in the bandwidth of the point reflector in YRFL from 0.2 nm to 1.4 nm,CRRFL with higher spectral purity and lower RIN can be achieved due to better temporal stability of YRFL pump.By broadening the point reflector’s bandwidth to 1.4 nm,the lasing power,spectral purity,and RIN of the 4th-order random lasing at 1349 nm can reach 3.03 W,96.34%,and–115.19 dB/Hz,respectively.For comparison,the spectral purity and RIN of the 4th-order random lasing with the point reflector’s bandwidth of 0.2 nm are only 91.20%and–107.99 dB/Hz,respectively.Also,we realize a wavelength widely tunable CRRFL pumped by a wavelength-tunable YRFL.This work provides a new platform for the development of ideal distributed Raman amplification pump sources based on CRRFLs with both good temporal stability and wide wavelength tunability,which is of great importance in applications of optical fiber communication and distributed sensing.展开更多
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA25050700)the National Natural Science Foundation of China(Grant No.11805062)+2 种基金Science Challenge Project(Grant No.TZ2016005)Natural Science Foundation of Hunan Province,China(Grant Nos.2020JJ5029 and 2020JJ5031)the Project of Science and Technology on Plasma Physics Laboratory(Grant No.6142A04190111)。
文摘A new scheme of multibeam Raman amplification(MRA)is proposed in virtue of the collective mode by sharing a common scattered light.Multiple laser beams can provide a higher growth rate,but the overlapping region limits the amplification length.We suggest to use a finite-duration seed to facilitate MRA in a short distance.Through two-dimensional particle-in-cell simulations,we find that two-beam Raman amplification has a much higher growth rate than that of singlebeam one.This growth rate depends on the initial seed amplitude,electron temperature,and seed duration.An empirical criterion,γ0τc=1,whereγ0 is the theoretical growth rate of MRA,is used to choose a proper duration for a higher growth rate.After a total amplification length of 320µm,the two-beam Raman amplification shows nonlinear features of pulse compression and a bow-shape wave front,indicating that the amplification has finally entered the self-similar regime.
文摘Here we summarize multi-terabit long-haul transmission experiment and distributed Raman amplification (DRA) technologies. As well, we investigate the configuration of dispersion-managed fibers for the DRA-based system from the viewpoint of the fiber non-linear effect and required pumping power.
文摘This paper discusses optical safety issues in distributed Raman amplification systems. Given the extremely high pump powers, network service operators have critical issues for safety. This paper focuses on both " eye-hazard" and " fire-hazards" .
文摘We compare different discreted DCF Raman amplifier configurations, including single-stage and dual-stage. The optimum design with respect to SNR degradation, compromise linear and nonlinear impairments.
文摘We experimentally demonstrate an 80-channel wavelength division multiplexing(WDM)transmission system over a 400 km fiber link.Raman amplification results in a non-flat WDM signal spectrum.Therefore,bit allocation optimization is used to enable different channels to carry different order quadrature amplitude modulation signals according to their optical signal-noise-ratios.A neural network equalizer based on a convolutional neural network(CNN),long shortterm memory(LSTM)network,and fully connected(FC)layer structure is adopted in Rx digital signal processing,in which CNN is used for characteristic extraction,LSTM is used for equalization and demodulation,and FC layers are used for output.After transmission,the bit error rate of all channels is below the 25%soft-decision forward error correction threshold,and the line rate reaches 53.76 Tbit/s.
基金Supported by the National Natural Science Foundation of China under Grant No 11404404the Outstanding Youth Fund Project of Hunan Provincethe Fund of Innovation of National University of Defense Technology under Grant No B120701
文摘We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power amplifier system. The cascaded SRS is achieved by using a long passive fiber pumped by a pulsed fiber laser cen: tered at wavelength 1064 nm. The amplified spontaneous emission during the amplification process is efficiently suppressed by cutting the length of the passive fiber and by using a double-clad ytterbium-doped fiber amplifier. The generated broadband spectrum spans from 960nm to 1700nm with maximum average output 13.6 W and average spectral power density approximately 17. 7 mW/nm.
基金supported by the National Natural Science Foundation of China(Nos. 21575168, 21475153,21575167 and 21675178)the Guangdong Provincial Natural Science Foundation of China(No. 2015A030311020)+1 种基金the Special Funds for Public Welfare Research and Capacity Building in Guangdong Province of China(No. 2015A030401036)the Guangzhou Science andTechnology Program of China(Nos.201604020165, 201704020040)
文摘Bisphenol A (BPA) was one of the environmental hormones that would cause endocrine and metabolic disorders in human or wildlife. This paper proposed a method to detect the trace amounts of BPA in water samples by fully utilizing the enrichment and resonance amplification functions of a new dual-functional membrane. In this work, gold nanoparticles (AuNPs) modified by 3-amino-5-mercapto-1,2,4-triazole (AMT) were embedded in nylon66 membrane to produce a dual-functional membrane which could carry out sample enrichment by capturing BPA molecules from water and achieve resonance amplification by connecting BPA to the surfaces of AuNPs. By designing an automatic sampler for large-volume enrichment, the SERS enhancement factor (EF) of the method was further improved to 1.2 × 105. The present method had been successfully applied to detect BPA in drinking water and environmental water by SERS with the detection limit of 0.012 μg/L. It had the potential for on-site detecting of BPA in various water samples.
基金This work is supported by the key projects of National Natural Science Foundation of China(Grant Nos.61635005 and U21A20453)the Zhejiang Lab—UESTC Joint Research Center Project(Grant No.202012KFY00562).
文摘Cascaded random Raman fiber lasers(CRRFLs)have been used as a new platform for designing high power and wavelength-agile laser sources.Recently,CRRFL pumped by ytterbium-doped random fiber laser(YRFL)has shown both high power output and low relative intensity noise(RIN).Here,by using a wavelength-and bandwidth-tunable point reflector in YRFL,we experimentally investigate the impacts of YRFL on the spectral and RIN properties of the CRRFL.We verify that the bandwidth of the point reflector in YRFL determines the bandwidth and temporal stability of YRFL.It is found that with an increase in the bandwidth of the point reflector in YRFL from 0.2 nm to 1.4 nm,CRRFL with higher spectral purity and lower RIN can be achieved due to better temporal stability of YRFL pump.By broadening the point reflector’s bandwidth to 1.4 nm,the lasing power,spectral purity,and RIN of the 4th-order random lasing at 1349 nm can reach 3.03 W,96.34%,and–115.19 dB/Hz,respectively.For comparison,the spectral purity and RIN of the 4th-order random lasing with the point reflector’s bandwidth of 0.2 nm are only 91.20%and–107.99 dB/Hz,respectively.Also,we realize a wavelength widely tunable CRRFL pumped by a wavelength-tunable YRFL.This work provides a new platform for the development of ideal distributed Raman amplification pump sources based on CRRFLs with both good temporal stability and wide wavelength tunability,which is of great importance in applications of optical fiber communication and distributed sensing.