In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using ...In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process.展开更多
Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strat...Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strategy considering residual stress in the base bond SPH method was proposed to simulate failures in layered rocks and slopes and verified by experimental results and other simulation methods(i.e.,the discrete element method).Modified Mohr–Coulomb failure criterion was applied to distinguish the mixed failure of tensile and shear.Bond fracture markψwas introduced to improve the kernel function after tensile damage,and the calculation of residual stress after the damage was derived after shear damage.Numerical simulations were carried out to evaluate its performance under different stress and scale conditions and to verify its effectiveness in realistically reproducing crack initiation and propagation and coalescence,even fracture and separation.The results indicate that the improved cracking strategy precisely captures the fracture and failure pattern in layered rocks and rock slopes.The residual stress of brittle tock is correctly captured by the improved SPH method.The improved SPH method that considers residual strength shows an approximately 13%improvement in accuracy for the safety factor of anti-dip layered slopes compared to the method that does not consider residual strength,as validated against analytical solutions.We infer that the improved SPH method is effective and shows promise for applications to continuous and discontinuous rock masses.展开更多
A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the resi...A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the residual strain from the differences in thermoelastic contraction of fused silica with different fictive temperatures from the initial frozen-in temperatures to ambient temperature.The residual stress fields of mitigated damage sites for the CO_(2)laser-annealed case are obtained by a finite element analysis of equilibrium equations and constitutive equations.The simulated results indicate that the proposed model can accurately evaluate the residual stress fields of laser-annealed mitigated damage sites with a complex thermal history.The calculated maximum hoop stress is in good agreement with the reported experimental result.The estimated optical retardance profiles from the calculated radial and hoop stress fields are consistent with the photoelastic measurements.These results provide sufficient evidence to demonstrate the suitability of the proposed model for describing the residual stresses of mitigated fused silica damage sites after CO_(2)laser annealing.展开更多
The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array ...The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array of the Taguchi method.A proposed numerical model for predicting the correlation of mechanical properties was supplemented with experimental data.The quenching process was conducted using a cooling medium called “nanofluids”.Nanoparticles were dissolved in a liquid phase at various concentrations(0.5%,1%,2.5%,and 5% vf) to prepare the nanofluids.Experimental investigations were done to assess the impact of temperature,base fluid,volume fraction,and soaking time on the mechanical properties.The outcomes showed that all conditions led to a noticeable improvement in the alloy's hardness which reached 100%,the grain size was refined about 80%,and unwanted residual stresses were removed from 50 to 150 MPa.Adding 5% of CuO nanoparticles to oil led to the best grain size refinement,while adding 2.5% of Al_(2)O_(3) nanoparticles to engine oil resulted in the greatest compressive residual stress.The experimental variables were used as the input data for the established numerical ANN model,and the mechanical properties were the output.Upwards of 99% of the training network's correlations seemed to be positive.The estimated result,nevertheless,matched the experimental dataset exactly.Thus,the ANN model is an effective tool for reflecting the effects of quenching conditions on the mechanical properties of AISI 1035.展开更多
A three-dimensional finite element approach based on ABAQUS code was developed to investigate the effect of welding sequence on welding residual stress distribution in a thin-walled 6061 aluminum alloy structure. To o...A three-dimensional finite element approach based on ABAQUS code was developed to investigate the effect of welding sequence on welding residual stress distribution in a thin-walled 6061 aluminum alloy structure. To obtain sound numerical results, the therrno-mechanical behaviour was simulated using a direct-coupled formulation. Nine different simulation sequences were carried out by single-pass TIG welding of an octagonal pipe-plate joint, and the distributions of longitudinal and transverse residual stresses both on the outer and inner surfaces of the pipe were analyzed. The results suggest that the final residual stresses in the weld and its vicinity are not affected by the initial residual stresses of the structure. Selecting a suitable welding sequence can reduce the final residual stress in an octagonal pipe-plate joint.展开更多
The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited o...The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.展开更多
