In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Su...In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.展开更多
Let D and D' be domains in real Banach spaces of dimension at least 2. The main aim of this paper is to study certain arc distortion properties in the quasihyperbolic metric defined in real Banach spaces. In particul...Let D and D' be domains in real Banach spaces of dimension at least 2. The main aim of this paper is to study certain arc distortion properties in the quasihyperbolic metric defined in real Banach spaces. In particular, when D' is a QH inner C-uniform domain with C being a slow (or a convex domain), we investigate the following: For positive constants c, h, C, M, suppose a homeomorphism f : D → D' takes each of the 10-neargeodesics in D to (c, h)-solid in D'. Then f is C-coarsely M- Lipschitz in the quasihyperbolic metric. These are generalizations of the corresponding result obtained recently by Viiisiilg.展开更多
S. Hu and Y. Sun[1] defined the fixed point index for weakly inward mappings, investigated its properties and studied fixed points for such mappings. In this paper, following S. Hu and Y. Sun, we further investigate b...S. Hu and Y. Sun[1] defined the fixed point index for weakly inward mappings, investigated its properties and studied fixed points for such mappings. In this paper, following S. Hu and Y. Sun, we further investigate boundary conditions, under which the fixed point index for i(A, Ω, p) is equal to nonzero, where i(A, Ω, p) is the completely continuous and weakly inward mapping. Correspondingly, we can obtain many new fixed point theorems of the completely continuous and weakly inward mapping, which generalize some famous theorems such as Rothe's theorem, Altman's theorem, Petryshyn's theorem etc. in the case of weakly inward mappings. In addition, our conclusions extend the famous fixed point theorem of cone expansion and compression to the case of weakly inward mappings. Moreover, the main results contain and generalize the corresponding results in the recent work[2].展开更多
It is our purpose in this paper to show that some results obtained in uniformly convex real Banach space with uniformly Gateaux differentiable norm are extendable to more general reflexive and strictly convex real Ban...It is our purpose in this paper to show that some results obtained in uniformly convex real Banach space with uniformly Gateaux differentiable norm are extendable to more general reflexive and strictly convex real Banach space with uniformly G&teaux differentiable norm. Demicompactness condition imposed in such results is dispensed with. Furthermore, Applications of our theorems to approximation of common fixed point of countable infinite family of continuous pseudocontractive mappings and approximation of common solution of countable infinite family of generalized mixed equilibrium problems are also discussed. Our theorems improve, generalize, unify and extend several recently announced results.展开更多
Without the Lipschitz assumption and boundedness of K in arbitrary Banach spaces, the Ishikawa iteration {x n} ∞ n=1 defined byx 1∈K,\ x n+1 =(1-α n)x n+α nTy n,\ y n=(1-β n)x n+β n...Without the Lipschitz assumption and boundedness of K in arbitrary Banach spaces, the Ishikawa iteration {x n} ∞ n=1 defined byx 1∈K,\ x n+1 =(1-α n)x n+α nTy n,\ y n=(1-β n)x n+β nTx n,\ n≥1satisfying 0<α n,β n<1 ,for all n≥1;∑ ∞ n=1 α n=∞;α n→0,β n→0 as n→∞ is proved to converge strongly to the unique fixed point of T ,where T:K→K is a uniformly continuous strictly pseudo\|contractive operator with bounded range.展开更多
For a double array of independent random elements {Vmn,m ≥ 1,n ≥ 1} in a real separable Banach space,conditions are provided under which the weak and strong laws of large numbers for the double sums mi=1 nj=1Vij,m ...For a double array of independent random elements {Vmn,m ≥ 1,n ≥ 1} in a real separable Banach space,conditions are provided under which the weak and strong laws of large numbers for the double sums mi=1 nj=1Vij,m ≥ 1,n ≥ 1 are equivalent.Both the identically distributed and the nonidentically distributed cases are treated.In the main theorems,no assumptions are made concerning the geometry of the underlying Banach space.These theorems are applied to obtain Kolmogorov,Brunk–Chung,and Marcinkiewicz–Zygmund type strong laws of large numbers for double sums in Rademacher type p(1 ≤ p ≤ 2) Banach spaces.展开更多
The new concepts of the Z-C-X space and excellent cone are introduced. Some problems of random semiclosed 1-set-contractive operator are investigated in the Z-C-X space. At first, an important inequality is proved. Se...The new concepts of the Z-C-X space and excellent cone are introduced. Some problems of random semiclosed 1-set-contractive operator are investigated in the Z-C-X space. At first, an important inequality is proved. Secondly, several new conclusions are proved by means of random fixed point index in the theory of random topological degree. A random solution of a class of random operator equations under conditions of imitating the parallelogram law is obtained, famous Altman's theorem is generalized in partially ordered Z-C-X space. Therefore, some new results are obtained.展开更多
In this paper, to find the fixed points of the nonexpansive nonself-mappings, we introduced two new viscosity approximation methods, and then we prove the iterative sequences defined by above viscosity approximation m...In this paper, to find the fixed points of the nonexpansive nonself-mappings, we introduced two new viscosity approximation methods, and then we prove the iterative sequences defined by above viscosity approximation methods which converge strongly to the fixed points of nonexpansive nonself-mappings. The results presented in this paper extend and improve the results of Song-Chen [1] and Song-Li [2].展开更多
文摘In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.
