期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Robust Radiometric Normalization of the near Equatorial Satellite Images Using Feature Extraction and Remote Sensing Analysis 被引量:1
1
作者 Hayder Dibs Shattri Mansor +1 位作者 Noordin Ahmad Nadhir Al-Ansari 《Engineering(科研)》 CAS 2023年第2期75-89,共15页
Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has ... Relative radiometric normalization (RRN) minimizes radiometric differences among images caused by inconsistencies of acquisition conditions rather than changes in surface. Scale invariant feature transform (SIFT) has the ability to automatically extract control points (CPs) and is commonly used for remote sensing images. However, its results are mostly inaccurate and sometimes contain incorrect matching caused by generating a small number of false CP pairs. These CP pairs have high false alarm matching. This paper presents a modified method to improve the performance of SIFT CPs matching by applying sum of absolute difference (SAD) in a different manner for the new optical satellite generation called near-equatorial orbit satellite and multi-sensor images. The proposed method, which has a significantly high rate of correct matches, improves CP matching. The data in this study were obtained from the RazakSAT satellite a new near equatorial satellite system. The proposed method involves six steps: 1) data reduction, 2) applying the SIFT to automatically extract CPs, 3) refining CPs matching by using SAD algorithm with empirical threshold, and 4) calculation of true CPs intensity values over all image’ bands, 5) preforming a linear regression model between the intensity values of CPs locate in reverence and sensed image’ bands, 6) Relative radiometric normalization conducting using regression transformation functions. Different thresholds have experimentally tested and used in conducting this study (50 and 70), by followed the proposed method, and it removed the false extracted SIFT CPs to be from 775, 1125, 883, 804, 883 and 681 false pairs to 342, 424, 547, 706, 547, and 469 corrected and matched pairs, respectively. 展开更多
关键词 relative radiometric normalization Scale Invariant Feature Transform Automatically Extraction Control Points Sum of Absolute Difference
下载PDF
Support vector machine regression(SVR)-based nonlinear modeling of radiometric transforming relation for the coarse-resolution data-referenced relative radiometric normalization(RRN) 被引量:1
2
作者 Jing Geng Wenxia Gan +2 位作者 Jinying Xu Ruqin Yang Shuliang Wang 《Geo-Spatial Information Science》 SCIE CSCD 2020年第3期237-247,I0004,共12页
Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating ... Radiometric normalization,as an essential step for multi-source and multi-temporal data processing,has received critical attention.Relative Radiometric Normalization(RRN)method has been primarily used for eliminating the radiometric inconsistency.The radiometric trans-forming relation between the subject image and the reference image is an essential aspect of RRN.Aimed at accurate radiometric transforming relation modeling,the learning-based nonlinear regression method,Support Vector machine Regression(SVR)is used for fitting the complicated radiometric transforming relation for the coarse-resolution data-referenced RRN.To evaluate the effectiveness of the proposed method,a series of experiments are performed,including two synthetic data experiments and one real data experiment.And the proposed method is compared with other methods that use linear regression,Artificial Neural Network(ANN)or Random Forest(RF)for radiometric transforming relation modeling.The results show that the proposed method performs well on fitting the radiometric transforming relation and could enhance the RRN performance. 展开更多
关键词 Support Vector machine Regression(SVR) non-linear radiometric transforming relation relative radiometric normalization(RRN) multi-source data
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部