We study the regularity of random attractors for a class of degenerate parabolic equations with leading term div(o(x)↓△u) and multiplicative noises. Under some mild conditions on the diffusion variable o(x) an...We study the regularity of random attractors for a class of degenerate parabolic equations with leading term div(o(x)↓△u) and multiplicative noises. Under some mild conditions on the diffusion variable o(x) and without any restriction on the upper growth p of nonlinearity, except that p 〉 2, we show the existences of random attractor in D0^1,2(DN, σ) space, where DN is an arbitrary (bounded or unbounded) domain in R^N N 〉 2. For this purpose, some abstract results based on the omega-limit compactness are established.展开更多
We consider the two-dimensional stochastic quasi-geostrophic equation ■=1/(R_e)△~2■-r/2△■+f(x,y,t)(1.1) on a regular bounded open domain D ■,where ■ is the stream function,F Froude Number (F≈O(1)),R_e Reynolds...We consider the two-dimensional stochastic quasi-geostrophic equation ■=1/(R_e)△~2■-r/2△■+f(x,y,t)(1.1) on a regular bounded open domain D ■,where ■ is the stream function,F Froude Number (F≈O(1)),R_e Reynolds number(R_e■10~2),β_0 a positive constant(β_0≈O(10^(-1)),r the Ekman dissipation constant(r≈o(1)),the external forcing term f(x,y,t)=-(dW)/(dt)(the definition of W will be given later)a Gaussian random field,white noise in time,subject to the展开更多
To prove the existence of the family of exponential attractors, we first define a family of compact, invariant absorbing sets <em>B<sub>k</sub></em>. Then we prove that the solution semigroup h...To prove the existence of the family of exponential attractors, we first define a family of compact, invariant absorbing sets <em>B<sub>k</sub></em>. Then we prove that the solution semigroup has Lipschitz property and discrete squeezing property. Finally, we obtain a family of exponential attractors and its estimation of dimension by combining them with previous theories. Next, we obtain Kirchhoff-type random equation by adding product white noise to the right-hand side of the equation. To study the existence of random attractors, firstly we transform the equation by using Ornstein-Uhlenbeck process. Then we obtain a family of bounded random absorbing sets via estimating the solution of the random differential equation. Finally, we prove the asymptotic compactness of semigroup of the stochastic dynamic system;thereby we obtain a family of random attractors.展开更多
This paper is concerned with the existence and upper semi-continuity of random attractors for the nonclassical diffusion equation with arbitrary polynomial growth nonlinearity and multiplicative noise in H<sup>1...This paper is concerned with the existence and upper semi-continuity of random attractors for the nonclassical diffusion equation with arbitrary polynomial growth nonlinearity and multiplicative noise in H<sup>1</sup>(R<sup>n</sup>). First, we study the existence and uniqueness of solutions by a noise arising in a continuous random dynamical system and the asymptotic compactness is established by using uniform tail estimate technique, and then the existence of random attractors for the nonclassical diffusion equation with arbitrary polynomial growth nonlinearity. As a motivation of our results, we prove an existence and upper semi-continuity of random attractors with respect to the nonlinearity that enters the system together with the noise.展开更多
In this paper, we studied the existence of a family of the random attractor for a class of generalized Kirchhoff-type equations with a strong dissipation term. Firstly, according to Ornstein-Uhlenbeck process, we tran...In this paper, we studied the existence of a family of the random attractor for a class of generalized Kirchhoff-type equations with a strong dissipation term. Firstly, according to Ornstein-Uhlenbeck process, we transformed the equation into a stochastic equation with random variables and multiplicative white noise. Secondly, we proved the existence of a bounded random absorbing set. Finally, by using the isomorphic mapping method and the compact embedding theorem, we get the stochastic dynamical system with a family of random attractors.展开更多
In this paper,we develop the criterion on the upper semi-continuity of random attractors by a weak-to-weak limit replacing the usual norm-to-norm limit.As an application,we obtain the convergence of random attractors ...In this paper,we develop the criterion on the upper semi-continuity of random attractors by a weak-to-weak limit replacing the usual norm-to-norm limit.As an application,we obtain the convergence of random attractors for non-autonomous stochastic reactiondiffusion equations on unbounded domains,when the density of stochastic noises approaches zero.The weak convergence of solutions is proved by means of Alaoglu weak compactness theorem.A differentiability condition on nonlinearity is omitted,which implies that the existence conditions for random attractors are sufficient to ensure their upper semi-continuity.These results greatly strengthen the upper semi-continuity notion that has been developed in the literature.展开更多
In this paper, the authors study the long time behavior of solutions to stochastic non-Newtonian fluids in a two-dimensional bounded domain, and prove the existence of H2-regularity random attractor.
