BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or to...BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or tooth root resorption.Low-intensity pulsed ultrasound(LIPUS),a noninvasive physical therapy,has been shown to promote bone fracture healing.It is also reported that LIPUS could reduce the duration of orthodontic treatment;however,how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear.AIM To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement(OTM)model and explore the underlying mechanisms.METHODS A rat model of OTM was established,and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections.In vitro,human bone marrow mesenchymal stem cells(hBMSCs)were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction,Western blot,alkaline phosphatase(ALP)staining,and Alizarin red staining.The expression of Yes-associated protein(YAP1),the actin cytoskeleton,and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA(siRNA)application via immunofluorescence.RESULTS The force treatment inhibited the osteogenic differentiation potential of hBMSCs;moreover,the expression of osteogenesis markers,such as type 1 collagen(COL1),runt-related transcription factor 2,ALP,and osteocalcin(OCN),decreased.LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force.Mechanically,the expression of LaminA/C,F-actin,and YAP1 was downregulated after force treatment,which could be rescued by LIPUS.Moreover,the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment.Consistently,LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo.The decreased expression of COL1,OCN,and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS.CONCLUSION LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis,which may be a promising strategy to reduce the orthodontic treatment process.展开更多
Increased nitrogen(N)input can potentially lead to secondary phosphorus(P)limitation;however,it remains unclear whether differences in the plant's ability to cope with this P deficiency are related to their growth...Increased nitrogen(N)input can potentially lead to secondary phosphorus(P)limitation;however,it remains unclear whether differences in the plant's ability to cope with this P deficiency are related to their growth responses.Using a long-term experiment of N addition in a boreal forest,we explored the potential role of plant nutrient resorption efficiency and its stoichiometry in mediating plant growth responses to increased N input.We recorded the cover and measured the concentration and resorption efficiency of leaf N and P as well as the photosynthesis of a grass Deyeuxia angustifolia and a shrub Vaccinium vitis-idaea.The cover of the grass D.angustifolia increased with increasing N addition,while that of the shrub V.vitis-idaea decreased with N addition rate and almost disappeared from the high-level N addition over time.P resorption efficiency(PRE)increased in D.angustifolia but decreased in V.vitis-idaea with increasing leaf N:P which was increased by N addition for both species.In addition,photosynthesis increased linearly with N resorption efficiency(NRE)and PRE but was better explained by NRE:PRE,changing nonlinearly with the ratio in a hump-shaped trend.Furthermore,the variance(CV)of NRE:PRE for V.vitis-idaea(123%)was considerably higher than that for D.angustifolia(29%),indicating a more stable nutrient resorption stoichiometry of the grass.Taken together,these results highlight that efficient P acquisition and use strategy through nutrient resorption processes could be a pivotal underlying mechanism driving plant growth and community composition shifts under N enrichment.展开更多
The most important process before leaf senescence is nutrient resorption,which reduces nutrient loss and maximizes plant fitness during the subsequent growth period.However,plants must retain certain levels of nitroge...The most important process before leaf senescence is nutrient resorption,which reduces nutrient loss and maximizes plant fitness during the subsequent growth period.However,plants must retain certain levels of nitrogen(N)in their leaves to maintain carbon assimilation during hardening.The objective of this study was to investigate the tradeoffs in N investment between leaf N resorption and N for photosynthesis in seedlings with increased soil fertility during the hardening period.A field experiment was conducted to determine if and how soil fertility treatments(17,34,or 68 mg N seedling−1)affected N resorption and allocation to the photosynthetic apparatus in Quercus mongolica leaves during the hardening period.Seedlings were sampled at T1(after terminal bud formation),T2(between terminal bud formation and end of the growing period),and T3(at the end of the growing period).Results showed that photosynthetic N content continued to rise in T2,while N resorption started from non-photosynthetic N.Leaf N allocation to the photosynthetic apparatus increased as soil fertility increased,delaying N resorption.Additionally,soil fertility significantly affected N partitioning among different photosynthetic components,maintaining or increasing photosynthetic traits during senescence.This study demonstrates a tradeoff in N investment between resorption and photosynthesis to maintain photosynthetic assimilation capacity during the hardening period,and that soil fertility impacts this balance.Q.mongolica leaves primarily resorbed N from the non-photosynthetic apparatus and invested it in the photosynthetic apparatus,whereas different photosynthetic N component allocations effectively improved this pattern.展开更多
The resorption of nutrients from senescent leaves allows plants to conserve and recycle nutrients. To explore the adaptation strategies of desert plants to nutrient-limited environments, we selected four typical deser...The resorption of nutrients from senescent leaves allows plants to conserve and recycle nutrients. To explore the adaptation strategies of desert plants to nutrient-limited environments, we selected four typical desert plants(Populus euphratica Oliv., Tamarix ramosissima Ledeb., Glycyrrhiza inflata Batal., and Alhagi camelorum Fisch.) growing in the desert area of the northern margin of the Tarim Basin,China. The contents of nitrogen(N), phosphorus(P), potassium(K), calcium(Ca), magnesium(Mg), and Ferrum(Fe) in the leaves of these four typical desert plants and their resorption characteristics were analyzed. The relationship of nutrient resorption efficiency with leaf functional traits and soil physical-chemical properties in two different habitats(saline-alkali land and sandy land) was discussed.The results showed that the four plants resorbed most of the elements. Ca was enriched in the leaves of P.euphratica, G. inflate, and A. camelorum;Mg was enriched in the leaves of G. inflata;and Fe was enriched in the leaves of the four plants. The results of the redundancy analysis showed that leaf thickness, soil electrical conductivity, and soil P content were the major factors affecting the nutrient resorption efficiency of the four plants. Leaf thickness was negatively correlated with N resorption efficiency(NRE),P resorption efficiency, and Fe resorption efficiency;soil electrical conductivity was positively correlated with the resorption efficiency of most elements;and soil P content was negatively correlated with the resorption efficiency of most elements in the plant leaves. The results showed that soil physical-chemical properties and soil nutrient contents had an important impact on the nutrient resorption of plant leaves.The same species growing in different habitats also differed in their resorption of different elements. The soil environment of plants and the biological characteristics of plant leaves affected the resorption of nutrient elements in different plants. The purpose of this study is to provide small-scale data support for the protection of ecosystems in nutrient-deficient areas by studying leaf functional strategies and nutrient conservation mechanisms of several typical desert plants.展开更多
Residual ridge resorption(RRR)is the decrease in the jaw structure that follows tooth extraction.It is a multifactorial disorder,but reports on the associated genetic factors are scarce,particularly amongst the Saudis...Residual ridge resorption(RRR)is the decrease in the jaw structure that follows tooth extraction.It is a multifactorial disorder,but reports on the associated genetic factors are scarce,particularly amongst the Saudis.This study aimed to investigate the role of single nucleotide polymorphisms(SNPs)in fibroblast growth factor receptor 1 oncogene partner 2(FGFR1OP2)in RRR development in Saudis.The study included 192 individuals(RRR=96;controls=96)attending outpatient clinics at the College of Dentistry,King Saud University.Demographic and clinical data were collected,the digital panoramic dental radiograph was obtained,and mandibular residual ridge height was measured.DNA was extracted from saliva and genotyping was conducted on“Sequenom MassARRAY iPLEX”.Genotype and allele frequencies of three SNPs were calculated and compared.The age at first diagnosis and bone height were compared in the three genotypes of each SNP.The age of the patients,age at first edentulism,and bone height ranged 21-80 years,12-70 years,and 13-34.6 mm,respectively.All three genotypes of the studied SNPs(rs2279351,rs78054962 and rs2306852)were identified.SNP rs2279351 associated significantly with RRR,and the mutant C allele was highly predisposing.No association was observed for the other two SNPs.The genotypes of all SNPs had an influence on age at first edentulism and bone height,but the results were not statistically different.Since FGFR1OP2 plays a role in the process of rapid wound healing in the oral cavity,it may be playing a role in the development of RRR by influencing the rate of resorption of the jawbone.SNP rs2279351 may alter its expression and hence RRR development.This study is limited due to small a sample size,and further large-scale studies are required to confirm this association and to consider rs2279351 as a possible marker of RRR development.展开更多