Measurement of residual stress is significant to ensure safety, reliability and the life of composites, and currently has been a hot issue in scientific research. The fabrication processes such as ...Measurement of residual stress is significant to ensure safety, reliability and the life of composites, and currently has been a hot issue in scientific research. The fabrication processes such as machining, and heat treatment inherit either kind of residual stress which had either positive consequences or negative ones, for example, the fatigue limit of a component enhances by compressive stress, whereas corrosion resistance gets reduced by tensile stress. This study is aimed at a brief overview of the recent advancement in this field to help researchers in the in-depth study of measuring residual stress. It helps them in selecting the most appropriate techniques among destructive methods i.e., mainly Contour, ring core, deep hole-drilling method, and non-destructive techniques i.e., diffraction, ultrasonic method, depending on their requirements and applications. For each available technique, working methodology, physical limitations, and applications are discussed. At the end of this paper, future trends regarding an assessment of residual stress have been forecasted.展开更多
The internal residual stress within a TC 17 titanium alloy joint welded by linear friction welding (LFW) was measured by the contour method, which is a relatively new and destructive technique to obtain a full map o...The internal residual stress within a TC 17 titanium alloy joint welded by linear friction welding (LFW) was measured by the contour method, which is a relatively new and destructive technique to obtain a full map of internal residual stress. The specimen was first cut into two parts; the out-of-plane displacement contour formed by the release of the residual stress was then measured; finally, taking the measured contour of the cut plane as the boundary conditions, a linear elastic finite element analysis was carried out to calculate the corresponding distribution of residual stress normal to the cut plane. The internal stress distribution of the TC 17 titanium alloy LFWjoint was also analyzed. The results show that the tensile residual stress in the TC17 LFW weld is mainly present within a region about 12 mm from the weld centerline; the peak tensile residual stress occurs at the weld centerline and reaches 360 MPa (about one third of the yield strength of TC17 alloy); within the weld zone of the TC17 LFW weld, the through-thickness stress is not uniform, and the internal stress is larger than that near the top or bottom surface.展开更多
Numerical simulation and experimental results were employed for the identification of the most vulnerable zones in three-pass cold-metal-transferring (CMT) welded joint. The residual stress distribution in the joint...Numerical simulation and experimental results were employed for the identification of the most vulnerable zones in three-pass cold-metal-transferring (CMT) welded joint. The residual stress distribution in the joint was predicted by finite element (FE) method, while the structural morphology of distinctive zones was obtained through metallographic experiments. The highest principal stress made the symmetric face of the joint most sensitive to tensile cracks under service conditions. Whereas, the boundaries between the weld seam and the base plates were sensitive to cracks because the equivalent von Mises stress was the highest when the first interpass cooling was finished. The third weld pass and the inter-pass remelted zones exhibited the modest mechanical performances as a result of the coarse grain and coarse grain boundary, respectively. The most vulnerable zones were regarded to be the crossed parts between the zones identified by numerical and experimental methods.展开更多
A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R...A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R lines in the fluorescence spectra va ry with the distance from the centre of indentation. The magnitude of load appli ed on the surface of the materials through the indenter influences the shifts of R lines to great extent. The luminescence of R lines of the materials before indenting is used to determine the residual stresses around the indentation in the materials, assuming that the stress tensor is transversely isotropic. Final ly, the term of hydrostatic stress is adopted to explain and compare different residual stresses around indentations with the increase of the indenting load an d the distance from the centre of indentations. <展开更多
Rolling path squeezes and rolling residual stresses of large diameter circular saw body for wood, generated by rolling pressure from 10 up to 120 bar were examined. X-ray diffraction, Barkhausen noise (BN) and Full Wi...Rolling path squeezes and rolling residual stresses of large diameter circular saw body for wood, generated by rolling pressure from 10 up to 120 bar were examined. X-ray diffraction, Barkhausen noise (BN) and Full Width of the peak at a Half Maximum (FWHM) (o) methods for evaluation of residual stresses were used. Dependencies of a tangential rolling residual stresses inside rolling paths upon rolling pressure p (bar) and rolling area A (mm2) were evaluated. The rolling pressure, as large as 60 bar, resulting in the rolling squeeze as high as 0.04 mm2, and, tangential residual compression stresses inside a rolling path, as large as ?TI = ?822 MPa, was considered to be the largest for the practical application.展开更多
