期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
GNN Representation Learning and Multi-Objective Variable Neighborhood Search Algorithm for Wind Farm Layout Optimization
1
作者 Yingchao Li JianbinWang HaibinWang 《Energy Engineering》 EI 2024年第4期1049-1065,共17页
With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the rou... With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the route network design problem,the expressive capability and search performance of the algorithm on multi-objective problems remain unexplored.In this paper,the wind farm layout optimization problem is defined.Then,a multi-objective algorithm based on Graph Neural Network(GNN)and Variable Neighborhood Search(VNS)algorithm is proposed.GNN provides the basis representations for the following search algorithm so that the expressiveness and search accuracy of the algorithm can be improved.The multi-objective VNS algorithm is put forward by combining it with the multi-objective optimization algorithm to solve the problem with multiple objectives.The proposed algorithm is applied to the 18-node simulation example to evaluate the feasibility and practicality of the developed optimization strategy.The experiment on the simulation example shows that the proposed algorithm yields a reduction of 6.1% in Point of Common Coupling(PCC)over the current state-of-the-art algorithm,which means that the proposed algorithm designs a layout that improves the quality of the power supply by 6.1%at the same cost.The ablation experiments show that the proposed algorithm improves the power quality by more than 8.6% and 7.8% compared to both the original VNS algorithm and the multi-objective VNS algorithm. 展开更多
关键词 GNN representation learning variable neighborhood search multi-objective optimization wind farm layout point of common coupling
下载PDF
Tri-party deep network representation learning using inductive matrix completion 被引量:3
2
作者 YE Zhong-lin ZHAO Hai-xing +2 位作者 ZHANG Ke ZHU Yu XIAO Yu-zhi 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2746-2758,共13页
Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all cha... Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all characteristics of networks.In fact,network vertices usually contain rich text information,which can be well utilized to learn text-enhanced network representations.Meanwhile,Matrix-Forest Index(MFI)has shown its high effectiveness and stability in link prediction tasks compared with other algorithms of link prediction.Both MFI and Inductive Matrix Completion(IMC)are not well applied with algorithmic frameworks of typical representation learning methods.Therefore,we proposed a novel semi-supervised algorithm,tri-party deep network representation learning using inductive matrix completion(TDNR).Based on inductive matrix completion algorithm,TDNR incorporates text features,the link certainty degrees of existing edges and the future link probabilities of non-existing edges into network representations.The experimental results demonstrated that TFNR outperforms other baselines on three real-world datasets.The visualizations of TDNR show that proposed algorithm is more discriminative than other unsupervised approaches. 展开更多
关键词 network representation network embedding representation learning matrix-forestindex inductive matrix completion
下载PDF
Chinese word segmentation with local and global context representation learning 被引量:2
3
作者 李岩 Zhang Yinghua +2 位作者 Huang Xiaoping Yin Xucheng Hao Hongwei 《High Technology Letters》 EI CAS 2015年第1期71-77,共7页
A local and global context representation learning model for Chinese characters is designed and a Chinese word segmentation method based on character representations is proposed in this paper. First, the proposed Chin... A local and global context representation learning model for Chinese characters is designed and a Chinese word segmentation method based on character representations is proposed in this paper. First, the proposed Chinese character learning model uses the semanties of loeal context and global context to learn the representation of Chinese characters. Then, Chinese word segmentation model is built by a neural network, while the segmentation model is trained with the eharaeter representations as its input features. Finally, experimental results show that Chinese charaeter representations can effectively learn the semantic information. Characters with similar semantics cluster together in the visualize space. Moreover, the proposed Chinese word segmentation model also achieves a pretty good improvement on precision, recall and f-measure. 展开更多
关键词 local and global context representation learning Chinese character representa- tion Chinese word segmentation
下载PDF
Homogeneity Analysis of Multiairport System Based on Airport Attributed Network Representation Learning 被引量:1
4
作者 LIU Caihua CAI Rui +1 位作者 FENG Xia XU Tao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期616-624,共9页