Orthodontic forces have been reported to significantly increase nicotine-induced periodontal bone loss. At present, however, it is unknown, which further (side) effects can be expected during orthodontic treatment a...Orthodontic forces have been reported to significantly increase nicotine-induced periodontal bone loss. At present, however, it is unknown, which further (side) effects can be expected during orthodontic treatment at a nicotine exposure corresponding to that of an average European smoker. 63 male Fischer344 rats were randomized in three consecutive experiments of 21 animals each (A/B/C) to 3 experimental groups (7 rats, 112/3). (A) cone-beam-computed tomography (CBCT); (B) histology/serology; (C) reverse- transcription quantitative real-time polymerase chain reaction (RT-qPCR)/cotinine serology--(1) control; (2) orthodontic tooth movement (OTM) of the first and second upper left molar (NiTi closed coil spring, 0.25 N); (3) OTM with 1.89 mg-kg- 1 per day s.c. of L(- )-nicotine. After 14 days of OTM, serum cotinine and IL-6 concentration as well as orthodontically induced inflammatory root resorption (OIIRR), osteoclast activity (histology), orthodontic tooth movement velocity (CBCT, within 14 and 28 days of OTM) and relative gene expression of known inflammatory and osteoclast markers were quantified in the dental-periodontal tissue (RT-qPCR). Animals exposed to nicotine showed significantly heightened serum cotinine and IL-6 levels corresponding to those of regular European smokers. Both the extent of root resorption, osteoclast activity, orthodontic tooth movement and gene expression of inflammatory and osteoclast markers were significantly increased compared to controls with and without OTM under the influence of nicotine. We conclude that apart from increased periodontal bone loss, a progression of dental root resorption and accelerated orthodontic tooth movement are to be anticipated during orthodontic therapy, if nicotine consumption is present. Thus patients should be informed about these risks and the necessity of nicotine abstinence during treatment.展开更多
Background:Nutrient resorption is critical for plants toward balancing their nutritional requirements and adapting to environmental variabilities,which further impacts litter quality and nutrient cycling.However,the i...Background:Nutrient resorption is critical for plants toward balancing their nutritional requirements and adapting to environmental variabilities,which further impacts litter quality and nutrient cycling.However,the interannual variability of nutrient resorption under climate change remains unclear.Methods:We investigated the five-year nutrient resorption efficiencies(NuRE,%)of 14 elements in three deciduous oak tree species(Quercus aliena var.acuteserrata,Q.glandulifera,and Q.variabilis)in a warm-temperate forest of Central China and assessed their relationships with interannual climate and soil factors.Results:Nutrient resorption did not differ between species but varied significantly between different years.For each year,N,P,S,K,C,Mg,and Zn were preferentially resorbed in all of the oak species in contrast to Ca,Na,Mn,Ba,Al,Fe,Cu,which were to some extent discriminated.Among the 14 elements,the NuRE of C,N,P,S,Ca,and Mg was more sensitive to interannual climate variations in the three oak species.The carbon resorption efficiency was significantly increased during the driest year of the study(2014);N resorption efficiency was reduced with temperature;whereas N and P resorption efficiency initially decreased and then increased with precipitation.Moreover,the elements with higher NuREs typically had lower coefficient of variation(CV)in all three oak species.Conclusions:Different oak species exhibited analogous nutrient conservation strategies in response to annual climate variabilities,and interannual climate variations strongly impacted plant nutrient resorption.Deciduous plants may establish a tradeoff mechanism to rebalance somatic nutrients for regrowth at the end of the growing season.展开更多
This study evaluated,over a 4-month study period,the amount of apical root resorption occurring in maxillary central incisors following their retraction when employing either micro-implant or J-hook headgear anchorage...This study evaluated,over a 4-month study period,the amount of apical root resorption occurring in maxillary central incisors following their retraction when employing either micro-implant or J-hook headgear anchorage.The prospective randomised clinical trial was conducted in Orthodontic Clinic,College of Stomatology,China from 2008-2009.Subjects are patients requiring fixed appliances on waiting list (n=20).In female Han Chinese patients aged from 16-26 years,standardized periapical radiographs from 10 randomly assigned patients with maxillary protrusions comprising the micro-implant group,and from 10 similar patients comprising the J-hook headgear group,were assessed for maxillary central incisor apical root resorption.Measurements before and after orthodontic therapy were also obtained from lateral cephalometric radiographs to calculate incisor horizontal retraction and vertical intrusion distances.Estimated retraction force vectors were calculated in horizontal and vertical directions for both treatment groups.Data analysis employed t-tests and the Pearson correlation test,with α=0.05 for statistical significance.The results showed that when compared with the J-hook group,significantly more apical root resorption shortening of the maxillary central incisors was observed in the micro-implant group (1.27 mm difference,95% CI=0.70-1.84,P<0.001),which was associated with a significantly larger retraction distance (P=0.004) and a smaller vertical force component (P<0.0001).We are led to conclude that continuous activation of the nickel-titanium coil springs used in the micro-implant group resulted in significantly more apical root resorption shortening and maxillary central incisor retraction than when intermittent J-hook retraction was employed.The employment of continuous duration orthodontic forces presents a risk for increased apical root resorption that requires careful radiographic monitoring.展开更多
Bone is an endocrine organ involved in modulating glucose homeostasis. The role of the bone formation marker osteocalcin (OCN) in predicting diabetes was reported, but with conflicting results. No study has explored...Bone is an endocrine organ involved in modulating glucose homeostasis. The role of the bone formation marker osteocalcin (OCN) in predicting diabetes was reported, but with conflicting results. No study has explored the association between baseline bone resorption activity and incident diabetes or prediabetes during follow-up. Our objective was to examine the relationship between the baseline bone resorption marker crosslinked C-telopeptide of type I collagen (CTX) and glycemic dysregulation after 4 years. This longitudinal study was conducted in a university teaching hospital. A total of 195 normal glucose tolerant (NGT) women at baseline were invited for follow-up. The incidence of diabetes and prediabetes (collectively defined as dysglycemia) was recorded. A total of 128 individuals completed the 4-year study. The overall conversion rate from NGT to dysglycemia was 31.3%. The incidence of dysglycemia was lowest in the middle tertile [16.3% (95% confidence interval (CI), 6.8%-30.70/0)] compared with the lower [31.0% (95% CI, 17.2%-46.1%)] and upper [46.5% (95% CI, 31.2%-62.6%)] tertiles of CTX, with a significant difference seen between the middle and upper tertiles (P = 0.002 5). After adjusting for multiple confounding variables, the upper tertile of baseline CTX was associated with an increased risk of incident dysglycemia, with an odds ratio of 7.09 (95% CI, 1.73-28.99) when the middle tertile was the reference. Osteoclasts actively regulate glucose homeostasis in a biphasic model that moderately enhanced bone resorption marker CTX at baseline provides protective effects against the deterioration of glucose metabolism, whereas an overactive osteoclastic function contributes to an increased risk of subsequent dysglycemia.展开更多