Compaction process simulation and residual stress prediction of green PM compact were carried out with elasto-plastic 3D FEA based on the modified Drueker-Prager Cap model in Abaqus. The model parameters of the invest...Compaction process simulation and residual stress prediction of green PM compact were carried out with elasto-plastic 3D FEA based on the modified Drueker-Prager Cap model in Abaqus. The model parameters of the investigated powder Distaloy AE were determined as functions of relative density through typical mechanical property tests of powder. The model was implemented as a user subroutine USDFLD. Single sided compaction of a d20 ram^5 mm disk green compact of Distaloy AE was simulated, and the residual stress of the disk after ejection was predicted with FEA. The FEA results of the compaction process and the residual stress of the disk show good agreement with compaction experiments and X-ray diffraction measurements, which validates the model and its parameters. The results indicate that the compressive residual stresses exist mainly in a thin layer on the side surface, but the residual stresses are very small on the top and bottom surfaces.展开更多
A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R...A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R lines in the fluorescence spectra va ry with the distance from the centre of indentation. The magnitude of load appli ed on the surface of the materials through the indenter influences the shifts of R lines to great extent. The luminescence of R lines of the materials before indenting is used to determine the residual stresses around the indentation in the materials, assuming that the stress tensor is transversely isotropic. Final ly, the term of hydrostatic stress is adopted to explain and compare different residual stresses around indentations with the increase of the indenting load an d the distance from the centre of indentations. 【展开更多
Shot peening can improve fatigue strength of materials by creating compressive residual stress field in their surface layers,and offers a protection against crack initiation and propagation,corrosion,etc.And fatigue f...Shot peening can improve fatigue strength of materials by creating compressive residual stress field in their surface layers,and offers a protection against crack initiation and propagation,corrosion,etc.And fatigue fracture and stress corrosion cracking of NAK80 steel parts are improved effectively.Currently there lacks in-depth research in which the beneficial effect of the residual stress may be offset by the surface damage associated with shot peening,especially in terms of the research on the effective control of shot peening intensity.In order to obtain the surface residual stress field of NAK80 steel after shot peening,the samples are shot peened by pneumatic shot peening machine with different rules.The residual stress in the precipitation-hardening layer of NAK80 steel is measured before and after a shot peening treatment by X-ray diffraction method.In order to obtain true residual stress field,integral compensation method is used to correct results.By setting up analytical model of the residual stress in the process of shot peening,the surface residual stress is calculated after shot peening,and mentioning the reason of errors occurred between calculated and experimental residual stresses,which is mainly caused by the measurement error of the shoot arc height.At the same time,micro hardness,microstructure and roughness in the precipitation-hardening layer of NAK80 steel before and after shot peening were measured and surveyed in order to obtain the relation between shot peening strength and surface quality in the precipitation-hardening layer.The results show that the surface quality of NAK80 steel is significantly improved by shot peening process.The over peening effect is produced when the shot peening intensity is too high,it is disadvantageous to improve sample's surface integrity,and leading to reduce the fatigue life.When arc high value of optimal shot peening is 0.40 mm,the surface quality is the best,and the depth of residual stress in the precipitation-hardening layer reaches to about 450 μm.Numerical calculation is very useful to define the process parameters when a specific residual stress profile is intended,either to quantify the benefits on a specific property like fatigue life or to help on modeling a forming process like shot peen forming.In particular,the proposed parameter optimization in the progress of shot peening and effective control of the surface texture provide new rules for the quantitative evaluations of shot peening surface modification of NAK80 steel.展开更多
Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface e...Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy(SEM), micro-Raman spectroscopy(MRS), and transmission electron microscopy(TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and crosssection residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.展开更多
Four different welding sequences of double-pulse MIG welding were conducted for 6061-T6 aluminum alloy automobile bumpers by using nonlinear elastoplasticity finite element method based on ABAQUS software.The post-wel...Four different welding sequences of double-pulse MIG welding were conducted for 6061-T6 aluminum alloy automobile bumpers by using nonlinear elastoplasticity finite element method based on ABAQUS software.The post-welding residual stress and deformation were definitely different among the four welding sequences.The results showed that the highest temperature in Solution A was approximately 200℃higher than the melting point of base metal.High residual stress was resulted from this large temperature gradient and mainly concentrated on the welding vicinity between beam and crash box.The welding deformation primarily occurred in both of the contraction of two-ends of the beam and the self-contraction of crash box.Compared with other welding sequences,the residual stress in Solution A was the smallest,whereas the welding deformation was the largest.However,the optimal sequence was Solution B because of the effective reduction of residual stress and good assembly requirements.展开更多
