期刊文献+
共找到1,207篇文章
< 1 2 61 >
每页显示 20 50 100
A real-time intelligent lithology identification method based on a dynamic felling strategy weighted random forest algorithm 被引量:1
1
作者 Tie Yan Rui Xu +2 位作者 Shi-Hui Sun Zhao-Kai Hou Jin-Yu Feng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1135-1148,共14页
Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face ... Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation. 展开更多
关键词 Intelligent drilling Closed-loop drilling Lithology identification random forest algorithm Feature extraction
下载PDF
Investigation of Nuclear Binding Energy and Charge Radius Based on Random Forest Algorithm
2
作者 CAI Boshuai YU Tianjun +3 位作者 LIN Xuan ZHANG Jilong WANG Zhixuan YUAN Cenxi 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第4期704-712,共9页
The random forest algorithm was applied to study the nuclear binding energy and charge radius.The regularized root-mean-square of error(RMSE)was proposed to avoid overfitting during the training of random forest.RMSE ... The random forest algorithm was applied to study the nuclear binding energy and charge radius.The regularized root-mean-square of error(RMSE)was proposed to avoid overfitting during the training of random forest.RMSE for nuclides with Z,N>7 is reduced to 0.816 MeV and 0.0200 fm compared with the six-term liquid drop model and a three-term nuclear charge radius formula,respectively.Specific interest is in the possible(sub)shells among the superheavy region,which is important for searching for new elements and the island of stability.The significance of shell features estimated by the so-called shapely additive explanation method suggests(Z,N)=(92,142)and(98,156)as possible subshells indicated by the binding energy.Because the present observed data is far from the N=184 shell,which is suggested by mean-field investigations,its shell effect is not predicted based on present training.The significance analysis of the nuclear charge radius suggests Z=92 and N=136 as possible subshells.The effect is verified by the shell-corrected nuclear charge radius model. 展开更多
关键词 nuclear binding energy nuclear charge radius random forest algorithm
下载PDF
Winter Wheat Yield Estimation Based on Sparrow Search Algorithm Combined with Random Forest:A Case Study in Henan Province,China
3
作者 SHI Xiaoliang CHEN Jiajun +2 位作者 DING Hao YANG Yuanqi ZHANG Yan 《Chinese Geographical Science》 SCIE CSCD 2024年第2期342-356,共15页
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r... Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield. 展开更多
关键词 winter wheat yield estimation sparrow search algorithm combined with random forest(SSA-RF) machine learning multi-source indicator optimal lead time Henan Province China