Summary: The purpose of this study was to develop a new way to localize the impacted canines from three dimensions and to investigate the root resorption of the adjacent teeth by using cone beam computed tomography ...Summary: The purpose of this study was to develop a new way to localize the impacted canines from three dimensions and to investigate the root resorption of the adjacent teeth by using cone beam computed tomography (CBCT). Forty-six patients undergoing orthodontic treatments and having impacted canines in Tongii Hospital were examined. The images of CBCT scans were obtained from KaVo 3D exam vision. Angular and linear measurements of the cusp tip and root apex according to the three planes (mid-sagittal, occlusal and frontal) have been taken using the cephalometric tool of the InVivo Dental Anatomage Version 5.1.10. The measurements of the angular and linear coordinates of the maxillary and mandibular canines were obtained. Using this technique the operators could envision the location of the impacted canine according to the three clinical planes. Adjacent teeth root resorption.of 28.26 % was in the upper lateral incisors while 17.39% in upper central incisors, but no lower root resorption was found in our samples. Accurate and reliable localization of the impacted canines could be obtained from the novel analysis system, which offers a better surgical and orthodontic treatment for the patients with impacted canines.展开更多
The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure.Osteoclasts are one of the three main bone cell types that play a crucial role in th...The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure.Osteoclasts are one of the three main bone cell types that play a crucial role in the bone remodelling cycle.At the microstructural level,osteoclasts create bone deficits by eroding resorption cavities.Understanding how these cavities impair the mechanical quality of the bone is not only relevant in quantifying the impact of resorption cavities in healthy bone and normal aging,but maybe even more so in quantifying their role in metabolic bone diseases.Meta-bolic bone diseases and their treatment are both known to affect the bone remodelling cycle;hence,the bone mechanical competence can and will be affected.How-ever,the current knowledge of the precise dimensions of these cavities and their effect on bone competence is rather limited.This is not surprising considering the difficulties in deriving three-dimensional(3D)properties from two-dimensional(2D)histological sections.The measurement difficulties are reflected in the evalua-tion of how resorption cavities affect bone competence.Although detailed 3D models are generally being used to quantify the mechanical impact of the cavities,the representation of the cavities themselves has basicallybeen limited to simplified shapes and averaged cavityproperties.Qualitatively,these models indicate that cav-ity size and location are important,and that the effectof cavities is larger than can be expected from simplebone loss.In summary,the dimensions of osteoclastresorption cavities were until recently estimated from2D measures;hence,a careful interpretation of resorp-tion cavity dimensions is necessary.More effort needsto go into correctly quantifying resorption cavities usingmodern 3D imaging techniques like micro-computedtomography(micro-CT)and synchrotron radiation CT.Osteoclast resorption cavities affect bone competence.The structure-function relationships have been ana-lysed using computational models that,on one hand,provide rather detailed information on trabecular bonestructure,but on the other incorporate rather crudeassumptions on cavity dimensions.The use of high-resolution representations and parametric descriptionscould be potential routes to improve the quantitativefidelity of these models.展开更多
Nitrogen(N)and phosphorus(P)are two essential nutrients that determine plant growth and many nutrient cycling processes.Increasing N and P deposition is an important driver of ecosystem changes.However,in contrast to ...Nitrogen(N)and phosphorus(P)are two essential nutrients that determine plant growth and many nutrient cycling processes.Increasing N and P deposition is an important driver of ecosystem changes.However,in contrast to numerous studies about the impacts of nutrient addition on forests and temperate grasslands,how plant foliar stoichiometry and nutrient resorption respond to N and P addition in alpine grasslands is poorly understood.Therefore,we conducted an N and P addition experiment(involving control,N addition,P addition,and N+P addition)in an alpine grassland on Kunlun Mountains(Xinjiang Uygur Autonomous Region,China)in 2016 and 2017 to investigate the changes in leaf nutrient concentrations(i.e.,leaf N,Leaf P,and leaf N:P ratio)and nutrient resorption efficiency of Seriphidium rhodanthum and Stipa capillata,which are dominant species in this grassland.Results showed that N addition has significant effects on soil inorganic N(NO_(3)^(-)-N and NH_(4)^(+)-N)and leaf N of both species in the study periods.Compared with green leaves,leaf nutrient concentrations and nutrient resorption efficiency in senesced leaves of S.rhodanthum was more sensitive to N addition,whereas N addition influenced leaf N and leaf N:P ratio in green and senesced leaves of S.capillata.N addition did not influence N resorption efficiency of the two species.P addition and N+P addition significantly improved leaf P and had a negative effect on P resorption efficiency of the two species in the study period.These influences on plants can be explained by increasing P availability.The present results illustrated that the two species are more sensitive to P addition than N addition,which implies that P is the major limiting factor in the studied alpine grassland ecosystem.In addition,an interactive effect of N+P addition was only discernable with respect to soil availability,but did not affect plants.Therefore,exploring how nutrient characteristics and resorption response to N and P addition in the alpine grassland is important to understand nutrient use strategy of plants in terrestrial ecosystems.展开更多
High rainfall in subtropical regions can leach cation elements from ecosystems,which may limit plant growth.Plants often develop efficient resorption patterns to recycle elements,but there is relatively little availab...High rainfall in subtropical regions can leach cation elements from ecosystems,which may limit plant growth.Plants often develop efficient resorption patterns to recycle elements,but there is relatively little available information on this topic.In February 2012,a common garden was established in a subtropical forest by planting dominant trees from the area.Green and senescent leaves were sampled from 11 tree species.The concentrations of potassium(K),calcium(Ca),sodium(Na)and magnesium(Mg)were determined,and the resorption efficiencies were calculated.The results showed significant K,Na and Mg resorption in most of the investigated tree species,while Ca mainly displayed accumulation.Evergreen coniferous and evergreen broad-leaved trees(such as Cunninghamia lanceolata,Pinus massoniana,Cinnamomum camphora,and Michelia macclurei)exhibited relatively higher resorption efficiencies of K(39.0%-87.5%)and Na(18.3%-50.2%)than deciduous broad-leaved trees.Higher Mg resorption efficiencies(>50%)were detected in Liriodendron chinense,C.lanceolata and P.massoniana than in other trees.Overall,evergreen coniferous and evergreen broad-leaved trees could show higher cation resorption than deciduous broad-leaved trees.K and Mg resorption efficiencies and Ca accumulation decrease with increasing nutrient concentrations in green leaves.Our results emphasize that nutrient resorption patterns largely depend on elements and plant functions,which provides new insights into the nutrient use strategies of subtropical plants and a reference for the selection of suitable tree species in this region.展开更多
Background: The objective of this study was to determine the levels of tumor necrosis factor-alpha (TNF-α) and receptor activator of NF-kB ligand (RANKL) in the gingival crevicular fluid (GCF) in patients with severe...Background: The objective of this study was to determine the levels of tumor necrosis factor-alpha (TNF-α) and receptor activator of NF-kB ligand (RANKL) in the gingival crevicular fluid (GCF) in patients with severe root resorption after orthodontic treatment. Materials and Methods: Ten patients who had been receiving orthodontic treatment (5-control subjects and 5-severe root resorption subjects) participated in this study. GCF was collected from all patients. Subjects with severe root resorption (>1/3 of the original root length) were identified. Control group subjects with no loss of the root structure undergoing orthodontic treatment were also identified. The GCF was collected non-invasively from the mesial and distal sides of each of the upper central and lateral incisors using filter paper strips. The eluted GCF was used for a Western blot analysis with Antibodies against TNF-α and soluble RANKL (sRANKL). Ten male 6-week-old Wistar rats were subjected to orthodontic force of 50 g to induce a mesially tipping movement of the upper first molars for 7 days. The expression levels of TNF-α and RANKL proteins were determined in periodontal ligament (PDL) by immunohistochemical analysis. Results: The Western blot analysis showed that the TNF-α and sRANKL expressions were significantly higher in the severe root resorption group than in the control group. In the experimental tooth movement in vivo, resorption lacunae with multinucleated cells were observed in 50 g group. The immunoreactivity for TNF-α and RANKL was detected in PDL tissue subjected to the orthodontic force on day 7. Conclusion: These results suggest that TNF-α and RANKL play important roles in inducing or facilitating the development of orthodontically-induced inflammatory root resorption (OIIRR).展开更多