The distribution of temperature and then the distribution of residual stress and distortion in the stiffened aluminum alloy Al6061-T6 plates under the metal inert gas(MIG)welding process were investigated by three dim...The distribution of temperature and then the distribution of residual stress and distortion in the stiffened aluminum alloy Al6061-T6 plates under the metal inert gas(MIG)welding process were investigated by three dimensional thermo-mechanical coupled finite element model using Ansys software.The properties of materials were considered temperature-dependent and the filler metal was added to the workpiece by the element birth and death technique.In three modes of current,two different speeds and two various sequences,the distribution of residual stress and distortion were calculated and analyzed.The results showed that increase in welding speed decreased the vertical deflection in the plate,transverse shrinkage and angular distortion of plate and the lateral deflection of stiffener,but increased the maximum longitudinal tensile stress in the plate and stiffener.Furthermore,increase in current increased the residual stress and deformation in the plate and stiffener,and the change in the welding sequence changed the distribution of the distortion in the plate and the stiffener without significant change in the distribution of the longitudinal residual stress.展开更多
In order to reduce the weight of airplane and increase its mechanical behaviors, more and more large integrated parts are applied in modern aviation industry. When machining thin-walled aeroplane parts, more than 90% ...In order to reduce the weight of airplane and increase its mechanical behaviors, more and more large integrated parts are applied in modern aviation industry. When machining thin-walled aeroplane parts, more than 90% of the materials would be removed, resulting in severe distortion of the parts due to the weakened rigidity and the release of residual stress. This might also lead to stress concentration and damage of the parts. The effect of material removal from residually stressed billet is simulated using FEA software MSC. Marc and the causations of distortion is analyzed. To verify the finite element simulation, a high speed milling test on aluminum alloy 7050T7351 is carried out. The results show that the simulation result is consistent with the experimental one. It is concluded that the release of residual stress is the main cause of machining distortion.展开更多
This study aimed to effectively reduce the cracking susceptibility of the laser clad coating by enhancing the environmental temperature during laser cladding,and reveal the residual stress distribution in different de...This study aimed to effectively reduce the cracking susceptibility of the laser clad coating by enhancing the environmental temperature during laser cladding,and reveal the residual stress distribution in different depths of the coating.The TiNi/Ti2Ni-based coatings were prepared on Ti6Al4V by laser cladding at different environmental temperatures of25,400,600and800°C.The changes in residual stress along the depth of the coatings were investigated in detail by the nanoindentation method.Results showed that the average residual stress of2.90GPa in the coating prepared at25°C was largest.With the increase in environmental temperature,the average residual stress was reduced to1.34GPa(400°C),0.70GPa(600°C)and0GPa(800°C).For all the coatings,the residual stress was increased with increasing the distance from the coating surface.Enhancing the environmental temperature can effectively reduce the cracking susceptibility of the coatings.展开更多
The symmetrical cell model is widely used to study the residual stress induced by shot peening. However, the correlation between the predicted residual stresses and the shot peening coverage, which is a big challenge ...The symmetrical cell model is widely used to study the residual stress induced by shot peening. However, the correlation between the predicted residual stresses and the shot peening coverage, which is a big challenge for the researchers of the symmetrical cell model, is still not established. Based on the dynamic stresses and the residual stresses outputted from the symmetrical cell model, the residual stresses corresponding to full coverage are evalu- ated by normal distribution analysis. The predicted nodal dynamic stresses with respect to four corner points indicate that the equi-biaxial stress state exists only for the first shot impact. Along with the increase of shot number, the interactions of multiple shot impacts make the fluctuation of the nodal dynamic stresses about an almost identical value more and more obvious. The mean values and standard deviations of the residual stresses gradually tend to be stable with the increase of the number of shot peening series. The mean values at each corner point are almost the same after the third peening series, which means that an equi-biaxial stress state corresponding to the full coverage of shot peening is achieved. Therefore, the mean values of the nodal residual stresses with respect to a specific transverse cross-section below the peened surface can be used to correlate the measured data by X-ray. The predicted residual stress profile agrees with the experimental results very well under 200% peening coverage. An effective correlation method is proposed for the nodal residual stresses predicted by the symmetrical cell model and the shot peening coverage.展开更多
基金Project(2021GK1040)supported by the Major Projects of Scientific and Technology Innovation of Hunan Province,ChinaProject(52375398)supported by the National Natural Science Foundation of China。
文摘In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process.