The homogeneity analysis of multi-airport system can provide important decision-making support for the route layout and cooperative operation.Existing research seldom analyzes the homogeneity of multi-airport system f... The homogeneity analysis of multi-airport system can provide important decision-making support for the route layout and cooperative operation.Existing research seldom analyzes the homogeneity of multi-airport system from the perspective of route network analysis,and the attribute information of airport nodes in the airport route network is not appropriately integrated into the airport network.In order to solve this problem,a multi-airport system homogeneity analysis method based on airport attribute network representation learning is proposed.Firstly,the route network of a multi-airport system with attribute information is constructed.If there are flights between airports,an edge is added between airports,and regional attribute information is added for each airport node.Secondly,the airport attributes and the airport network vector are represented respectively.The airport attributes and the airport network vector are embedded into the unified airport representation vector space by the network representation learning method,and then the airport vector integrating the airport attributes and the airport network characteristics is obtained.By calculating the similarity of the airport vectors,it is convenient to calculate the degree of homogeneity between airports and the homogeneity of the multi-airport system.The experimental results on the Beijing-Tianjin-Hebei multi-airport system show that,compared with other existing algorithms,the homogeneity analysis method based on attributed network representation learning can get more consistent results with the current situation of Beijing-Tianjin-Hebei multi-airport system. 展开更多
关键词 air transportation multi-airport system homogeneity analysis network representation learning airport attribute network
下载PDF
A malware propagation prediction model based on representation learning and graph convolutional networks
5
作者 Tun Li Yanbing Liu +3 位作者 Qilie Liu Wei Xu Yunpeng Xiao Hong Liu 《Digital Communications and Networks》 SCIE CSCD 2023年第5期1090-1100,共11页
The traditional malware research is mainly based on its recognition and detection as a breakthrough point,without focusing on its propagation trends or predicting the subsequently infected nodes.The complexity of netw... The traditional malware research is mainly based on its recognition and detection as a breakthrough point,without focusing on its propagation trends or predicting the subsequently infected nodes.The complexity of network structure,diversity of network nodes,and sparsity of data all pose difficulties in predicting propagation.This paper proposes a malware propagation prediction model based on representation learning and Graph Convolutional Networks(GCN)to address the aforementioned problems.First,to solve the problem of the inaccuracy of infection intensity calculation caused by the sparsity of node interaction behavior data in the malware propagation network,a mechanism based on a tensor to mine the infection intensity among nodes is proposed to retain the network structure information.The influence of the relationship between nodes on the infection intensity is also analyzed.Second,given the diversity and complexity of the content and structure of infected and normal nodes in the network,considering the advantages of representation learning in data feature extraction,the corresponding representation learning method is adopted for the characteristics of infection intensity among nodes.This can efficiently calculate the relationship between entities and relationships in low dimensional space to achieve the goal of low dimensional,dense,and real-valued representation learning for the characteristics of propagation spatial data.We also design a new method,Tensor2vec,to learn the potential structural features of malware propagation.Finally,considering the convolution ability of GCN for non-Euclidean data,we propose a dynamic prediction model of malware propagation based on representation learning and GCN to solve the time effectiveness problem of the malware propagation carrier.The experimental results show that the proposed model can effectively predict the behaviors of the nodes in the network and discover the influence of different characteristics of nodes on the malware propagation situation. 展开更多
关键词 MALWARE representation learning Graph convolutional networks(GCN) Tensor decomposition Propagation prediction
下载PDF
Improved Density Peaking Algorithm for Community Detection Based on Graph Representation Learning
6
作者 Jiaming Wang Xiaolan Xie +1 位作者 Xiaochun Cheng Yuhan Wang 《Computer Systems Science & Engineering》 SCIE EI 2022年第12期997-1008,共12页
There is a large amount of information in the network data that we canexploit. It is difficult for classical community detection algorithms to handle network data with sparse topology. Representation learning of netw... There is a large amount of information in the network data that we canexploit. It is difficult for classical community detection algorithms to handle network data with sparse topology. Representation learning of network data is usually paired with clustering algorithms to solve the community detection problem.Meanwhile, there is always an unpredictable distribution of class clusters outputby graph representation learning. Therefore, we propose an improved densitypeak clustering algorithm (ILDPC) for the community detection problem, whichimproves the local density mechanism in the original algorithm and can betteraccommodate class clusters of different shapes. And we study the communitydetection in network data. The algorithm is paired with the benchmark modelGraph sample and aggregate (GraphSAGE) to show the adaptability of ILDPCfor community detection. The plotted decision diagram shows that the ILDPCalgorithm is more discriminative in selecting density peak points compared tothe original algorithm. Finally, the performance of K-means and other clusteringalgorithms on this benchmark model is compared, and the algorithm is proved tobe more suitable for community detection in sparse networks with the benchmarkmodel on the evaluation criterion F1-score. The sensitivity of the parameters ofthe ILDPC algorithm to the low-dimensional vector set output by the benchmarkmodel GraphSAGE is also analyzed. 展开更多