Leaf nitrogen resorption is very important to Phyllostachys edulis development because the withdrawn nitrogen can help newly emerging and growing culms.However, few studies have focused on the ontogenetic changes in l...Leaf nitrogen resorption is very important to Phyllostachys edulis development because the withdrawn nitrogen can help newly emerging and growing culms.However, few studies have focused on the ontogenetic changes in leaf nitrogen resorption of P. edulis. Here, we examined the variability in mature leaf nitrogen concentrations(Nm), nitrogen resorption efficiency(NRE) and proficiency(NRP or Ns) and leaf-level nitrogen use efficiency(NUE) of the current-, 3 rd-and 5 th-year culms in P.edulis stands under extensive management. Analyses of variance and correlation indicated that patterns of Nm,NRP, NRE and NUE were markedly affected by culm age and leaf nitrogen status. Nm, Nsand NRE were significant higher in younger(current-year) culms with 1-year lifespan leaves, while NUE was markedly higher in older(3 rd-or 5 th-year) culms with 2-year lifespan leaves. Significant linear correlations between Nmand NRP, NRE and NUE,Nmand NUE, Nsand NRE were found for each culm age,and Nmwas significantly positively correlated to NRE for all culms pooled. Higher proficiency in older culms led to higher NUE and lower NRE, these relationships can be modulated by Nm, which in turn, is restrained by leaf N availability and acquisition. Our results revealed that at the intraspecific level, P. edulis can adjust its leaf NRE, NRP,and leaf-level NUE in concert with culm development.Understanding nitrogen resorption characteristics and NUE of P. edulis can help decision-makers design appropriate deforestation strategies and achieve precise N fertilization for sustainable bamboo forest management.展开更多
The present study investigated the anti-osteoporosis function and the mechanism of sialoglycoproteins isolated from the eggs of Gadus morhua(Gm-SGP)on ovariectomized(OVX)rats.After 3 months of Gm-SGP treatment,OVX-ind...The present study investigated the anti-osteoporosis function and the mechanism of sialoglycoproteins isolated from the eggs of Gadus morhua(Gm-SGP)on ovariectomized(OVX)rats.After 3 months of Gm-SGP treatment,OVX-induced bone loss was suppressed and uncoupling bone turnover was balanced,as indicated by systemic biomarkers of bone metabolism;no uterine estrogenicity was observed.Moreover,rats administered with Gm-SGP exhibited increased bone mineral density and biomechanical strength and significant restoration of the trabecular microarchitecture compared with rats in the control group.Gm-SGP significantly decreased bone resorption-related indicators in serum.Investigation of the associated mechanisms revealed that Gm-SGP significantly increases the OPG/RANKL ratio at the mRNA and protein levels.Further research suggested that Gm-SGP inhibits the mRNA and protein expressions of important transcription factors of the MAPK and NF-κB signaling pathways.It also attenuates the activation of related transduction signaling pathways by inhibiting phosphorylation of JNK,ERK,p38,and NF-κB,and ultimately suppresses the induction of c-Fos and NFATc1.Overall,these results demonstrate that Gm-SGP inhibits bone resorption by suppressing osteoclastogenesis-related MAPK and NF-κB pathways,thereby improving osteoporosis.展开更多
BACKGROUND Invasive cervical resorption(ICR), a commonly misdiagnosed condition, is an aggressive form of external tooth resorption that contributes to periodontal tissue inflammation and deepening of the periodontal ...BACKGROUND Invasive cervical resorption(ICR), a commonly misdiagnosed condition, is an aggressive form of external tooth resorption that contributes to periodontal tissue inflammation and deepening of the periodontal pockets. Herein we report the case of a patient, exhibiting ICR and elaborate the effects of a non-surgical approach in the amelioration of this condition.CASE SUMMARY A 21-year-old female reporting intermittent pain at the upper left side, multiple restorations, no trauma history, and having received orthodontic treatment was studied. Localized erythematous swelling was noted at the buccal interdental papilla between the left maxillary first molar and second premolar. The diseased pulp and tissue in resorption were removed and the root canal system including the defect were sealed using gutta percha/AH Plus and mineral trioxide aggregate(MTA). At the one-year recall, the tooth showed no symptoms and responded normally to percussion and palpation. The surrounding periodontium exhibited a normal color and the probing depth was normal. Radiographic examination showed a restoration of crestal alveolar bone and good adaption to MTA.CONCLUSION Non-surgical root canal treatment in conjunction with resorption defect orthograde repair with MTA was found to be an effective treatment option in the elimination of ICR. Early diagnoses are recommended in order to employ nonsurgical approaches for management of ICR instead of surgical interventions.展开更多
Bone defects resulting from trauma,surgery,congenital malformations,and other factors are among the most common health problems nowadays.Although current strategies such as autografts and allografts are recognized as ...Bone defects resulting from trauma,surgery,congenital malformations,and other factors are among the most common health problems nowadays.Although current strategies such as autografts and allografts are recognized as the most successful treatments for stimulating bone regeneration,limitations such as graft source and complications still exist.SmartBone?is a xeno-hybrid bone graft(made from bovine bone matrix,poly(L-lactic-co-e-caprolactone),and gelatin)with a positive clinical record for bone regen-eration.In this study,the formulation for designing xeno-hybrid bone grafts using gelatins from different sources(bovine-and porcine-derived gelatin,with bone grafts named SBN and SPK,respectively)was investigated,and the biological responses were evaluated in vitro and in vivo.The results demonstrate that gelatins from both bovine and porcine sources can be loaded onto SmartBone?successfully and safely,withstanding the aggressive manufacturing processes.Different bone cell responses were observed in vitro.SBN was found to enhance osteocalcin secretion while SPK was found to upregulate osteopontin from human osteoblasts.In vivo,both bone grafts promoted osteogenesis,but SPK degraded earlier than SBN.Our findings suggest that SBN and SPK provide different yet comparable solutions for optimizing the bone resorption and regeneration balance.These xeno-hybrid bone grafts possess ideal potential for bone defect repairing.展开更多
In northeastern Japan,an area of high precipitation and mountains,beech(Fagus creanata Blume),larch(Larix kaempferi Lamb.),cedar(Cryptomeria japonica D.Don)and black locust(Robinia pseudoacacia L.)were evaluated for N...In northeastern Japan,an area of high precipitation and mountains,beech(Fagus creanata Blume),larch(Larix kaempferi Lamb.),cedar(Cryptomeria japonica D.Don)and black locust(Robinia pseudoacacia L.)were evaluated for N resorption and N isotope fractionation in preand post-abscission leaves in comparison to green leaves.The highest leaf N concentration in summer corresponded to the N-fi xing black locust,followed in decreasing order by the deciduous beech and larch and evergreen cedar.On the other hand,the lowest N resorption effi ciency corresponded to black locust and the highest to beech,in increasing order by larch and cedar.All tree species returned signifi cant amounts of N before leaf abscission;however,N isotope fractionation during leaf N resorption was only found for beech,with a depleted N isotope value from green to pre-abscission leaf.The most N,however,was resorbed from pre-abscission to post-abscission.This result may indicate thatδ15 N fractionation took place during N transformation processes,such as protein hydrolysis,when the concentration of free amino acids increased sharply.The diff erence in the type of amino acid produced by each species could have infl uenced the N isotope ratio in beech but not in the other tree species.The results of this study showed that it is possible to infer the type and timing of processes relevant to N resorption by analyzing leafδ15 N variation during senescence.展开更多
BACKGROUND The objective of this work is displaying a successful treatment for an internal resorption case under operating microscope using bioceramic material.CASE SUMMARY Periapical radiograph showed radiolucent les...BACKGROUND The objective of this work is displaying a successful treatment for an internal resorption case under operating microscope using bioceramic material.CASE SUMMARY Periapical radiograph showed radiolucent lesion representing large internal resorption of the root.The respective defect was obturated using endoscquence bioceramic material follow up at the month 18 after treatment revealed no abnormal finings clinically and radiographically.CONCLUSION New generations bioceramics have many advantages that internal root resorption cases can benefit from.The use of operating microscope helps to apply obturating materials with precision.However,long term study on a large sample is required in future studies.展开更多
基金Supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China,No.2022YFA1105800the National Natural Science Foundation of China,No.81970940.