下载PDF
Object-based classification of hyperspectral data using Random Forest algorithm 被引量:2
4
作者 Saeid Amini Saeid Homayouni +1 位作者 Abdolreza Safari Ali A.Darvishsefat 《Geo-Spatial Information Science》 SCIE CSCD 2018年第2期127-138,共12页
This paper presents a new framework for object-based classification of high-resolution hyperspectral data.This multi-step framework is based on multi-resolution segmentation(MRS)and Random Forest classifier(RFC)algori... This paper presents a new framework for object-based classification of high-resolution hyperspectral data.This multi-step framework is based on multi-resolution segmentation(MRS)and Random Forest classifier(RFC)algorithms.The first step is to determine of weights of the input features while using the object-based approach with MRS to processing such images.Given the high number of input features,an automatic method is needed for estimation of this parameter.Moreover,we used the Variable Importance(VI),one of the outputs of the RFC,to determine the importance of each image band.Then,based on this parameter and other required parameters,the image is segmented into some homogenous regions.Finally,the RFC is carried out based on the characteristics of segments for converting them into meaningful objects.The proposed method,as well as,the conventional pixel-based RFC and Support Vector Machine(SVM)method was applied to three different hyperspectral data-sets with various spectral and spatial characteristics.These data were acquired by the HyMap,the Airborne Prism Experiment(APEX),and the Compact Airborne Spectrographic Imager(CASI)hyperspectral sensors.The experimental results show that the proposed method is more consistent for land cover mapping in various areas.The overall classification accuracy(OA),obtained by the proposed method was 95.48,86.57,and 84.29%for the HyMap,the APEX,and the CASI datasets,respectively.Moreover,this method showed better efficiency in comparison to the spectralbased classifications because the OAs of the proposed method was 5.67 and 3.75%higher than the conventional RFC and SVM classifiers,respectively. 展开更多
关键词 Object-based classification random forest algorithm multi-resolution segmentation(MRS) hyperspectral imagery
原文传递
Random forest algorithm and regional applications of spectral inversion model for estimating canopy nitrogen concentration in rice 被引量:1
5
作者 LI Xuqing LIU Xiangnan LIU Meiling WU Ling 《遥感学报》 CSCD 北大核心 2014年第4期923-945,共23页
原文传递
The Comparison between Random Forest and Support Vector Machine Algorithm for Predicting β-Hairpin Motifs in Proteins
6
作者 Shaochun Jia Xiuzhen Hu Lixia Sun 《Engineering(科研)》 2013年第10期391-395,共5页
Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 ... Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 amino acid residues are extracted as research object and thefixed-length pattern of 12 amino acids are selected. When using the same characteristic parameters and the same test method, Random Forest algorithm is more effective than Support Vector Machine. In addition, because of Random Forest algorithm doesn’t produce overfitting phenomenon while the dimension of characteristic parameters is higher, we use Random Forest based on higher dimension characteristic parameters to predictβ-hairpin motifs. The better prediction results are obtained;the overall accuracy and Matthew’s correlation coefficient of 5-fold cross-validation achieve 83.3% and 0.59, respectively. 展开更多
关键词 random forest algorithm Support Vector Machine algorithm β-Hairpin MOTIF INCREMENT of Diversity SCORING Function Predicted Secondary Structure Information
下载PDF
Companies’ E-waste Estimation Based on General Equilibrium The­ory Context and Random Forest Regression Algorithm in Cameroon: Case Study of SMEs Implementing ISO 14001:2015
7
作者 Gilson Tekendo Djoukoue Idriss Djiofack Teledjieu Sijun Bai 《Journal of Management Science & Engineering Research》 2023年第2期60-81,共22页
Given the challenge of estimating or calculating quantities of waste electrical and electronic equipment(WEEE)in developing countries,this article focuses on predicting the WEEE generated by Cameroonian small and medi... Given the challenge of estimating or calculating quantities of waste electrical and electronic equipment(WEEE)in developing countries,this article focuses on predicting the WEEE generated by Cameroonian small and medium enterprises(SMEs)that are engaged in ISO 14001:2015 initiatives and consume electrical and electronic equipment(EEE)to enhance their performance and profitability.The methodology employed an exploratory approach involving the application of general equilibrium theory(GET)to contextualize the study and generate relevant parameters for deploying the random forest regression learning algorithm for predictions.Machine learning was applied to 80%of the samples for training,while simulation was conducted on the remaining 20%of samples based on quantities of EEE utilized over a specific period,utilization rates,repair rates,and average lifespans.The results demonstrate that the model’s predicted values are significantly close to the actual quantities of generated WEEE,and the model’s performance was evaluated using the mean squared error(MSE)and yielding satisfactory results.Based on this model,both companies and stakeholders can set realistic objectives for managing companies’WEEE,fostering sustainable socio-environmental practices. 展开更多