The present paper studied the dynamics of some multivalued random semiflow. The corresponding concept of random attractor for this case was introduced to study asymptotic behavior. The existence of random attractor of...The present paper studied the dynamics of some multivalued random semiflow. The corresponding concept of random attractor for this case was introduced to study asymptotic behavior. The existence of random attractor of multivalued random semiflow was proved under the assumption of pullback asymptotically upper semicompact, and this random attractor is random compact and invariant. Furthermore, if the system has ergodicity, then this random attractor is the limit set of a deterministic bounded set.展开更多
The present paper investigates the asymptotic behavior of solutions for stochastic non-Newtonian fluids in a two-dimensional domain. Firstly, we prove the existence of random attractors AH (w) in H; Secondly, we pro...The present paper investigates the asymptotic behavior of solutions for stochastic non-Newtonian fluids in a two-dimensional domain. Firstly, we prove the existence of random attractors AH (w) in H; Secondly, we prove the existence of random attractors Ay(w) in V. Then we verify regularity of the random attractors by showing that AH(W) = Ay(w), which implies the smoothing effect of the fluids in the sense that solution becomes eventually more regular than the initial data.展开更多
The stochastic dissipative Zakharov equations with white noise are mainly investigated. The global random attractors endowed with usual topology for the stochastic dissipative Zakharov equations are obtained in the se...The stochastic dissipative Zakharov equations with white noise are mainly investigated. The global random attractors endowed with usual topology for the stochastic dissipative Zakharov equations are obtained in the sense of usual norm. The method is to transform the stochastic equations into the corresponding partial differential equations with random coefficients by Ornstein-Uhlenbeck process. The crucial compactness of the global random attractors wiil be obtained by decomposition of solutions.展开更多
In this paper, we study the asymptotic behaviors of solution for stochastic non-Newtonian fluid with white noise in two-dimensional domain. In particular, we will prove the existence of random attractors in H.
We study the random dynamical system (RDS) generated by the Benald flow problem with multiplicative noise and prove the existence of a compact random attractor for such RDS.
This paper deals with non-autonomous fractional stochastic reaction-diffusion equations driven by multiplicative noise with s∈(0,1).We first present some conditions for estimating the boundedness of fractal dimension...This paper deals with non-autonomous fractional stochastic reaction-diffusion equations driven by multiplicative noise with s∈(0,1).We first present some conditions for estimating the boundedness of fractal dimension of a random invariant set.Then we establish the existence and uniqueness of tempered pullback random attractors.Finally,the finiteness of fractal dimension of the random attractors is proved.展开更多
The present paper is devoted to the existence of the random attractor for partly dissipative stochastic lattice dynamical systems with multiplicative white noises.
In this paper the upper semi-continuity of global attractors for multivalued semi-flows under random perturbation was studied. First, the existence of random attractors for multivalued random semi-flows was considered...In this paper the upper semi-continuity of global attractors for multivalued semi-flows under random perturbation was studied. First, the existence of random attractors for multivalued random semi-flows was considered, then it was proved that the global attractors for multivalue semi-flows are the upper semi-continuity under random perturbation. This result can be used in the numerical approximation of multivalued semi-flows and non-autonomous perturbation of multivalued semi-flows.展开更多
In this note, we study some properties of local random pull-back attractors on compact metric spaces. We obtain some relations between attractors and their fundamental neighborhoods and basins of attraction. We also o...In this note, we study some properties of local random pull-back attractors on compact metric spaces. We obtain some relations between attractors and their fundamental neighborhoods and basins of attraction. We also obtain some properties of omega-limit sets, as well as connectedness of random attractors. A simple deterministic example is given to illustrate some confusing problems.展开更多
This article examines the dynamics for stochastic plate equations with linear memory in the case of bounded domain. We investigate the existence of solutions and bounded absorbing set by using the uniform pullback att...This article examines the dynamics for stochastic plate equations with linear memory in the case of bounded domain. We investigate the existence of solutions and bounded absorbing set by using the uniform pullback attractors on the tails estimates, and the asymptotic compactness of the random dynamical system is proved by decomposition method, and then we obtain the existence of a random attractor.展开更多
This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing an...This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing any bounded nonrandom subset of the phase space.展开更多
The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on...The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on unbounded domains. The conceptual analysis for the long time behavior of RDS will be done through some examples. An application of those analysis will be demonstrated through the proof of the existence of random attractors for asymptotically compact dissipative RDS.展开更多
In this paper, we studied a class of damped high order Beam equation stochas-tic dynamical systems with white noise. First, the Ornstein-Uhlenbeck process is used to transform the equation into a noiseless random equa...In this paper, we studied a class of damped high order Beam equation stochas-tic dynamical systems with white noise. First, the Ornstein-Uhlenbeck process is used to transform the equation into a noiseless random equation with random variables as parameters. Secondly, by estimating the solution of the equation, we can obtain the bounded random absorption set. Finally, the isomorphism mapping method and compact embedding theorem are used to obtain the system. It is progressively compact, then we can prove the existence of ran-dom attractors.展开更多
基金supported by China NSF(11271388)Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1400430)Basis and Frontier Research Project of Chongqing(cstc2014jcyj A00035)
文摘We study the regularity of random attractors for a class of degenerate parabolic equations with leading term div(o(x)↓△u) and multiplicative noises. Under some mild conditions on the diffusion variable o(x) and without any restriction on the upper growth p of nonlinearity, except that p 〉 2, we show the existences of random attractor in D0^1,2(DN, σ) space, where DN is an arbitrary (bounded or unbounded) domain in R^N N 〉 2. For this purpose, some abstract results based on the omega-limit compactness are established.