基金funded by the National Key Research and Development Program of China(Grant No.2023YFC3008300,Grant No.2019YFC1509702)the National Natural Science Foundation of China(Grant No.42172296).
文摘Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strategy considering residual stress in the base bond SPH method was proposed to simulate failures in layered rocks and slopes and verified by experimental results and other simulation methods(i.e.,the discrete element method).Modified Mohr–Coulomb failure criterion was applied to distinguish the mixed failure of tensile and shear.Bond fracture markψwas introduced to improve the kernel function after tensile damage,and the calculation of residual stress after the damage was derived after shear damage.Numerical simulations were carried out to evaluate its performance under different stress and scale conditions and to verify its effectiveness in realistically reproducing crack initiation and propagation and coalescence,even fracture and separation.The results indicate that the improved cracking strategy precisely captures the fracture and failure pattern in layered rocks and rock slopes.The residual stress of brittle tock is correctly captured by the improved SPH method.The improved SPH method that considers residual strength shows an approximately 13%improvement in accuracy for the safety factor of anti-dip layered slopes compared to the method that does not consider residual strength,as validated against analytical solutions.We infer that the improved SPH method is effective and shows promise for applications to continuous and discontinuous rock masses.
基金Project supported by the National Natural Science Foundation of China(Grant No.62275235).
文摘A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the residual strain from the differences in thermoelastic contraction of fused silica with different fictive temperatures from the initial frozen-in temperatures to ambient temperature.The residual stress fields of mitigated damage sites for the CO_(2)laser-annealed case are obtained by a finite element analysis of equilibrium equations and constitutive equations.The simulated results indicate that the proposed model can accurately evaluate the residual stress fields of laser-annealed mitigated damage sites with a complex thermal history.The calculated maximum hoop stress is in good agreement with the reported experimental result.The estimated optical retardance profiles from the calculated radial and hoop stress fields are consistent with the photoelastic measurements.These results provide sufficient evidence to demonstrate the suitability of the proposed model for describing the residual stresses of mitigated fused silica damage sites after CO_(2)laser annealing.
基金Kut Technical Institute for their funding supports。
文摘The present study establishes a new estimation model using an artificial neural network(ANN) to predict the mechanical properties of the AISI 1035 alloy.The experiments were designed based on the L16 orthogonal array of the Taguchi method.A proposed numerical model for predicting the correlation of mechanical properties was supplemented with experimental data.The quenching process was conducted using a cooling medium called “nanofluids”.Nanoparticles were dissolved in a liquid phase at various concentrations(0.5%,1%,2.5%,and 5% vf) to prepare the nanofluids.Experimental investigations were done to assess the impact of temperature,base fluid,volume fraction,and soaking time on the mechanical properties.The outcomes showed that all conditions led to a noticeable improvement in the alloy's hardness which reached 100%,the grain size was refined about 80%,and unwanted residual stresses were removed from 50 to 150 MPa.Adding 5% of CuO nanoparticles to oil led to the best grain size refinement,while adding 2.5% of Al_(2)O_(3) nanoparticles to engine oil resulted in the greatest compressive residual stress.The experimental variables were used as the input data for the established numerical ANN model,and the mechanical properties were the output.Upwards of 99% of the training network's correlations seemed to be positive.The estimated result,nevertheless,matched the experimental dataset exactly.Thus,the ANN model is an effective tool for reflecting the effects of quenching conditions on the mechanical properties of AISI 1035.
基金Project(61075005)supported by the Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body in Hunan University,ChinaProject(09JJ1007)supported by Preeminent Youth Fund of Hunan Province,ChinaProject(51075132)supported by the National Natural Science Foundation of China
文摘A three-dimensional finite element approach based on ABAQUS code was developed to investigate the effect of welding sequence on welding residual stress distribution in a thin-walled 6061 aluminum alloy structure. To obtain sound numerical results, the therrno-mechanical behaviour was simulated using a direct-coupled formulation. Nine different simulation sequences were carried out by single-pass TIG welding of an octagonal pipe-plate joint, and the distributions of longitudinal and transverse residual stresses both on the outer and inner surfaces of the pipe were analyzed. The results suggest that the final residual stresses in the weld and its vicinity are not affected by the initial residual stresses of the structure. Selecting a suitable welding sequence can reduce the final residual stress in an octagonal pipe-plate joint.