关键词 Electrical and electronic equipment(EEE) Waste from electrical and electronic equipment(WEEE) General equilibrium theory random forest regression algorithm DECISION-MAKING Cameroon
下载PDF
Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review 被引量:5
8
作者 Ernest Yeboah Boateng Joseph Otoo Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2020年第4期341-357,共17页
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (... In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement. 展开更多
关键词 Classification algorithms NON-PARAMETRIC K-Nearest-Neighbor Neural Networks random forest Support Vector Machines
下载PDF
Using machine learning algorithms to estimate stand volume growth of Larix and Quercus forests based on national-scale Forest Inventory data in China 被引量:2
9
作者 Huiling Tian Jianhua Zhu +8 位作者 Xiao He Xinyun Chen Zunji Jian Chenyu Li Qiangxin Ou Qi Li Guosheng Huang Changfu Liu Wenfa Xiao 《Forest Ecosystems》 SCIE CSCD 2022年第3期396-406,共11页
Estimating the volume growth of forest ecosystems accurately is important for understanding carbon sequestration and achieving carbon neutrality goals.However,the key environmental factors affecting volume growth diff... Estimating the volume growth of forest ecosystems accurately is important for understanding carbon sequestration and achieving carbon neutrality goals.However,the key environmental factors affecting volume growth differ across various scales and plant functional types.This study was,therefore,conducted to estimate the volume growth of Larix and Quercus forests based on national-scale forestry inventory data in China and its influencing factors using random forest algorithms.The results showed that the model performances of volume growth in natural forests(R^(2)=0.65 for Larix and 0.66 for Quercus,respectively)were better than those in planted forests(R^(2)=0.44 for Larix and 0.40 for Quercus,respectively).In both natural and planted forests,the stand age showed a strong relative importance for volume growth(8.6%–66.2%),while the edaphic and climatic variables had a limited relative importance(<6.0%).The relationship between stand age and volume growth was unimodal in natural forests and linear increase in planted Quercus forests.And the specific locations(i.e.,altitude and aspect)of sampling plots exhibited high relative importance for volume growth in planted forests(4.1%–18.2%).Altitude positively affected volume growth in planted Larix forests but controlled volume growth negatively in planted Quercus forests.Similarly,the effects of other environmental factors on volume growth also differed in both