文摘BACKGROUND The bone remodeling during orthodontic treatment for malocclusion often requires a long duration of around two to three years,which also may lead to some complications such as alveolar bone resorption or tooth root resorption.Low-intensity pulsed ultrasound(LIPUS),a noninvasive physical therapy,has been shown to promote bone fracture healing.It is also reported that LIPUS could reduce the duration of orthodontic treatment;however,how LIPUS regulates the bone metabolism during the orthodontic treatment process is still unclear.AIM To investigate the effects of LIPUS on bone remodeling in an orthodontic tooth movement(OTM)model and explore the underlying mechanisms.METHODS A rat model of OTM was established,and alveolar bone remodeling and tooth movement rate were evaluated via micro-computed tomography and staining of tissue sections.In vitro,human bone marrow mesenchymal stem cells(hBMSCs)were isolated to detect their osteogenic differentiation potential under compression and LIPUS stimulation by quantitative reverse transcription-polymerase chain reaction,Western blot,alkaline phosphatase(ALP)staining,and Alizarin red staining.The expression of Yes-associated protein(YAP1),the actin cytoskeleton,and the Lamin A/C nucleoskeleton were detected with or without YAP1 small interfering RNA(siRNA)application via immunofluorescence.RESULTS The force treatment inhibited the osteogenic differentiation potential of hBMSCs;moreover,the expression of osteogenesis markers,such as type 1 collagen(COL1),runt-related transcription factor 2,ALP,and osteocalcin(OCN),decreased.LIPUS could rescue the osteogenic differentiation of hBMSCs with increased expression of osteogenic marker inhibited by force.Mechanically,the expression of LaminA/C,F-actin,and YAP1 was downregulated after force treatment,which could be rescued by LIPUS.Moreover,the osteogenic differentiation of hBMSCs increased by LIPUS could be attenuated by YAP siRNA treatment.Consistently,LIPUS increased alveolar bone density and decreased vertical bone absorption in vivo.The decreased expression of COL1,OCN,and YAP1 on the compression side of the alveolar bone was partially rescued by LIPUS.CONCLUSION LIPUS can accelerate tooth movement and reduce alveolar bone resorption by modulating the cytoskeleton-Lamin A/C-YAP axis,which may be a promising strategy to reduce the orthodontic treatment process.
基金supported by National Natural Science Foundation of China(Nos.31988102,32301390)Key Research Program of Frontier Sciences,CAS(No.QYZDY-SSW-SMC011)+1 种基金China Postdoctoral Science Foundation(No.2022T150697)supported by the postdoctoral fellowship program of CPSF under grant number GZC20240856.
文摘Increased nitrogen(N)input can potentially lead to secondary phosphorus(P)limitation;however,it remains unclear whether differences in the plant's ability to cope with this P deficiency are related to their growth responses.Using a long-term experiment of N addition in a boreal forest,we explored the potential role of plant nutrient resorption efficiency and its stoichiometry in mediating plant growth responses to increased N input.We recorded the cover and measured the concentration and resorption efficiency of leaf N and P as well as the photosynthesis of a grass Deyeuxia angustifolia and a shrub Vaccinium vitis-idaea.The cover of the grass D.angustifolia increased with increasing N addition,while that of the shrub V.vitis-idaea decreased with N addition rate and almost disappeared from the high-level N addition over time.P resorption efficiency(PRE)increased in D.angustifolia but decreased in V.vitis-idaea with increasing leaf N:P which was increased by N addition for both species.In addition,photosynthesis increased linearly with N resorption efficiency(NRE)and PRE but was better explained by NRE:PRE,changing nonlinearly with the ratio in a hump-shaped trend.Furthermore,the variance(CV)of NRE:PRE for V.vitis-idaea(123%)was considerably higher than that for D.angustifolia(29%),indicating a more stable nutrient resorption stoichiometry of the grass.Taken together,these results highlight that efficient P acquisition and use strategy through nutrient resorption processes could be a pivotal underlying mechanism driving plant growth and community composition shifts under N enrichment.
基金supported by the National Natural Science Foundation of China(No.32171764,No.32101503)the 5·5 Engineering Research&Innovation Team Project at the Beijing Forestry University(BLRC2023B08).
文摘The most important process before leaf senescence is nutrient resorption,which reduces nutrient loss and maximizes plant fitness during the subsequent growth period.However,plants must retain certain levels of nitrogen(N)in their leaves to maintain carbon assimilation during hardening.The objective of this study was to investigate the tradeoffs in N investment between leaf N resorption and N for photosynthesis in seedlings with increased soil fertility during the hardening period.A field experiment was conducted to determine if and how soil fertility treatments(17,34,or 68 mg N seedling−1)affected N resorption and allocation to the photosynthetic apparatus in Quercus mongolica leaves during the hardening period.Seedlings were sampled at T1(after terminal bud formation),T2(between terminal bud formation and end of the growing period),and T3(at the end of the growing period).Results showed that photosynthetic N content continued to rise in T2,while N resorption started from non-photosynthetic N.Leaf N allocation to the photosynthetic apparatus increased as soil fertility increased,delaying N resorption.Additionally,soil fertility significantly affected N partitioning among different photosynthetic components,maintaining or increasing photosynthetic traits during senescence.This study demonstrates a tradeoff in N investment between resorption and photosynthesis to maintain photosynthetic assimilation capacity during the hardening period,and that soil fertility impacts this balance.Q.mongolica leaves primarily resorbed N from the non-photosynthetic apparatus and invested it in the photosynthetic apparatus,whereas different photosynthetic N component allocations effectively improved this pattern.