基金Foundation item:The work was supported in part by the NSFC(No.90511009).
文摘We consider the two-dimensional stochastic quasi-geostrophic equation ■=1/(R_e)△~2■-r/2△■+f(x,y,t)(1.1) on a regular bounded open domain D ■,where ■ is the stream function,F Froude Number (F≈O(1)),R_e Reynolds number(R_e■10~2),β_0 a positive constant(β_0≈O(10^(-1)),r the Ekman dissipation constant(r≈o(1)),the external forcing term f(x,y,t)=-(dW)/(dt)(the definition of W will be given later)a Gaussian random field,white noise in time,subject to the
文摘To prove the existence of the family of exponential attractors, we first define a family of compact, invariant absorbing sets <em>B<sub>k</sub></em>. Then we prove that the solution semigroup has Lipschitz property and discrete squeezing property. Finally, we obtain a family of exponential attractors and its estimation of dimension by combining them with previous theories. Next, we obtain Kirchhoff-type random equation by adding product white noise to the right-hand side of the equation. To study the existence of random attractors, firstly we transform the equation by using Ornstein-Uhlenbeck process. Then we obtain a family of bounded random absorbing sets via estimating the solution of the random differential equation. Finally, we prove the asymptotic compactness of semigroup of the stochastic dynamic system;thereby we obtain a family of random attractors.
文摘This paper is concerned with the existence and upper semi-continuity of random attractors for the nonclassical diffusion equation with arbitrary polynomial growth nonlinearity and multiplicative noise in H<sup>1</sup>(R<sup>n</sup>). First, we study the existence and uniqueness of solutions by a noise arising in a continuous random dynamical system and the asymptotic compactness is established by using uniform tail estimate technique, and then the existence of random attractors for the nonclassical diffusion equation with arbitrary polynomial growth nonlinearity. As a motivation of our results, we prove an existence and upper semi-continuity of random attractors with respect to the nonlinearity that enters the system together with the noise.
文摘In this paper, we studied the existence of a family of the random attractor for a class of generalized Kirchhoff-type equations with a strong dissipation term. Firstly, according to Ornstein-Uhlenbeck process, we transformed the equation into a stochastic equation with random variables and multiplicative white noise. Secondly, we proved the existence of a bounded random absorbing set. Finally, by using the isomorphic mapping method and the compact embedding theorem, we get the stochastic dynamical system with a family of random attractors.
文摘In this paper,we develop the criterion on the upper semi-continuity of random attractors by a weak-to-weak limit replacing the usual norm-to-norm limit.As an application,we obtain the convergence of random attractors for non-autonomous stochastic reactiondiffusion equations on unbounded domains,when the density of stochastic noises approaches zero.The weak convergence of solutions is proved by means of Alaoglu weak compactness theorem.A differentiability condition on nonlinearity is omitted,which implies that the existence conditions for random attractors are sufficient to ensure their upper semi-continuity.These results greatly strengthen the upper semi-continuity notion that has been developed in the literature.
基金Project supported by the National Natural Science Foundation of China(Nos.11126160,11201475,11371183,and 11101356)
文摘In this paper, the authors study the long time behavior of solutions to stochastic non-Newtonian fluids in a two-dimensional bounded domain, and prove the existence of H2-regularity random attractor.
基金Project supported by the National Natural Science Foundation of China (No.10571130)
文摘The present paper studied the dynamics of some multivalued random semiflow. The corresponding concept of random attractor for this case was introduced to study asymptotic behavior. The existence of random attractor of multivalued random semiflow was proved under the assumption of pullback asymptotically upper semicompact, and this random attractor is random compact and invariant. Furthermore, if the system has ergodicity, then this random attractor is the limit set of a deterministic bounded set.
基金Supported by the Fundamental Research Funds for the Central Universities (No. 2010QS04)
文摘The present paper investigates the asymptotic behavior of solutions for stochastic non-Newtonian fluids in a two-dimensional domain. Firstly, we prove the existence of random attractors AH (w) in H; Secondly, we prove the existence of random attractors Ay(w) in V. Then we verify regularity of the random attractors by showing that AH(W) = Ay(w), which implies the smoothing effect of the fluids in the sense that solution becomes eventually more regular than the initial data.