stand origins(planted versus natural)and plant functional types(Larix versus Quercus).These results highlighted that the stand age was the most important predictor for volume growth and there were diverse effects of environmental factors on volume growth among stand origins and plant functional types.Our findings will provide a good framework for site-specific recommendations regarding the management practices necessary to maintain the volume growth in China's forest ecosystems. 展开更多
关键词 Stand volume growth Stand origin Plant functional type National forest inventory data random forest algorithms
下载PDF
Multiscalar Geomorphometric Generalization for Soil-Landscape Modeling by Random Forest: A Case Study in the Eastern Amazon
10
作者 Cauan Ferreira Araújo Raimundo Cosme de Oliveira Junior Troy Patrick Beldini 《Journal of Geographic Information System》 2021年第4期434-451,共18页
Multiscalar topography influence on soil distribution has a complex pattern that is related to overlay of pedological processes which occurred at different times, and these driving forces are correlated with many geom... Multiscalar topography influence on soil distribution has a complex pattern that is related to overlay of pedological processes which occurred at different times, and these driving forces are correlated with many geomorphologic scales. In this sense, the present study tested the hypothesis whether multiscale geomorphometric generalized covariables can improve pedometric modeling. To achieve this goal, this case study applied the Random Forest algorithm to a multiscale geomorphometric database to predict soil surface attributes. The study area is in phanerozoic sedimentary basins, in the Alter do Ch<span style="white-space:nowrap;">&#227;</span>o geological formation, Eastern Amazon, Brazil. The multiscale geomorphometric generalization was applied at general and specific geomorphometric covariables, producing groups for each scale combination. The modeling was run using Random Forest for A-horizon thickness, pH, silt and sand content. For model evaluation, visual analysis of digital maps, metrics of forest structures and effect of variables on prediction were used. For evaluation of soil textural classifications, the confusion matrix with a Kappa index, and the user’s and producer’s accuracies were employed. The geomorphometry generalization tends to smooth curvatures and produces identifiable geomorphic representations at sub-watershed and watershed levels. The forest structures and effect of variables on prediction are in agreement with pedological knowledge. The multiscale geomorphometric generalized covariables improved accuracy metrics of soil surface