基金Supported by National Natural Science Foundation of China (Grant No. 11071063), Tianyuan Foundation (Grant No. 10926068) and Scientific Research Fund of Hunan Provincial Education Department (Grant No. 09C635)Acknowledgements The authors thank the referee very much for his (or her) careflfl reading of this paper and many useful suggestions and the support of the Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hu'nan Province.
文摘Let D and D' be domains in real Banach spaces of dimension at least 2. The main aim of this paper is to study certain arc distortion properties in the quasihyperbolic metric defined in real Banach spaces. In particular, when D' is a QH inner C-uniform domain with C being a slow (or a convex domain), we investigate the following: For positive constants c, h, C, M, suppose a homeomorphism f : D → D' takes each of the 10-neargeodesics in D to (c, h)-solid in D'. Then f is C-coarsely M- Lipschitz in the quasihyperbolic metric. These are generalizations of the corresponding result obtained recently by Viiisiilg.
基金Supported in part by the Foundations of Education Ministry, Anhui Province, China (No: KJ2008A028)Education Ministry, Hubei Province, China (No: D20102502)
文摘S. Hu and Y. Sun[1] defined the fixed point index for weakly inward mappings, investigated its properties and studied fixed points for such mappings. In this paper, following S. Hu and Y. Sun, we further investigate boundary conditions, under which the fixed point index for i(A, Ω, p) is equal to nonzero, where i(A, Ω, p) is the completely continuous and weakly inward mapping. Correspondingly, we can obtain many new fixed point theorems of the completely continuous and weakly inward mapping, which generalize some famous theorems such as Rothe's theorem, Altman's theorem, Petryshyn's theorem etc. in the case of weakly inward mappings. In addition, our conclusions extend the famous fixed point theorem of cone expansion and compression to the case of weakly inward mappings. Moreover, the main results contain and generalize the corresponding results in the recent work[2].
文摘It is our purpose in this paper to show that some results obtained in uniformly convex real Banach space with uniformly Gateaux differentiable norm are extendable to more general reflexive and strictly convex real Banach space with uniformly G&teaux differentiable norm. Demicompactness condition imposed in such results is dispensed with. Furthermore, Applications of our theorems to approximation of common fixed point of countable infinite family of continuous pseudocontractive mappings and approximation of common solution of countable infinite family of generalized mixed equilibrium problems are also discussed. Our theorems improve, generalize, unify and extend several recently announced results.
文摘Without the Lipschitz assumption and boundedness of K in arbitrary Banach spaces, the Ishikawa iteration {x n} ∞ n=1 defined byx 1∈K,\ x n+1 =(1-α n)x n+α nTy n,\ y n=(1-β n)x n+β nTx n,\ n≥1satisfying 0<α n,β n<1 ,for all n≥1;∑ ∞ n=1 α n=∞;α n→0,β n→0 as n→∞ is proved to converge strongly to the unique fixed point of T ,where T:K→K is a uniformly continuous strictly pseudo\|contractive operator with bounded range.
基金supported by the Vietnam Institute for Advanced Study in Mathematics(VIASM)the Vietnam National Foundation for Sciences and Technology Development NAFOSTED(Grant No.101.01.2012.13)supported by NAFOSTED(Grant No.101.03.2012.17)
文摘For a double array of independent random elements {Vmn,m ≥ 1,n ≥ 1} in a real separable Banach space,conditions are provided under which the weak and strong laws of large numbers for the double sums mi=1 nj=1Vij,m ≥ 1,n ≥ 1 are equivalent.Both the identically distributed and the nonidentically distributed cases are treated.In the main theorems,no assumptions are made concerning the geometry of the underlying Banach space.These theorems are applied to obtain Kolmogorov,Brunk–Chung,and Marcinkiewicz–Zygmund type strong laws of large numbers for double sums in Rademacher type p(1 ≤ p ≤ 2) Banach spaces.
文摘The new concepts of the Z-C-X space and excellent cone are introduced. Some problems of random semiclosed 1-set-contractive operator are investigated in the Z-C-X space. At first, an important inequality is proved. Secondly, several new conclusions are proved by means of random fixed point index in the theory of random topological degree. A random solution of a class of random operator equations under conditions of imitating the parallelogram law is obtained, famous Altman's theorem is generalized in partially ordered Z-C-X space. Therefore, some new results are obtained.
文摘In this paper, to find the fixed points of the nonexpansive nonself-mappings, we introduced two new viscosity approximation methods, and then we prove the iterative sequences defined by above viscosity approximation methods which converge strongly to the fixed points of nonexpansive nonself-mappings. The results presented in this paper extend and improve the results of Song-Chen [1] and Song-Li [2].