基金supported by the National Natural Science Foundation of China (32001145)。
文摘The resorption of nutrients from senescent leaves allows plants to conserve and recycle nutrients. To explore the adaptation strategies of desert plants to nutrient-limited environments, we selected four typical desert plants(Populus euphratica Oliv., Tamarix ramosissima Ledeb., Glycyrrhiza inflata Batal., and Alhagi camelorum Fisch.) growing in the desert area of the northern margin of the Tarim Basin,China. The contents of nitrogen(N), phosphorus(P), potassium(K), calcium(Ca), magnesium(Mg), and Ferrum(Fe) in the leaves of these four typical desert plants and their resorption characteristics were analyzed. The relationship of nutrient resorption efficiency with leaf functional traits and soil physical-chemical properties in two different habitats(saline-alkali land and sandy land) was discussed.The results showed that the four plants resorbed most of the elements. Ca was enriched in the leaves of P.euphratica, G. inflate, and A. camelorum;Mg was enriched in the leaves of G. inflata;and Fe was enriched in the leaves of the four plants. The results of the redundancy analysis showed that leaf thickness, soil electrical conductivity, and soil P content were the major factors affecting the nutrient resorption efficiency of the four plants. Leaf thickness was negatively correlated with N resorption efficiency(NRE),P resorption efficiency, and Fe resorption efficiency;soil electrical conductivity was positively correlated with the resorption efficiency of most elements;and soil P content was negatively correlated with the resorption efficiency of most elements in the plant leaves. The results showed that soil physical-chemical properties and soil nutrient contents had an important impact on the nutrient resorption of plant leaves.The same species growing in different habitats also differed in their resorption of different elements. The soil environment of plants and the biological characteristics of plant leaves affected the resorption of nutrient elements in different plants. The purpose of this study is to provide small-scale data support for the protection of ecosystems in nutrient-deficient areas by studying leaf functional strategies and nutrient conservation mechanisms of several typical desert plants.
文摘Residual ridge resorption(RRR)is the decrease in the jaw structure that follows tooth extraction.It is a multifactorial disorder,but reports on the associated genetic factors are scarce,particularly amongst the Saudis.This study aimed to investigate the role of single nucleotide polymorphisms(SNPs)in fibroblast growth factor receptor 1 oncogene partner 2(FGFR1OP2)in RRR development in Saudis.The study included 192 individuals(RRR=96;controls=96)attending outpatient clinics at the College of Dentistry,King Saud University.Demographic and clinical data were collected,the digital panoramic dental radiograph was obtained,and mandibular residual ridge height was measured.DNA was extracted from saliva and genotyping was conducted on“Sequenom MassARRAY iPLEX”.Genotype and allele frequencies of three SNPs were calculated and compared.The age at first diagnosis and bone height were compared in the three genotypes of each SNP.The age of the patients,age at first edentulism,and bone height ranged 21-80 years,12-70 years,and 13-34.6 mm,respectively.All three genotypes of the studied SNPs(rs2279351,rs78054962 and rs2306852)were identified.SNP rs2279351 associated significantly with RRR,and the mutant C allele was highly predisposing.No association was observed for the other two SNPs.The genotypes of all SNPs had an influence on age at first edentulism and bone height,but the results were not statistically different.Since FGFR1OP2 plays a role in the process of rapid wound healing in the oral cavity,it may be playing a role in the development of RRR by influencing the rate of resorption of the jawbone.SNP rs2279351 may alter its expression and hence RRR development.This study is limited due to small a sample size,and further large-scale studies are required to confirm this association and to consider rs2279351 as a possible marker of RRR development.
基金the ReForM-A-research funding programme of the Faculty of Medicine(University of Regensburg)for their financial supportsupported by a ReForM-A grant from the ReForM research funding programme of the Faculty of Medicine of the University of Regensburg,Germany(Kirschneck 31 March 2015)the German Research Foundation(DFG)within the funding programme Open Access Publishing
文摘Orthodontic forces have been reported to significantly increase nicotine-induced periodontal bone loss. At present, however, it is unknown, which further (side) effects can be expected during orthodontic treatment at a nicotine exposure corresponding to that of an average European smoker. 63 male Fischer344 rats were randomized in three consecutive experiments of 21 animals each (A/B/C) to 3 experimental groups (7 rats, 112/3). (A) cone-beam-computed tomography (CBCT); (B) histology/serology; (C) reverse- transcription quantitative real-time polymerase chain reaction (RT-qPCR)/cotinine serology--(1) control; (2) orthodontic tooth movement (OTM) of the first and second upper left molar (NiTi closed coil spring, 0.25 N); (3) OTM with 1.89 mg-kg- 1 per day s.c. of L(- )-nicotine. After 14 days of OTM, serum cotinine and IL-6 concentration as well as orthodontically induced inflammatory root resorption (OIIRR), osteoclast activity (histology), orthodontic tooth movement velocity (CBCT, within 14 and 28 days of OTM) and relative gene expression of known inflammatory and osteoclast markers were quantified in the dental-periodontal tissue (RT-qPCR). Animals exposed to nicotine showed significantly heightened serum cotinine and IL-6 levels corresponding to those of regular European smokers. Both the extent of root resorption, osteoclast activity, orthodontic tooth movement and gene expression of inflammatory and osteoclast markers were significantly increased compared to controls with and without OTM under the influence of nicotine. We conclude that apart from increased periodontal bone loss, a progression of dental root resorption and accelerated orthodontic tooth movement are to be anticipated during orthodontic therapy, if nicotine consumption is present. Thus patients should be informed about these risks and the necessity of nicotine abstinence during treatment.
基金supported by the National Key Technology Research and Development Program of China(2017YFC0505501,2016YFD0600206,and 2013BAD11B01)the National Natural Science Foundation of China(NSFC 31270640 and 31770746)the China Postdoctoral Science Foundation(20Z102060010).
文摘Background:Nutrient resorption is critical for plants toward balancing their nutritional requirements and adapting to environmental variabilities,which further impacts litter quality and nutrient cycling.However,the interannual variability of nutrient resorption under climate change remains unclear.Methods:We investigated the five-year nutrient resorption efficiencies(NuRE,%)of 14 elements in three deciduous oak tree species(Quercus aliena var.acuteserrata,Q.glandulifera,and Q.variabilis)in a warm-temperate forest of Central China and assessed their relationships with interannual climate and soil factors.Results:Nutrient resorption did not differ between species but varied significantly between different years.For each year,N,P,S,K,C,Mg,and Zn were preferentially resorbed in all of the oak species in contrast to Ca,Na,Mn,Ba,Al,Fe,Cu,which were to some extent discriminated.Among the 14 elements,the NuRE of C,N,P,S,Ca,and Mg was more sensitive to interannual climate variations in the three oak species.The carbon resorption efficiency was significantly increased during the driest year of the study(2014);N resorption efficiency was reduced with temperature;whereas N and P resorption efficiency initially decreased and then increased with precipitation.Moreover,the elements with higher NuREs typically had lower coefficient of variation(CV)in all three oak species.Conclusions:Different oak species exhibited analogous nutrient conservation strategies in response to annual climate variabilities,and interannual climate variations strongly impacted plant nutrient resorption.Deciduous plants may establish a tradeoff mechanism to rebalance somatic nutrients for regrowth at the end of the growing season.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘This study evaluated,over a 4-month study period,the amount of apical root resorption occurring in maxillary central incisors following their retraction when employing either micro-implant or J-hook headgear anchorage.The prospective randomised clinical trial was conducted in Orthodontic Clinic,College of Stomatology,China from 2008-2009.Subjects are patients requiring fixed appliances on waiting list (n=20).In female Han Chinese patients aged from 16-26 years,standardized periapical radiographs from 10 randomly assigned patients with maxillary protrusions comprising the micro-implant group,and from 10 similar patients comprising the J-hook headgear group,were assessed for maxillary central incisor apical root resorption.Measurements before and after orthodontic therapy were also obtained from lateral cephalometric radiographs to calculate incisor horizontal retraction and vertical intrusion distances.Estimated retraction force vectors were calculated in horizontal and vertical directions for both treatment groups.Data analysis employed t-tests and the Pearson correlation test,with α=0.05 for statistical significance.The results showed that when compared with the J-hook group,significantly more apical root resorption shortening of the maxillary central incisors was observed in the micro-implant group (1.27 mm difference,95% CI=0.70-1.84,P<0.001),which was associated with a significantly larger retraction distance (P=0.004) and a smaller vertical force component (P<0.0001).We are led to conclude that continuous activation of the nickel-titanium coil springs used in the micro-implant group resulted in significantly more apical root resorption shortening and maxillary central incisor retraction than when intermittent J-hook retraction was employed.The employment of continuous duration orthodontic forces presents a risk for increased apical root resorption that requires careful radiographic monitoring.