texture classification, with the Kappa Index going from 43% to 62%. Therefore, it can be argued that topography influences soil distribution at combined coarser spatial scales and is able to predict soil particle size contents in the studied watershed. Future development of the multiscale geomorphometric generalization framework could include generalization methods concerning preservation of features, landform classification adaptable at multiple scales. 展开更多
关键词 Digital Soil Mapping Upscaling Machine Learning random forest algorithm Multiscale Geomorphometric Generalization
下载PDF
基于Isolation Forest和Random Forest相结合的智能电网时间序列数据异常检测算法 被引量:9
11
作者 杨永娇 肖建毅 +1 位作者 赵创业 周开东 《计算机与现代化》 2020年第3期99-102,126,共5页
智能电网的信息系统是保障电力行业正常运行的基础,而智能电网中各种时间序列数据的分析结果是衡量信息系统稳定运行的重要依据。传统的时间序列数据异常检测算法很难同时兼顾准确性和实时性。本文引入基于Isolation Forest和Random For... 智能电网的信息系统是保障电力行业正常运行的基础,而智能电网中各种时间序列数据的分析结果是衡量信息系统稳定运行的重要依据。传统的时间序列数据异常检测算法很难同时兼顾准确性和实时性。本文引入基于Isolation Forest和Random Forest相结合的智能电网时间序列数据异常检测算法,结合无监督学习算法和有监督学习算法的优点,实现机器自动标注和自动学习阈值,人工标注少量特征值,从一定程度上提高了时间序列数据异常检查准确性和实时性,可以满足智能电网时间序列数据异常检测需求,从而达到提升智能电网信息安全的目的。 展开更多
关键词 Isolation forest算法 random forest算法 异常检测算法 时间序列数据 智能电网
下载PDF
高校技术转移预测模型构建及归因分析——以区块链技术为例
12
作者 张更平 王薇 +2 位作者 陈红艺 卢珊 慎金花 《图书馆杂志》 北大核心 2025年第1期61-73,共13页
文章构建了高校专利转移预测模型,探索了影响预测效果的特征变量,以提升我国高校专利转化率,实现无形资产的产业价值。在清洗及标准化相关字段后,分别运用LDA、SBERT、SBERT-LDA模型提取专利技术主题,对比了不同主题提取模型的预测结果... 文章构建了高校专利转移预测模型,探索了影响预测效果的特征变量,以提升我国高校专利转化率,实现无形资产的产业价值。在清洗及标准化相关字段后,分别运用LDA、SBERT、SBERT-LDA模型提取专利技术主题,对比了不同主题提取模型的预测结果,以准确率、精确度、召回率及F1值评估了6种常用分类算法的效果,并以区块链技术领域所涉专利数据开展实证分析。实验结果表明,在区块链技术领域,采用SBERT-LDA方法提取专利技术主题后的随机森林算法展现出更优的预测性能。在此基础上,进一步运用SHAP解释框架分析了影响模型预测的特征变量,并解读了其作用机理。研究发现,特征变量对预测效果的作用可分为二分类、正相关、负相关以及随机波动型4类。 展开更多
关键词 高校 专利转移 预测模型 机器学习 随机森林算法 SHAP
下载PDF
基于PSO-RF的妊娠母猪日饲喂量预测算法研究
13
作者 凌丽 樊晓宇 +3 位作者 岳宝昌 谭飞飞 胡俊泽 任国栋 《内蒙古民族大学学报(自然科学版)》 2025年第1期44-52,共9页
日饲喂量对妊娠期母猪繁殖性能具有较大影响,对于保障母猪健康、胎儿生长发育具有重要意义。为了精准控制日饲喂量,针对粒子群算法(PSO)各阶段搜索能力不均衡的问题,引入一种非线性递减惯性权重策略对PSO算法进行改进,并用改进的粒子群... 日饲喂量对妊娠期母猪繁殖性能具有较大影响,对于保障母猪健康、胎儿生长发育具有重要意义。为了精准控制日饲喂量,针对粒子群算法(PSO)各阶段搜索能力不均衡的问题,引入一种非线性递减惯性权重策略对PSO算法进行改进,并用改进的粒子群优化随机森林回归算法(PSO-RF)精确预测妊娠母猪日饲喂量,精准控制智能饲喂器的饲料投放。该算法融合随机森林的高准确性和粒子群算法的参数寻优能力强的特性,通过优化决策树的数量和最大深度来提升预测性能。结果表明,PSO-RF算法取得的决定系数R^(2)值达到0.9814,相较于RF算法、SVM支持向量机和BP神经网络分别提升了1.19%、2.30%和3.25%。PSO-RF算法在预测妊娠母猪日饲喂量方面具有更高的精准度,有助于提高养猪场管理的智能化水平,降低生产成本,提升养猪场养殖效益,具有一定实际应用价值。 展开更多
关键词 妊娠母猪 日饲喂量 随机森林回归算法 粒子群优化算法 PSO-RF
下载PDF
联合FOD-sCARS的土壤有机质高光谱机器学习估测模型
14
作者 吴梦红 窦森 +5 位作者 林楠 姜然哲 陈思 李佳璇 付佳伟 梅显军 《光谱学与光谱分析》 SCIE EI CAS 北大核心 2025年第1期204-212,共9页