基金Project (51005154) supported by the National Natural Science Foundation of ChinaProject (12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission, ChinaProject (201104271) supported by the China Postdoctoral Science Foundation
文摘The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.
文摘Measurement of residual stress is significant to ensure safety, reliability and the life of composites, and currently has been a hot issue in scientific research. The fabrication processes such as machining, and heat treatment inherit either kind of residual stress which had either positive consequences or negative ones, for example, the fatigue limit of a component enhances by compressive stress, whereas corrosion resistance gets reduced by tensile stress. This study is aimed at a brief overview of the recent advancement in this field to help researchers in the in-depth study of measuring residual stress. It helps them in selecting the most appropriate techniques among destructive methods i.e., mainly Contour, ring core, deep hole-drilling method, and non-destructive techniques i.e., diffraction, ultrasonic method, depending on their requirements and applications. For each available technique, working methodology, physical limitations, and applications are discussed. At the end of this paper, future trends regarding an assessment of residual stress have been forecasted.
基金Project(35061107)supported by the Doctoral Initiation Project of Jiangsu University of Science and Technology,China
文摘The internal residual stress within a TC 17 titanium alloy joint welded by linear friction welding (LFW) was measured by the contour method, which is a relatively new and destructive technique to obtain a full map of internal residual stress. The specimen was first cut into two parts; the out-of-plane displacement contour formed by the release of the residual stress was then measured; finally, taking the measured contour of the cut plane as the boundary conditions, a linear elastic finite element analysis was carried out to calculate the corresponding distribution of residual stress normal to the cut plane. The internal stress distribution of the TC 17 titanium alloy LFWjoint was also analyzed. The results show that the tensile residual stress in the TC17 LFW weld is mainly present within a region about 12 mm from the weld centerline; the peak tensile residual stress occurs at the weld centerline and reaches 360 MPa (about one third of the yield strength of TC17 alloy); within the weld zone of the TC17 LFW weld, the through-thickness stress is not uniform, and the internal stress is larger than that near the top or bottom surface.
基金Project(9140C850205120C8501)supported by the Major Program of State Key Laboratory of Remanufacturing,China
文摘Numerical simulation and experimental results were employed for the identification of the most vulnerable zones in three-pass cold-metal-transferring (CMT) welded joint. The residual stress distribution in the joint was predicted by finite element (FE) method, while the structural morphology of distinctive zones was obtained through metallographic experiments. The highest principal stress made the symmetric face of the joint most sensitive to tensile cracks under service conditions. Whereas, the boundaries between the weld seam and the base plates were sensitive to cracks because the equivalent von Mises stress was the highest when the first interpass cooling was finished. The third weld pass and the inter-pass remelted zones exhibited the modest mechanical performances as a result of the coarse grain and coarse grain boundary, respectively. The most vulnerable zones were regarded to be the crossed parts between the zones identified by numerical and experimental methods.
文摘A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R lines in the fluorescence spectra va ry with the distance from the centre of indentation. The magnitude of load appli ed on the surface of the materials through the indenter influences the shifts of R lines to great extent. The luminescence of R lines of the materials before indenting is used to determine the residual stresses around the indentation in the materials, assuming that the stress tensor is transversely isotropic. Final ly, the term of hydrostatic stress is adopted to explain and compare different residual stresses around indentations with the increase of the indenting load an d the distance from the centre of indentations. <
基金support of the Poznan Networking&Supercomputing Center(PCSS)calculation grant
文摘Rolling path squeezes and rolling residual stresses of large diameter circular saw body for wood, generated by rolling pressure from 10 up to 120 bar were examined. X-ray diffraction, Barkhausen noise (BN) and Full Width of the peak at a Half Maximum (FWHM) (o) methods for evaluation of residual stresses were used. Dependencies of a tangential rolling residual stresses inside rolling paths upon rolling pressure p (bar) and rolling area A (mm2) were evaluated. The rolling pressure, as large as 60 bar, resulting in the rolling squeeze as high as 0.04 mm2, and, tangential residual compression stresses inside a rolling path, as large as ?TI = ?822 MPa, was considered to be the largest for the practical application.