基金supported by projects from the National Natural Science Foundation of China(81370977,81570796 and 81370018)by the Shanghai Science and Technology Committee(14411960900)
文摘Bone is an endocrine organ involved in modulating glucose homeostasis. The role of the bone formation marker osteocalcin (OCN) in predicting diabetes was reported, but with conflicting results. No study has explored the association between baseline bone resorption activity and incident diabetes or prediabetes during follow-up. Our objective was to examine the relationship between the baseline bone resorption marker crosslinked C-telopeptide of type I collagen (CTX) and glycemic dysregulation after 4 years. This longitudinal study was conducted in a university teaching hospital. A total of 195 normal glucose tolerant (NGT) women at baseline were invited for follow-up. The incidence of diabetes and prediabetes (collectively defined as dysglycemia) was recorded. A total of 128 individuals completed the 4-year study. The overall conversion rate from NGT to dysglycemia was 31.3%. The incidence of dysglycemia was lowest in the middle tertile [16.3% (95% confidence interval (CI), 6.8%-30.70/0)] compared with the lower [31.0% (95% CI, 17.2%-46.1%)] and upper [46.5% (95% CI, 31.2%-62.6%)] tertiles of CTX, with a significant difference seen between the middle and upper tertiles (P = 0.002 5). After adjusting for multiple confounding variables, the upper tertile of baseline CTX was associated with an increased risk of incident dysglycemia, with an odds ratio of 7.09 (95% CI, 1.73-28.99) when the middle tertile was the reference. Osteoclasts actively regulate glucose homeostasis in a biphasic model that moderately enhanced bone resorption marker CTX at baseline provides protective effects against the deterioration of glucose metabolism, whereas an overactive osteoclastic function contributes to an increased risk of subsequent dysglycemia.
文摘Summary: The purpose of this study was to develop a new way to localize the impacted canines from three dimensions and to investigate the root resorption of the adjacent teeth by using cone beam computed tomography (CBCT). Forty-six patients undergoing orthodontic treatments and having impacted canines in Tongii Hospital were examined. The images of CBCT scans were obtained from KaVo 3D exam vision. Angular and linear measurements of the cusp tip and root apex according to the three planes (mid-sagittal, occlusal and frontal) have been taken using the cephalometric tool of the InVivo Dental Anatomage Version 5.1.10. The measurements of the angular and linear coordinates of the maxillary and mandibular canines were obtained. Using this technique the operators could envision the location of the impacted canine according to the three clinical planes. Adjacent teeth root resorption.of 28.26 % was in the upper lateral incisors while 17.39% in upper central incisors, but no lower root resorption was found in our samples. Accurate and reliable localization of the impacted canines could be obtained from the novel analysis system, which offers a better surgical and orthodontic treatment for the patients with impacted canines.
文摘The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure.Osteoclasts are one of the three main bone cell types that play a crucial role in the bone remodelling cycle.At the microstructural level,osteoclasts create bone deficits by eroding resorption cavities.Understanding how these cavities impair the mechanical quality of the bone is not only relevant in quantifying the impact of resorption cavities in healthy bone and normal aging,but maybe even more so in quantifying their role in metabolic bone diseases.Meta-bolic bone diseases and their treatment are both known to affect the bone remodelling cycle;hence,the bone mechanical competence can and will be affected.How-ever,the current knowledge of the precise dimensions of these cavities and their effect on bone competence is rather limited.This is not surprising considering the difficulties in deriving three-dimensional(3D)properties from two-dimensional(2D)histological sections.The measurement difficulties are reflected in the evalua-tion of how resorption cavities affect bone competence.Although detailed 3D models are generally being used to quantify the mechanical impact of the cavities,the representation of the cavities themselves has basicallybeen limited to simplified shapes and averaged cavityproperties.Qualitatively,these models indicate that cav-ity size and location are important,and that the effectof cavities is larger than can be expected from simplebone loss.In summary,the dimensions of osteoclastresorption cavities were until recently estimated from2D measures;hence,a careful interpretation of resorp-tion cavity dimensions is necessary.More effort needsto go into correctly quantifying resorption cavities usingmodern 3D imaging techniques like micro-computedtomography(micro-CT)and synchrotron radiation CT.Osteoclast resorption cavities affect bone competence.The structure-function relationships have been ana-lysed using computational models that,on one hand,provide rather detailed information on trabecular bonestructure,but on the other incorporate rather crudeassumptions on cavity dimensions.The use of high-resolution representations and parametric descriptionscould be potential routes to improve the quantitativefidelity of these models.
基金This research was supported by the National Natural Science Foundation of China(41807335)the Shandong Provincial Natural Science Foundation,China(ZR2020MC040)+2 种基金the National Key Technology Research and Development Program of China(2019YFC0507602-2)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020434)the National Postdoctoral Program for Innovative Talents(BX201700279).
文摘Nitrogen(N)and phosphorus(P)are two essential nutrients that determine plant growth and many nutrient cycling processes.Increasing N and P deposition is an important driver of ecosystem changes.However,in contrast to numerous studies about the impacts of nutrient addition on forests and temperate grasslands,how plant foliar stoichiometry and nutrient resorption respond to N and P addition in alpine grasslands is poorly understood.Therefore,we conducted an N and P addition experiment(involving control,N addition,P addition,and N+P addition)in an alpine grassland on Kunlun Mountains(Xinjiang Uygur Autonomous Region,China)in 2016 and 2017 to investigate the changes in leaf nutrient concentrations(i.e.,leaf N,Leaf P,and leaf N:P ratio)and nutrient resorption efficiency of Seriphidium rhodanthum and Stipa capillata,which are dominant species in this grassland.Results showed that N addition has significant effects on soil inorganic N(NO_(3)^(-)-N and NH_(4)^(+)-N)and leaf N of both species in the study periods.Compared with green leaves,leaf nutrient concentrations and nutrient resorption efficiency in senesced leaves of S.rhodanthum was more sensitive to N addition,whereas N addition influenced leaf N and leaf N:P ratio in green and senesced leaves of S.capillata.N addition did not influence N resorption efficiency of the two species.P addition and N+P addition significantly improved leaf P and had a negative effect on P resorption efficiency of the two species in the study period.These influences on plants can be explained by increasing P availability.The present results illustrated that the two species are more sensitive to P addition than N addition,which implies that P is the major limiting factor in the studied alpine grassland ecosystem.In addition,an interactive effect of N+P addition was only discernable with respect to soil availability,but did not affect plants.Therefore,exploring how nutrient characteristics and resorption response to N and P addition in the alpine grassland is important to understand nutrient use strategy of plants in terrestrial ecosystems.