关键词 representation learning data mining low-dimensional embedding community detection density peaking algorithm
下载PDF
Meta-Path-Based Deep Representation Learning for Personalized Point of Interest Recommendation
7
作者 LI Zhong WU Meimei 《Journal of Donghua University(English Edition)》 CAS 2021年第4期310-322,共13页
With the wide application of location-based social networks(LBSNs),personalized point of interest(POI)recommendation becomes popular,especially in the commercial field.Unfortunately,it is challenging to accurately rec... With the wide application of location-based social networks(LBSNs),personalized point of interest(POI)recommendation becomes popular,especially in the commercial field.Unfortunately,it is challenging to accurately recommend POIs to users because the user-POI matrix is extremely sparse.In addition,a user's check-in activities are affected by many influential factors.However,most of existing studies capture only few influential factors.It is hard for them to be extended to incorporate other heterogeneous information in a unified way.To address these problems,we propose a meta-path-based deep representation learning(MPDRL)model for personalized POI recommendation.In this model,we design eight types of meta-paths to fully utilize the rich heterogeneous information in LBSNs for the representations of users and POIs,and deeply mine the correlations between users and POIs.To further improve the recommendation performance,we design an attention-based long short-term memory(LSTM)network to learn the importance of different influential factors on a user's specific check-in activity.To verify the effectiveness of our proposed method,we conduct extensive experiments on a real-world dataset,Foursquare.Experimental results show that the MPDRL model improves at least 16.97%and 23.55%over all comparison methods in terms of the metric Precision@N(Pre@N)and Recall@N(Rec@N)respectively. 展开更多
关键词 meta-path location-based recommendation heterogeneous information network(HIN) deep representation learning
下载PDF
Heterogeneous graph construction and node representation learning method of Treatise on Febrile Diseases based on graph convolutional network
8
作者 YAN Junfeng WEN Zhihua ZOU Beiji 《Digital Chinese Medicine》 2022年第4期419-428,共10页
Objective To construct symptom-formula-herb heterogeneous graphs structured Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)dataset and explore an optimal learning method represented with node attributes based o... Objective To construct symptom-formula-herb heterogeneous graphs structured Treatise on Febrile Diseases(Shang Han Lun,《伤寒论》)dataset and explore an optimal learning method represented with node attributes based on graph convolutional network(GCN).Methods Clauses that contain symptoms,formulas,and herbs were abstracted from Treatise on Febrile Diseases to construct symptom-formula-herb heterogeneous graphs,which were used to propose a node representation learning method based on GCN−the Traditional Chinese Medicine Graph Convolution Network(TCM-GCN).The symptom-formula,symptom-herb,and formula-herb heterogeneous graphs were processed with the TCM-GCN to realize high-order propagating message passing and neighbor aggregation to obtain new node representation attributes,and thus acquiring the nodes’sum-aggregations of symptoms,formulas,and herbs to lay a foundation for the downstream tasks of the prediction models.Results Comparisons among the node representations with multi-hot encoding,non-fusion encoding,and fusion encoding showed that the Precision@10,Recall@10,and F1-score@10 of the fusion encoding were 9.77%,6.65%,and 8.30%,respectively,higher than those of the non-fusion encoding in the prediction studies of the model.Conclusion Node representations by fusion encoding achieved comparatively ideal results,indicating the TCM-GCN is effective in realizing node-level representations of heterogeneous graph structured Treatise on Febrile Diseases dataset and is able to elevate the performance of the downstream tasks of the diagnosis model. 展开更多
关键词 Graph convolutional network(GCN) Heterogeneous graph Treatise on Febrile Diseases(Shang Han Lun 《伤寒论》) Node representations on heterogeneous graph Node representation learning
下载PDF
Enhanced Deep Autoencoder Based Feature Representation Learning for Intelligent Intrusion Detection System 被引量:2
9
作者 Thavavel Vaiyapuri Adel Binbusayyis 《Computers, Materials & Continua》 SCIE EI 2021年第9期3271-3288,共18页