基金Project(2009ZX04004-031-04) supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘Compaction process simulation and residual stress prediction of green PM compact were carried out with elasto-plastic 3D FEA based on the modified Drueker-Prager Cap model in Abaqus. The model parameters of the investigated powder Distaloy AE were determined as functions of relative density through typical mechanical property tests of powder. The model was implemented as a user subroutine USDFLD. Single sided compaction of a d20 ram^5 mm disk green compact of Distaloy AE was simulated, and the residual stress of the disk after ejection was predicted with FEA. The FEA results of the compaction process and the residual stress of the disk show good agreement with compaction experiments and X-ray diffraction measurements, which validates the model and its parameters. The results indicate that the compressive residual stresses exist mainly in a thin layer on the side surface, but the residual stresses are very small on the top and bottom surfaces.
文摘A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R lines in the fluorescence spectra va ry with the distance from the centre of indentation. The magnitude of load appli ed on the surface of the materials through the indenter influences the shifts of R lines to great extent. The luminescence of R lines of the materials before indenting is used to determine the residual stresses around the indentation in the materials, assuming that the stress tensor is transversely isotropic. Final ly, the term of hydrostatic stress is adopted to explain and compare different residual stresses around indentations with the increase of the indenting load an d the distance from the centre of indentations. 【
基金supported by National Natural Science Foundation of China (Grant No. 50772095)Jiangsu Provincial Key Laboratory of Precision and Micro-manufacturing Technology Foundation of China(Grant No. JSPM20 0705)
文摘Shot peening can improve fatigue strength of materials by creating compressive residual stress field in their surface layers,and offers a protection against crack initiation and propagation,corrosion,etc.And fatigue fracture and stress corrosion cracking of NAK80 steel parts are improved effectively.Currently there lacks in-depth research in which the beneficial effect of the residual stress may be offset by the surface damage associated with shot peening,especially in terms of the research on the effective control of shot peening intensity.In order to obtain the surface residual stress field of NAK80 steel after shot peening,the samples are shot peened by pneumatic shot peening machine with different rules.The residual stress in the precipitation-hardening layer of NAK80 steel is measured before and after a shot peening treatment by X-ray diffraction method.In order to obtain true residual stress field,integral compensation method is used to correct results.By setting up analytical model of the residual stress in the process of shot peening,the surface residual stress is calculated after shot peening,and mentioning the reason of errors occurred between calculated and experimental residual stresses,which is mainly caused by the measurement error of the shoot arc height.At the same time,micro hardness,microstructure and roughness in the precipitation-hardening layer of NAK80 steel before and after shot peening were measured and surveyed in order to obtain the relation between shot peening strength and surface quality in the precipitation-hardening layer.The results show that the surface quality of NAK80 steel is significantly improved by shot peening process.The over peening effect is produced when the shot peening intensity is too high,it is disadvantageous to improve sample's surface integrity,and leading to reduce the fatigue life.When arc high value of optimal shot peening is 0.40 mm,the surface quality is the best,and the depth of residual stress in the precipitation-hardening layer reaches to about 450 μm.Numerical calculation is very useful to define the process parameters when a specific residual stress profile is intended,either to quantify the benefits on a specific property like fatigue life or to help on modeling a forming process like shot peen forming.In particular,the proposed parameter optimization in the progress of shot peening and effective control of the surface texture provide new rules for the quantitative evaluations of shot peening surface modification of NAK80 steel.
基金supported by the National Basic Research Program of China (Grant 2012CB937500)the National Natural Science Foundation of China (Grants 11422219, 11227202, 11372217, 11272232)+1 种基金the Program for New Century Excellent Talents in University (Grant NCET-13)China Scholarship Council (201308120092)
文摘Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy(SEM), micro-Raman spectroscopy(MRS), and transmission electron microscopy(TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and crosssection residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.