土壤有机质(SOM)含量是表征土壤质量的关键指标,在全球碳循环系统中发挥重大作用。快速准确的SOM估算和空间制图对土壤碳库估算、作物生长监测和耕地规划管理具有重要意义。利用传统方法监测区域性SOM含量耗时费力,基于高光谱遥感影像建... 土壤有机质(SOM)含量是表征土壤质量的关键指标,在全球碳循环系统中发挥重大作用。快速准确的SOM估算和空间制图对土壤碳库估算、作物生长监测和耕地规划管理具有重要意义。利用传统方法监测区域性SOM含量耗时费力,基于高光谱遥感影像建立SOM估测模型是现在较为合理有效的方法。为探索解决目前高光谱遥感影像建立SOM含量估测模型存在光谱数据冗余、光谱数据特征提取精度低、小样本模型泛化能力不强的问题,选择位于青海省湟中县的研究区,共采集67个土壤样本。获取资源1号02D(ZY1-02D)高光谱遥感影像并进行预处理得到样点像元光谱数据,采用分数阶微分变换(FOD)方法挖掘与SOM含量具有响应关系的敏感波段,以0.2为一个步长,利用相关性阈值法对比分析不同阶次微分处理数据挖掘能力;运用稳定性竞争性自适应重加权采样算法(sCARS)去除高光谱冗余数据获取建模特征波段,选择随机森林(RF)、极端梯度提升树、极限学习机和岭回归机器学习作为建模算法,以全波段和特征波段光谱数据分别作为模型输入变量构建SOM估测模型进行高光谱反演研究工作;最后根据最优特征变量和建模算法,基于ZY1-02D遥感影像进行了SOM空间分布制图。结果表明:采用FOD变换相比整数阶可以大大提高波段与SOM含量间的相关性,挖掘出更多细微的与SOM含量产生响应关系的光谱波段,其中0.8阶微分变换效果最优,较原始波段相比相关系数最大值提高了0.546;相较于全波段光谱数据,采用sCARS特征提取方法获取特征波段构建模型的估测精度得到较大提升,说明sCARS可以有效提升建模数据的质量,提升模型预测精度。建模算法中RF表现最优,R_(p)^(2)(模型决定系数)达到0.766,RPD达到1.86,较全波段建模结果R_(p)^(2)提升约7.58%;基于FOD-sCARS和RF实现了区域SOM含量估测制图。研究进一步验证利用星载高光谱遥感影像是实现区域SOM估测制图的可靠途径,研究结果可为估测区域SOM含量提供新思路,为利用星载高光谱遥感影像绘制SOM含量空间分布图提供了数据支持。 展开更多
关键词 高光谱遥感影像 分数阶微分变换 稳定性竞争性自适应重加权采样算法 土壤有机质 随机森林
下载PDF
基于随机森林算法的重型颅脑损伤患者并发急性胃肠损伤的现状及风险模型构建 被引量:1
15
作者 杨晓文 许彬 +2 位作者 吴娟 王希 赵琳 《军事护理》 CSCD 北大核心 2024年第3期70-73,78,共5页
目的探讨重型颅脑损伤患者并发急性胃肠损伤的危险因素,为预防急性胃肠损伤提供借鉴。方法2021年1月至2023年1月,便利抽样法选取某院收治的重型颅脑损伤患者150例为研究对象,建立基于重型颅脑损伤并发急性胃肠损伤的危险因素的随机森林... 目的探讨重型颅脑损伤患者并发急性胃肠损伤的危险因素,为预防急性胃肠损伤提供借鉴。方法2021年1月至2023年1月,便利抽样法选取某院收治的重型颅脑损伤患者150例为研究对象,建立基于重型颅脑损伤并发急性胃肠损伤的危险因素的随机森林算法的预测模型。结果150例重症颅脑损伤患者中,并发急性胃肠损伤患者94例,占62.67%。是否并发急性胃肠道损伤的患者在糖尿病、白蛋白、APACHE-Ⅱ评分、休克指数、液体负平衡、酸中毒、深度镇静、呼吸衰竭方面的差异均有统计学意义(均P<0.05)。构建重型颅脑损伤并发急性胃肠损伤的随机森林模型,树的数量为103时出现的错误率最低;影响重型颅脑损伤并发急性胃肠损伤的因素重要性排序为糖尿病、液体负平衡、急性生理与慢性健康评分、白蛋白、深度镇静及酸中毒;随机森林模型预测重型颅脑损伤并发急性胃肠损伤的受试者工作特征曲线(receiver operating characteristic,ROC)下面积(area under curve,AUC)为0.798,Logistic回归模型的AUC为0.773。结论构建的重型颅脑损伤并发急性胃肠损伤的风险预测模型预测效能较高,临床值得推广应用。 展开更多
关键词 随机森林算法 重型颅脑损伤 急性胃肠损伤 风险模型
下载PDF
基于人工智能方法的隧道塌方风险预测研究 被引量:1
16
作者 刘志锋 陈名煜 +1 位作者 吴修梅 魏振华 《水力发电》 CAS 2024年第3期31-38,共8页
为了对隧道塌方风险展开研究,整理246起隧道塌方事故案例,通过建立塌方风险评估指标体系,基于人工智能预测方法,分别采用随机森林算法、径向基函数神经网络、BP神经网络模型、粒子群算法优化BP神经网络模型,对塌方风险进行预测。结果表... 为了对隧道塌方风险展开研究,整理246起隧道塌方事故案例,通过建立塌方风险评估指标体系,基于人工智能预测方法,分别采用随机森林算法、径向基函数神经网络、BP神经网络模型、粒子群算法优化BP神经网络模型,对塌方风险进行预测。结果表明,随机森林算法、径向基函数神经网络、BP神经网络模型、粒子群算法优化BP神经网络模型的塌方预测准确率分别为81.67%、83.33%、86.67%、93.33%,F_(1)值分别为0.645、0.642、0.5、0.833。粒子群算法优化BP神经网络模型预测准确率和F_(1)值均大幅提高,预测效果最好,大大减少了评估结果的主观性,为隧道塌方风险研究提供了新的研究思路。 展开更多
关键词 隧道工程 塌方 风险预测 随机森林算法 径向基函数神经网络 BP神经网络 粒子群算法
下载PDF
基于路面等级识别的车辆半主动悬架内外环控制 被引量:3
17
作者 寇发荣 郭杨娟 +1 位作者 刘朋涛 门浩 《噪声与振动控制》 CSCD 北大核心 2024年第2期171-177,共7页
针对车辆在不同路面等级下对悬架动态性能与馈能特性需求不同的问题,提出一种基于RF-XGBoost路面等级识别算法的半主动悬架内外环控制策略。利用随机森林(Random Forest,RF)模型对极端梯度提升(Extreme Gradient Boosting,XGBoost)算法... 针对车辆在不同路面等级下对悬架动态性能与馈能特性需求不同的问题,提出一种基于RF-XGBoost路面等级识别算法的半主动悬架内外环控制策略。利用随机森林(Random Forest,RF)模型对极端梯度提升(Extreme Gradient Boosting,XGBoost)算法进行优化,搭建RF-XGBoost算法模型对路面等级进行识别。将路面等级与悬架控制策略相结合,设计外环为天地棚控制,内环为自适应滑模控制的内外环控制,实现非线性悬架的自适应控制。仿真结果表明,相比传统混合天地棚控制的悬架,内外环控制下的悬架在A级路面下簧载质量加速度降低15.52%,并实现50.4 W的振动能量回收,在B、C级路面下簧载质量加速度分别降低15.09%、16.72%,轮胎动载荷分别降低11.63%、11.42%,在D级路面下轮胎动载荷降低14.12%。台架试验的结果与仿真分析的结果基本一致,表明所设计的自适应内外环控制有效。 展开更多
