期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modeling, Simulation and Experimental Studies of Refractometric Fiber Optic Sensor
1
作者 Supriya S. Patil Arvind D. Shaligram 《Journal of Sensor Technology》 CAS 2023年第1期1-11,共11页
Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers an... Refractometric fiber optic sensors have a number of applications in industry due to advantages like remote sensing ability, compact size, easy to fit, etc. A refractometric sensor contains a pair of parallel fibers and a gap between the sensor probe and reflector, wherein the liquid whose refractive index is to be measured is filled. This paper describes the importance of mathematical modeling of this sensor. Ray tracing approach is used to model the sensor mathematically. This mathematical model is generalized for any scenario which is useful to avoid tedious trial and error techniques to design the sensor prototype. Mathematical modelling is a useful tool to optimize the gap distance for a detection of refractive index of liquid. The model is developed and analyzed rigorously considering adulteration of diesel by kerosene where refractive index varies from 1.44 to 1.46. Simulation experiments are carried out to optimize the gap distance which is found to be 6.8 mm using both models. Experiments are carried out where sensor probe is fabricated and results are analyzed. It is observed that for suggested gap distance sensor output varies almost linear over the entire range. 展开更多
关键词 refractometric Fiber Optic Sensor Mathematical Modeling Ray Tracing Technique
下载PDF
Highly sensitive deep-silver-nanowell arrays (d-AgNWAs) for refractometric sensing
2
作者 Xueyao Liu Wendong Liu +3 位作者 Liping Fang Shunsheng Ye Huaizhong Shen Bai Yang 《Nano Research》 SCIE EI CAS CSCD 2017年第3期908-921,共14页
Large-area deep-silver-nanowell arrays (d-AgNWAs) for plasmonic sensing were manufactured by combining colloidal lithography with metal deposition. In contrast to most previous studies, we shed light on the outstand... Large-area deep-silver-nanowell arrays (d-AgNWAs) for plasmonic sensing were manufactured by combining colloidal lithography with metal deposition. In contrast to most previous studies, we shed light on the outstanding sensitivity afforded by deep metallic nanowells (up to 400 nm in depth). Using gold nanohole arrays as a mask, a silicon substrate was etched into deep silicon nanowells, which acted as a template for subsequent Ag deposition, resulting in the formation of d-AgNWAs. Various geometric parameters were separately tailored to study the changes in the optical performance and further optimize the sensing ability of the structure. After several rounds of selection, the best sensing d-AgNWA, which had a Ag thickness of 400 nm, template depth of 400 nm, hole diameter of 504 nm, and period of 1 ~m, was selected. It had a sensitivity of 933 nm.RIU-1, which is substantially higher than those of most common thin metallic nanohole arrays. As a proof of concept, the as-prepared structure was employed as a substrate for an antigen-antibody recognition immunoassay, which indicates its great potential for label-free real-time biosensing. 展开更多
关键词 deep-silver-nanowellarrays colloidal lithography NANOHOLE plasmonic NANOSTRUCTURE refractometric sensing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部