基金Projects(31665004,31715011) supported by the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,Hunan University,ChinaProject(15C0450) supported by the Educational Commission of Hunan Province of China
文摘Four different welding sequences of double-pulse MIG welding were conducted for 6061-T6 aluminum alloy automobile bumpers by using nonlinear elastoplasticity finite element method based on ABAQUS software.The post-welding residual stress and deformation were definitely different among the four welding sequences.The results showed that the highest temperature in Solution A was approximately 200℃higher than the melting point of base metal.High residual stress was resulted from this large temperature gradient and mainly concentrated on the welding vicinity between beam and crash box.The welding deformation primarily occurred in both of the contraction of two-ends of the beam and the self-contraction of crash box.Compared with other welding sequences,the residual stress in Solution A was the smallest,whereas the welding deformation was the largest.However,the optimal sequence was Solution B because of the effective reduction of residual stress and good assembly requirements.
文摘The distribution of temperature and then the distribution of residual stress and distortion in the stiffened aluminum alloy Al6061-T6 plates under the metal inert gas(MIG)welding process were investigated by three dimensional thermo-mechanical coupled finite element model using Ansys software.The properties of materials were considered temperature-dependent and the filler metal was added to the workpiece by the element birth and death technique.In three modes of current,two different speeds and two various sequences,the distribution of residual stress and distortion were calculated and analyzed.The results showed that increase in welding speed decreased the vertical deflection in the plate,transverse shrinkage and angular distortion of plate and the lateral deflection of stiffener,but increased the maximum longitudinal tensile stress in the plate and stiffener.Furthermore,increase in current increased the residual stress and deformation in the plate and stiffener,and the change in the welding sequence changed the distribution of the distortion in the plate and the stiffener without significant change in the distribution of the longitudinal residual stress.
文摘In order to reduce the weight of airplane and increase its mechanical behaviors, more and more large integrated parts are applied in modern aviation industry. When machining thin-walled aeroplane parts, more than 90% of the materials would be removed, resulting in severe distortion of the parts due to the weakened rigidity and the release of residual stress. This might also lead to stress concentration and damage of the parts. The effect of material removal from residually stressed billet is simulated using FEA software MSC. Marc and the causations of distortion is analyzed. To verify the finite element simulation, a high speed milling test on aluminum alloy 7050T7351 is carried out. The results show that the simulation result is consistent with the experimental one. It is concluded that the release of residual stress is the main cause of machining distortion.
基金Project (51471105) supported by the National Natural Science Foundation of ChinaProject (12SG44) supported by the "Shu Guang" Project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation,ChinaProject (15KY0504) supported by the "Graduate Innovation" Project of Shanghai University of Engineering Science,China
文摘This study aimed to effectively reduce the cracking susceptibility of the laser clad coating by enhancing the environmental temperature during laser cladding,and reveal the residual stress distribution in different depths of the coating.The TiNi/Ti2Ni-based coatings were prepared on Ti6Al4V by laser cladding at different environmental temperatures of25,400,600and800°C.The changes in residual stress along the depth of the coatings were investigated in detail by the nanoindentation method.Results showed that the average residual stress of2.90GPa in the coating prepared at25°C was largest.With the increase in environmental temperature,the average residual stress was reduced to1.34GPa(400°C),0.70GPa(600°C)and0GPa(800°C).For all the coatings,the residual stress was increased with increasing the distance from the coating surface.Enhancing the environmental temperature can effectively reduce the cracking susceptibility of the coatings.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175469,51375448)
文摘The symmetrical cell model is widely used to study the residual stress induced by shot peening. However, the correlation between the predicted residual stresses and the shot peening coverage, which is a big challenge for the researchers of the symmetrical cell model, is still not established. Based on the dynamic stresses and the residual stresses outputted from the symmetrical cell model, the residual stresses corresponding to full coverage are evalu- ated by normal distribution analysis. The predicted nodal dynamic stresses with respect to four corner points indicate that the equi-biaxial stress state exists only for the first shot impact. Along with the increase of shot number, the interactions of multiple shot impacts make the fluctuation of the nodal dynamic stresses about an almost identical value more and more obvious. The mean values and standard deviations of the residual stresses gradually tend to be stable with the increase of the number of shot peening series. The mean values at each corner point are almost the same after the third peening series, which means that an equi-biaxial stress state corresponding to the full coverage of shot peening is achieved. Therefore, the mean values of the nodal residual stresses with respect to a specific transverse cross-section below the peened surface can be used to correlate the measured data by X-ray. The predicted residual stress profile agrees with the experimental results very well under 200% peening coverage. An effective correlation method is proposed for the nodal residual stresses predicted by the symmetrical cell model and the shot peening coverage.