In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owin... In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owing to the lack of accurately labeled network traffic data,many unsupervised feature representation learning models have been proposed with state-of-theart performance.Yet,these models fail to consider the classification error while learning the feature representation.Intuitively,the learnt feature representation may degrade the performance of the classification task.For the first time in the field of intrusion detection,this paper proposes an unsupervised IDS model leveraging the benefits of deep autoencoder(DAE)for learning the robust feature representation and one-class support vector machine(OCSVM)for finding the more compact decision hyperplane for intrusion detection.Specially,the proposed model defines a new unified objective function to minimize the reconstruction and classification error simultaneously.This unique contribution not only enables the model to support joint learning for feature representation and classifier training but also guides to learn the robust feature representation which can improve the discrimination ability of the classifier for intrusion detection.Three set of evaluation experiments are conducted to demonstrate the potential of the proposed model.First,the ablation evaluation on benchmark dataset,NSL-KDD validates the design decision of the proposed model.Next,the performance evaluation on recent intrusion dataset,UNSW-NB15 signifies the stable performance of the proposed model.Finally,the comparative evaluation verifies the efficacy of the proposed model against recently published state-of-the-art methods. 展开更多
关键词 CYBERSECURITY network intrusion detection deep learning autoencoder stacked autoencoder feature representational learning joint learning one-class classifier OCSVM
下载PDF
Visual evaluation of graph representation learning based on the presentation of community structures
10
作者 Yong Zhang Lihong Cai +5 位作者 Yuhua Liu Yize Li Songyue Li Yuming Ma Yuwei Meng Zhiguang Zhou 《Visual Informatics》 EI 2024年第3期29-31,共3页
Various graph representation learning models convert graph nodes into vectors using techniques like matrix factorization,random walk,and deep learning.However,choosing the right method for different tasks can be chall... Various graph representation learning models convert graph nodes into vectors using techniques like matrix factorization,random walk,and deep learning.However,choosing the right method for different tasks can be challenging.Communities within networks help reveal underlying structures and correlations.Investigating how different models preserve community properties is crucial for identifying the best graph representation for data analysis.This paper defines indicators to explore the perceptual quality of community properties in representation learning spaces,including the consistency of community structure,node distribution within and between communities,and central node distribution.A visualization system presents these indicators,allowing users to evaluate models based on community structures.Case studies demonstrate the effectiveness of the indicators for the visual evaluation of graph representation learning models. 展开更多
关键词 Graph representation learning Community structure Visual perception
原文传递
Controllable image generation based on causal representation learning 被引量:1
11
作者 Shanshan HUANG Yuanhao WANG +3 位作者 Zhili GONG Jun LIAO Shu WANG Li LIU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第1期135-148,共14页
Artificial intelligence generated content(AIGC)has emerged as an indispensable tool for producing large-scale content in various forms,such as images,thanks to the significant role that AI plays in imitation and produ... Artificial intelligence generated content(AIGC)has emerged as an indispensable tool for producing large-scale content in various forms,such as images,thanks to the significant role that AI plays in imitation and production.However,interpretability and controllability remain challenges.Existing AI methods often face challenges in producing images that are both flexible and controllable while considering causal relationships within the images.To address this issue,we have developed a novel method for causal controllable image generation(CCIG)that combines causal representation learning with bi-directional generative adversarial networks(GANs).This approach enables humans to control image attributes while considering the rationality and interpretability of the generated images and also allows for the generation of counterfactual images.The key of our approach,CCIG,lies in the use of a causal structure learning module to learn the causal relationships between image attributes and joint optimization with the encoder,generator,and joint discriminator in the image generation module.By doing so,we can learn causal representations in image’s latent space and use causal intervention operations to control image generation.We conduct extensive experiments on a real-world dataset,CelebA.The experimental results illustrate the effectiveness of CCIG. 展开更多
关键词 Image generation Controllable image editing Causal structure learning Causal representation learning
原文传递
Metarelation2vec:A Metapath-Free Scalable Representation Learning Model for Heterogeneous Networks
12
作者 Lei Chen Yuan Li +1 位作者 Yong Lei Xingye Deng 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第2期553-575,共23页