关键词 振动与波 路面识别 随机森林 XGBoost算法 混合天地棚控制 自适应滑模控制
下载PDF
一种基于随机森林的OFDM系统自适应算法 被引量:1
18
作者 王波 刘潇然 +2 位作者 熊俊 辜方林 张晓瀛 《信号处理》 CSCD 北大核心 2024年第6期1007-1018,共12页
针对动态变化的信道环境,自适应正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统可以对子载波间隔和循环前缀长度进行调整,以最大化系统的吞吐量。为了能够快速准确地找到OFDM系统在不同信道环境中的最优子载波间... 针对动态变化的信道环境,自适应正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统可以对子载波间隔和循环前缀长度进行调整,以最大化系统的吞吐量。为了能够快速准确地找到OFDM系统在不同信道环境中的最优子载波间隔和循环前缀长度取值,本文提出了基于随机森林的OFDM系统自适应算法。随机森林算法基于集成的思想,能够有效处理高维度数据,并且具有高效率、高准确率和强泛化能力等优势,可以在复杂的数据场景下进行有效的分类。通过提取通信过程中信噪比、用户移动速度、最大多普勒频率和均方根时延扩展等信道特征与OFDM系统的子载波间隔和循环前缀长度组成训练样本,利用随机森林算法创建了OFDM系统参数多分类模型。所提模型可以根据输入的信道特征,实现OFDM系统子载波间隔和循环前缀长度的自适应分配。同时,针对训练样本主要集中在少数几个系统参数类别的情况,利用合成少数类过采样技术对较少样本数的类别进行扩充,满足了随机森林算法对训练样本类别平衡化的需求,进一步提高了算法的分类准确率。相比传统的自适应算法,所提算法具有更高的分类准确率和模型泛化能力。分析和仿真结果表明,与子载波间隔和循环前缀长度固定的OFDM系统相比,本文所提出的自适应算法能够准确选择出最优的系统参数,可以有效地减轻信道中符号间干扰和子载波间干扰的影响,从而在整个信噪比范围上提供最大的平均频谱效率。基于随机森林的OFDM系统自适应算法能够动态地分配子载波间隔和循环前缀长度,增强OFDM系统的通信质量和抗干扰能力,实现在不同信道环境下的可靠传输。 展开更多
关键词 正交频分复用 合成少数类过采样技术 随机森林 自适应算法
下载PDF
陆浑灌区实际蒸散发影响因素分析 被引量:1
19
作者 张金萍 李学淳 +2 位作者 李杜白 李玉达 李志伟 《节水灌溉》 北大核心 2024年第3期42-49,共8页
实际蒸散发是水文循环的关键环节,分析灌区实际蒸散发及其影响因素对灌区水资源的高效利用和农业高质量发展具有重要意义。然而,目前蒸散发的影响因素研究在确定主要因素时往往采用解释力较差的传统统计学方法,在相关性分析时忽略了蒸... 实际蒸散发是水文循环的关键环节,分析灌区实际蒸散发及其影响因素对灌区水资源的高效利用和农业高质量发展具有重要意义。然而,目前蒸散发的影响因素研究在确定主要因素时往往采用解释力较差的传统统计学方法,在相关性分析时忽略了蒸散发与其影响因素在空间上的相关性。因此利用改进的随机森林模型确定实际蒸散发的主要影响因素,并通过岭回归模型和地理加权回归模型探究实际蒸散发与其影响因素的时空相关关系。结果表明:(1)在灌溉期,地表净辐射、平均气温、叶面积指数和实际水汽压是实际蒸散发的主要影响因素;在非灌溉期,地表净辐射、平均气温、风速和日照时间是实际蒸散发的主要影响因素。实际蒸散发在一定程度上代表了灌区的作物耗水量。因此,灌区作物耗水在灌溉期和非灌溉期的影响作用有一定的差异。(2)在时间上,风速与实际蒸散发为负相关关系且呈显著负相关(P<0.05),其余影响因素与实际蒸散发均为正相关关系且呈显著正相关(P<0.05);在空间上,除风速与实际蒸散发在大部分区域呈负相关关系,其余影响因素都与实际蒸散发在大部分区域呈正相关关系。因此,除风速外,其余影响因素对灌区作物耗水在大部分区域都为正向促进作用。 展开更多
关键词 实际蒸散发 影响因素 蜻蜓优化算法 随机森林 相关性分析 灌溉期
下载PDF
基于随机森林算法的干旱区地表水体时空演变特征研究
20
作者 李奋华 杨文举 +2 位作者 康德奎 李钊钊 马宏 《水电能源科学》 北大核心 2024年第12期10-13,18,共5页
为准确掌握干旱区地表水体空间分布及动态变化情况,探明研究区地表水体时空演变来源,运用随机森林算法对干旱区的土地利用状况进行分类,并基于遥感数据制作了土地利用分类图。以讨赖河流域为经典研究区,通过土地利用转移矩阵分析,揭示... 为准确掌握干旱区地表水体空间分布及动态变化情况,探明研究区地表水体时空演变来源,运用随机森林算法对干旱区的土地利用状况进行分类,并基于遥感数据制作了土地利用分类图。以讨赖河流域为经典研究区,通过土地利用转移矩阵分析,揭示了讨赖河流域地表水体的时空演变特征。结果表明,2016~2018年,流域地表水体面积由7451.37×10^(4)m^(2)增长到8235.09×10^(4)m^(2),地表水体转出面积为366.48×10^(4)m^(2),地表水体转入面积为1150.2×10^(4)m^(2),面积增长主要来源为裸地、草地、农田;2018~2020年,地表水体面积由8235.09×10^(4)m^(2)增长到9640.98×10^(4)m^(2),相较于2016年,地表水体面积净增长率为179.39%,面积增长主要来源为裸地、草地、冰雪。该流域地表水面积呈逐年上升趋势,地表水面积增长主要来源为裸地及草地,转入贡献率超过84.87%,该研究为干旱区地表水体数字化监测及水土资源的合理利用提供了科学参考。 展开更多
关键词 干旱区 地表水体 土地利用时空演变 随机森林算法
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部