基金Supported by the National Natural Science Foundation of China(No.11061003,11301097)Guangxi Natural Science Foundation Grant(No.2013GXNSFAA019001)Guangxi Science Research Item(No.2013YB170)
文摘The stochastic dissipative Zakharov equations with white noise are mainly investigated. The global random attractors endowed with usual topology for the stochastic dissipative Zakharov equations are obtained in the sense of usual norm. The method is to transform the stochastic equations into the corresponding partial differential equations with random coefficients by Ornstein-Uhlenbeck process. The crucial compactness of the global random attractors wiil be obtained by decomposition of solutions.
文摘In this paper, we study the asymptotic behaviors of solution for stochastic non-Newtonian fluid with white noise in two-dimensional domain. In particular, we will prove the existence of random attractors in H.
基金Supported by the China Postdoctoral Science Foundation (No. 2005038326)
文摘We study the random dynamical system (RDS) generated by the Benald flow problem with multiplicative noise and prove the existence of a compact random attractor for such RDS.
基金The authors would like to thank the reviewers for their helpful comments.This work was partially supported by the National Natural Science Foundation of China(11871138)joint research project of Laurent Mathematics Center of Sichuan Normal UniversityNational-Local Joint Engineering Laboratory of System Credibility Automatic Verification,funding of V.C.&V.R.Key Lab of Sichuan Province.
文摘This paper deals with non-autonomous fractional stochastic reaction-diffusion equations driven by multiplicative noise with s∈(0,1).We first present some conditions for estimating the boundedness of fractal dimension of a random invariant set.Then we establish the existence and uniqueness of tempered pullback random attractors.Finally,the finiteness of fractal dimension of the random attractors is proved.
基金supported by the National Natural Science Foundations of China(No.11071165,No.11071199)Natural Science Foundation of Guangxi(No.2013GXNSFBA019008)Department of Research Project of Guangxi Provincial(No.2013YB102)
文摘The present paper is devoted to the existence of the random attractor for partly dissipative stochastic lattice dynamical systems with multiplicative white noises.
基金Project supported by National Natural Science Foundation of China (Grant No. 10571130)
文摘In this paper the upper semi-continuity of global attractors for multivalued semi-flows under random perturbation was studied. First, the existence of random attractors for multivalued random semi-flows was considered, then it was proved that the global attractors for multivalue semi-flows are the upper semi-continuity under random perturbation. This result can be used in the numerical approximation of multivalued semi-flows and non-autonomous perturbation of multivalued semi-flows.
基金Partially Supported by the SRFDP (20070183053) and the Young Fund of the College of Mathematics at Jilin University.
文摘In this note, we study some properties of local random pull-back attractors on compact metric spaces. We obtain some relations between attractors and their fundamental neighborhoods and basins of attraction. We also obtain some properties of omega-limit sets, as well as connectedness of random attractors. A simple deterministic example is given to illustrate some confusing problems.
文摘This article examines the dynamics for stochastic plate equations with linear memory in the case of bounded domain. We investigate the existence of solutions and bounded absorbing set by using the uniform pullback attractors on the tails estimates, and the asymptotic compactness of the random dynamical system is proved by decomposition method, and then we obtain the existence of a random attractor.
基金Sponsored by the National NSF (10901121, 10826091,10771074, and 10771139)NSF for Postdoctors in China (20090460952)+3 种基金NSF of Zhejiang Province (Y6080077)NSF of Guangdong Province (004020077)NSF of Wenzhou University (2008YYLQ01)Zhejiang youthteacher training project and Wenzhou 551 project
文摘This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing any bounded nonrandom subset of the phase space.
基金the National NSFC under grant No.50579022the Foundation of Pre-973 Program of China under grant No.2004CCA02500+1 种基金the SRF for the ROCS,SEMthe Talent Recruitment Foundation of HUST
文摘The aim of this work is to understand better the long time behaviour of asymptotically compact random dynamical systems (RDS), which can be generated by solutions of some stochastic partial differential equations on unbounded domains. The conceptual analysis for the long time behavior of RDS will be done through some examples. An application of those analysis will be demonstrated through the proof of the existence of random attractors for asymptotically compact dissipative RDS.
文摘In this paper, we studied a class of damped high order Beam equation stochas-tic dynamical systems with white noise. First, the Ornstein-Uhlenbeck process is used to transform the equation into a noiseless random equation with random variables as parameters. Secondly, by estimating the solution of the equation, we can obtain the bounded random absorption set. Finally, the isomorphism mapping method and compact embedding theorem are used to obtain the system. It is progressively compact, then we can prove the existence of ran-dom attractors.