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning models.However,any metapath... Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning models.However,any metapaths consisting of multiple,simple metarelations must be driven by domain experts.These sensitive,expensive,and limited metapaths severely reduce the flexibility and scalability of the existing models.A metapath-free,scalable representation learning model,called Metarelation2vec,is proposed for HNs with biased joint learning of all metarelations in a bid to address this problem.Specifically,a metarelation-aware,biased walk strategy is first designed to obtain better training samples by using autogenerating cooperation probabilities for all metarelations rather than using expert-given metapaths.Thereafter,grouped nodes by the type,a common and shallow skip-gram model is used to separately learn structural proximity for each node type.Next,grouped links by the type,a novel and shallow model is used to separately learn the semantic proximity for each link type.Finally,supervised by the cooperation probabilities of all meta-words,the biased training samples are thrown into the shallow models to jointly learn the structural and semantic information in the HNs,ensuring the accuracy and scalability of the models.Extensive experimental results on three tasks and four open datasets demonstrate the advantages of our proposed model. 展开更多
关键词 metarelation random walk heterogeneous network metapath representation learning
原文传递
Representation learning: serial-autoencoder for personalized recommendation
13
作者 Yi ZHU Yishuai GENG +2 位作者 Yun LI Jipeng QIANG Xindong WU 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第4期61-72,共12页
Nowadays,the personalized recommendation has become a research hotspot for addressing information overload.Despite this,generating effective recommendations from sparse data remains a challenge.Recently,auxiliary info... Nowadays,the personalized recommendation has become a research hotspot for addressing information overload.Despite this,generating effective recommendations from sparse data remains a challenge.Recently,auxiliary information has been widely used to address data sparsity,but most models using auxiliary information are linear and have limited expressiveness.Due to the advantages of feature extraction and no-label requirements,autoencoder-based methods have become quite popular.However,most existing autoencoder-based methods discard the reconstruction of auxiliary information,which poses huge challenges for better representation learning and model scalability.To address these problems,we propose Serial-Autoencoder for Personalized Recommendation(SAPR),which aims to reduce the loss of critical information and enhance the learning of feature representations.Specifically,we first combine the original rating matrix and item attribute features and feed them into the first autoencoder for generating a higher-level representation of the input.Second,we use a second autoencoder to enhance the reconstruction of the data representation of the prediciton rating matrix.The output rating information is used for recommendation prediction.Extensive experiments on the MovieTweetings and MovieLens datasets have verified the effectiveness of SAPR compared to state-of-the-art models. 展开更多
关键词 personalized recommendation autoencoder representation learning collaborative filtering
原文传递
Causal Reasoning Meets Visual Representation Learning: A Prospective Study 被引量:4
14
作者 Yang Liu Yu-Shen Wei +2 位作者 Hong Yan Guan-Bin Li Liang Lin 《Machine Intelligence Research》 EI CSCD 2022年第6期485-511,共27页
Visual representation learning is ubiquitous in various real-world applications,including visual comprehension,video understanding,multi-modal analysis,human-computer interaction,and urban computing.Due to the emergen... Visual representation learning is ubiquitous in various real-world applications,including visual comprehension,video understanding,multi-modal analysis,human-computer interaction,and urban computing.Due to the emergence of huge amounts of multimodal heterogeneous spatial/temporal/spatial-temporal data in the big data era,the lack of interpretability,robustness,and out-of-distribution generalization are becoming the challenges of the existing visual models.The majority of the existing methods tend to fit the original data/variable distributions and ignore the essential causal relations behind the multi-modal knowledge,which lacks unified guidance and analysis about why modern visual representation learning methods easily collapse into data bias and have limited generalization and cognitive abilities.Inspired by the strong inference ability of human-level agents,recent years have therefore witnessed great effort in developing causal reasoning paradigms to realize robust representation and model learning with good cognitive ability.In this paper,we conduct a comprehensive review of existing causal reasoning methods for visual representation learning,covering fundamental theories,models,and datasets.The limitations of current methods and datasets are also discussed.Moreover,we propose some prospective challenges,opportunities,and future research directions for benchmarking causal reasoning algorithms in visual representation learning.This paper aims to provide a comprehensive overview of this emerging field,attract attention,encourage discussions,bring to the forefront the urgency of developing novel causal reasoning methods,publicly available benchmarks,and consensus-building standards for reliable visual representation learning and related real-world applications more efficiently. 展开更多
关键词 Causal reasoning visual representation learning reliable artificial intelligence spatial-temporal data multi-modal analysis
原文传递
Representation learning in discourse parsing:A survey 被引量:2
15
作者 SONG Wei LIU LiZhen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第10期1921-1946,共26页
Neural network based deep learning methods aim to learn representations of data and have produced state-of-the-art results in many natural language processing(NLP)tasks.Discourse parsing is an important research topic... Neural network based deep learning methods aim to learn representations of data and have produced state-of-the-art results in many natural language processing(NLP)tasks.Discourse parsing is an important research topic in discourse analysis,aiming to infer the discourse structure and model the coherence of a given text.This survey covers text-level discourse parsing,shallow discourse parsing and coherence assessment.We first introduce the basic concepts and traditional approaches,and then focus on recent advances in discourse structure oriented representation learning.We also introduce a trend of discourse structure aware representation learning that is to exploit discourse structures or discourse objectives for learning representations of sentences and documents for specific applications or for general purpose.Finally,we present a brief summary of the progress and discuss several future directions. 展开更多
关键词 discourse analysis discourse parsing discourse relation coherence assessment representation learning
原文传递
Contrastive Self-supervised Representation Learning Using Synthetic Data 被引量:2
16
作者 Dong-Yu She Kun Xu 《International Journal of Automation and computing》 EI CSCD 2021年第4期556-567,共12页
Learning discriminative representations with deep neural networks often relies on massive labeled data, which is expensive and difficult to obtain in many real scenarios. As an alternative, self-supervised learning th... Learning discriminative representations with deep neural networks often relies on massive labeled data, which is expensive and difficult to obtain in many real scenarios. As an alternative, self-supervised learning that leverages input itself as supervision is strongly preferred for its soaring performance on visual representation learning. This paper introduces a contrastive self-supervised framework for learning generalizable representations on the synthetic data that can be obtained easily with complete controllability.Specifically, we propose to optimize a contrastive learning task and a physical property prediction task simultaneously. Given the synthetic scene, the first task aims to maximize agreement between a pair of synthetic images generated by our proposed view sampling module, while the second task aims to predict three physical property maps, i.e., depth, instance contour maps, and surface normal maps. In addition, a feature-level domain adaptation technique with adversarial training is applied to reduce the domain difference between the realistic and the synthetic data. Experiments demonstrate that our proposed method achieves state-of-the-art performance on several visual recognition datasets. 展开更多
关键词 Self-supervised learning contrastive learning synthetic image convolutional neural network representation learning
原文传递
Representation learning via an integrated autoencoder for unsupervised domain adaptation 被引量:1
17
作者 Yi ZHU Xindong WU +2 位作者 Jipeng QIANG Yunhao YUAN Yun LI 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第5期75-87,共13页
The purpose of unsupervised domain adaptation is to use the knowledge of the source domain whose data distribution is different from that of the target domain for promoting the learning task in the target domain.The k... The purpose of unsupervised domain adaptation is to use the knowledge of the source domain whose data distribution is different from that of the target domain for promoting the learning task in the target domain.The key bottleneck in unsupervised domain adaptation is how to obtain higher-level and more abstract feature representations between source and target domains which can bridge the chasm of domain discrepancy.Recently,deep learning methods based on autoencoder have achieved sound performance in representation learning,and many dual or serial autoencoderbased methods take different characteristics of data into consideration for improving the effectiveness of unsupervised domain adaptation.However,most existing methods of autoencoders just serially connect the features generated by different autoencoders,which pose challenges for the discriminative representation learning and fail to find the real cross-domain features.To address this problem,we propose a novel representation learning method based on an integrated autoencoders for unsupervised domain adaptation,called IAUDA.To capture the inter-and inner-domain features of the raw data,two different autoencoders,which are the marginalized autoencoder with maximum mean discrepancy(mAE)and convolutional autoencoder(CAE)respectively,are proposed to learn different feature representations.After higher-level features are obtained by these two different autoencoders,a sparse autoencoder is introduced to compact these inter-and inner-domain representations.In addition,a whitening layer is embedded for features processed before the mAE to reduce redundant features inside a local area.Experimental results demonstrate the effectiveness of our proposed method compared with several state-of-the-art baseline methods. 展开更多
关键词 unsupervised domain adaptation representation learning marginalized autoencoder convolutional autoen-coder sparse autoencoder
原文传递
Recognizing mixed urban functions from human activities using representation learning methods 被引量:1
18
作者 Junjie Hu Yong Gao +1 位作者 Xuechen Wang Yu Liu 《International Journal of Digital Earth》 SCIE EI 2023年第1期289-307,共19页
When various urban functions are integrated into one location,they form a mixture of functions.The emerging big data promote an alternative way to identify mixed functions.However,current methods are largely unable to... When various urban functions are integrated into one location,they form a mixture of functions.The emerging big data promote an alternative way to identify mixed functions.However,current methods are largely unable to extract deep features in these data,resulting in low accuracy.In this study,we focused on recognizing mixed urban functions from the perspective of human activities,which are essential indicators of functional areas in a city.We proposed a framework to comprehensively extract deep features of human activities in big data,including activity dynamics,mobility interactions,and activity semantics,through representation learning methods.Then,integrating these features,we employed fuzzy clustering to identify the mixture of urban functions.We conducted a case study using taxiflow and social media data in Beijing,China,in whichfive urban functions and their correlations with land use were recognized.The mixture degree of urban functions in each location was revealed,which had a negative correlation with taxi trip distance.The results confirmed the advantages of our method in understanding mixed urban functions by employing various representation learning methods to comprehensively depict human activities.This study has important implications for urban planners in understanding urban systems and developing better strategies. 展开更多
关键词 Mixed urban function human activity representation learning spatiotemporal data mining
原文传递
Federated unsupervised representation learning
19
作者 Fengda ZHANG Kun KUANG +8 位作者 Long CHEN Zhaoyang YOU Tao SHEN Jun XIAO Yin ZHANG Chao WU Fei WU Yueting ZHUANG Xiaolin LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第8期1181-1193,共13页
To leverage the enormous amount of unlabeled data on distributed edge devices,we formulate a new problem in federated learning called federated unsupervised representation learning(FURL)to learn a common representatio... To leverage the enormous amount of unlabeled data on distributed edge devices,we formulate a new problem in federated learning called federated unsupervised representation learning(FURL)to learn a common representation model without supervision while preserving data privacy.FURL poses two new challenges:(1)data distribution shift(non-independent and identically distributed,non-IID)among clients would make local models focus on different categories,leading to the inconsistency of representation spaces;(2)without unified information among the clients in FURL,the representations across clients would be misaligned.To address these challenges,we propose the federated contrastive averaging with dictionary and alignment(FedCA)algorithm.FedCA is composed of two key modules:a dictionary module to aggregate the representations of samples from each client which can be shared with all clients for consistency of representation space and an alignment module to align the representation of each client on a base model trained on public data.We adopt the contrastive approach for local model training.Through extensive experiments with three evaluation protocols in IID and non-IID settings,we demonstrate that FedCA outperforms all baselines with significant margins. 展开更多
关键词 Federated learning Unsupervised learning representation learning Contrastive learning
原文传递
Latent discriminative representation learning for speaker recognition
20
作者 Duolin HUANG Qirong MAO +3 位作者 Zhongchen MA Zhishen ZHENG Sidheswar ROUTRYAR Elias-Nii-Noi OCQUAYE 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2021年第5期697-708,共12页
Extracting discriminative speaker-specific representations from speech signals and transforming them into fixed length vectors are key steps in speaker identification and verification systems.In this study,we propose ... Extracting discriminative speaker-specific representations from speech signals and transforming them into fixed length vectors are key steps in speaker identification and verification systems.In this study,we propose a latent discriminative representation learning method for speaker recognition.We mean that the learned representations in this study are not only discriminative but also relevant.Specifically,we introduce an additional speaker embedded lookup table to explore the relevance between different utterances from the same speaker.Moreover,a reconstruction constraint intended to learn a linear mapping matrix is introduced to make representation discriminative.Experimental results demonstrate that the proposed method outperforms state-of-the-art methods based on the Apollo dataset used in the Fearless Steps Challenge in INTERSPEECH2019 and the TIMIT dataset. 展开更多
关键词 Speaker recognition Latent discriminative representation learning Speaker embedding lookup table Linear mapping matrix
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部