基金The study was supported by grants from National Natural Science Foundation of China(Grants 31800521,31800373 and 31922052).Datasets for this research are included in this paper。
文摘High rainfall in subtropical regions can leach cation elements from ecosystems,which may limit plant growth.Plants often develop efficient resorption patterns to recycle elements,but there is relatively little available information on this topic.In February 2012,a common garden was established in a subtropical forest by planting dominant trees from the area.Green and senescent leaves were sampled from 11 tree species.The concentrations of potassium(K),calcium(Ca),sodium(Na)and magnesium(Mg)were determined,and the resorption efficiencies were calculated.The results showed significant K,Na and Mg resorption in most of the investigated tree species,while Ca mainly displayed accumulation.Evergreen coniferous and evergreen broad-leaved trees(such as Cunninghamia lanceolata,Pinus massoniana,Cinnamomum camphora,and Michelia macclurei)exhibited relatively higher resorption efficiencies of K(39.0%-87.5%)and Na(18.3%-50.2%)than deciduous broad-leaved trees.Higher Mg resorption efficiencies(>50%)were detected in Liriodendron chinense,C.lanceolata and P.massoniana than in other trees.Overall,evergreen coniferous and evergreen broad-leaved trees could show higher cation resorption than deciduous broad-leaved trees.K and Mg resorption efficiencies and Ca accumulation decrease with increasing nutrient concentrations in green leaves.Our results emphasize that nutrient resorption patterns largely depend on elements and plant functions,which provides new insights into the nutrient use strategies of subtropical plants and a reference for the selection of suitable tree species in this region.
文摘Background: The objective of this study was to determine the levels of tumor necrosis factor-alpha (TNF-α) and receptor activator of NF-kB ligand (RANKL) in the gingival crevicular fluid (GCF) in patients with severe root resorption after orthodontic treatment. Materials and Methods: Ten patients who had been receiving orthodontic treatment (5-control subjects and 5-severe root resorption subjects) participated in this study. GCF was collected from all patients. Subjects with severe root resorption (>1/3 of the original root length) were identified. Control group subjects with no loss of the root structure undergoing orthodontic treatment were also identified. The GCF was collected non-invasively from the mesial and distal sides of each of the upper central and lateral incisors using filter paper strips. The eluted GCF was used for a Western blot analysis with Antibodies against TNF-α and soluble RANKL (sRANKL). Ten male 6-week-old Wistar rats were subjected to orthodontic force of 50 g to induce a mesially tipping movement of the upper first molars for 7 days. The expression levels of TNF-α and RANKL proteins were determined in periodontal ligament (PDL) by immunohistochemical analysis. Results: The Western blot analysis showed that the TNF-α and sRANKL expressions were significantly higher in the severe root resorption group than in the control group. In the experimental tooth movement in vivo, resorption lacunae with multinucleated cells were observed in 50 g group. The immunoreactivity for TNF-α and RANKL was detected in PDL tissue subjected to the orthodontic force on day 7. Conclusion: These results suggest that TNF-α and RANKL play important roles in inducing or facilitating the development of orthodontically-induced inflammatory root resorption (OIIRR).
基金supported by the Key Project of National Key Research and Development Plans(2016YFC0500204)the Chinese National Basic Research Program(2013BAC03B05)+1 种基金the Key Project for the Strategic Science Plan in Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences(No.2012ZD007)State Forestry Administration project948(2014-4-58)
文摘Leaf nitrogen resorption is very important to Phyllostachys edulis development because the withdrawn nitrogen can help newly emerging and growing culms.However, few studies have focused on the ontogenetic changes in leaf nitrogen resorption of P. edulis. Here, we examined the variability in mature leaf nitrogen concentrations(Nm), nitrogen resorption efficiency(NRE) and proficiency(NRP or Ns) and leaf-level nitrogen use efficiency(NUE) of the current-, 3 rd-and 5 th-year culms in P.edulis stands under extensive management. Analyses of variance and correlation indicated that patterns of Nm,NRP, NRE and NUE were markedly affected by culm age and leaf nitrogen status. Nm, Nsand NRE were significant higher in younger(current-year) culms with 1-year lifespan leaves, while NUE was markedly higher in older(3 rd-or 5 th-year) culms with 2-year lifespan leaves. Significant linear correlations between Nmand NRP, NRE and NUE,Nmand NUE, Nsand NRE were found for each culm age,and Nmwas significantly positively correlated to NRE for all culms pooled. Higher proficiency in older culms led to higher NUE and lower NRE, these relationships can be modulated by Nm, which in turn, is restrained by leaf N availability and acquisition. Our results revealed that at the intraspecific level, P. edulis can adjust its leaf NRE, NRP,and leaf-level NUE in concert with culm development.Understanding nitrogen resorption characteristics and NUE of P. edulis can help decision-makers design appropriate deforestation strategies and achieve precise N fertilization for sustainable bamboo forest management.
基金financially supported by the National Natural Science Foundation of China (No. 31371876)
文摘The present study investigated the anti-osteoporosis function and the mechanism of sialoglycoproteins isolated from the eggs of Gadus morhua(Gm-SGP)on ovariectomized(OVX)rats.After 3 months of Gm-SGP treatment,OVX-induced bone loss was suppressed and uncoupling bone turnover was balanced,as indicated by systemic biomarkers of bone metabolism;no uterine estrogenicity was observed.Moreover,rats administered with Gm-SGP exhibited increased bone mineral density and biomechanical strength and significant restoration of the trabecular microarchitecture compared with rats in the control group.Gm-SGP significantly decreased bone resorption-related indicators in serum.Investigation of the associated mechanisms revealed that Gm-SGP significantly increases the OPG/RANKL ratio at the mRNA and protein levels.Further research suggested that Gm-SGP inhibits the mRNA and protein expressions of important transcription factors of the MAPK and NF-κB signaling pathways.It also attenuates the activation of related transduction signaling pathways by inhibiting phosphorylation of JNK,ERK,p38,and NF-κB,and ultimately suppresses the induction of c-Fos and NFATc1.Overall,these results demonstrate that Gm-SGP inhibits bone resorption by suppressing osteoclastogenesis-related MAPK and NF-κB pathways,thereby improving osteoporosis.
文摘BACKGROUND Invasive cervical resorption(ICR), a commonly misdiagnosed condition, is an aggressive form of external tooth resorption that contributes to periodontal tissue inflammation and deepening of the periodontal pockets. Herein we report the case of a patient, exhibiting ICR and elaborate the effects of a non-surgical approach in the amelioration of this condition.CASE SUMMARY A 21-year-old female reporting intermittent pain at the upper left side, multiple restorations, no trauma history, and having received orthodontic treatment was studied. Localized erythematous swelling was noted at the buccal interdental papilla between the left maxillary first molar and second premolar. The diseased pulp and tissue in resorption were removed and the root canal system including the defect were sealed using gutta percha/AH Plus and mineral trioxide aggregate(MTA). At the one-year recall, the tooth showed no symptoms and responded normally to percussion and palpation. The surrounding periodontium exhibited a normal color and the probing depth was normal. Radiographic examination showed a restoration of crestal alveolar bone and good adaption to MTA.CONCLUSION Non-surgical root canal treatment in conjunction with resorption defect orthograde repair with MTA was found to be an effective treatment option in the elimination of ICR. Early diagnoses are recommended in order to employ nonsurgical approaches for management of ICR instead of surgical interventions.
基金supported by the National Key Research and Development Program of China (2018YFB1105500)the Research Council of Norway (FRINATEK+1 种基金231530)the exchange project between Research Council of Norway and China Scholarship Council (276617)
文摘Bone defects resulting from trauma,surgery,congenital malformations,and other factors are among the most common health problems nowadays.Although current strategies such as autografts and allografts are recognized as the most successful treatments for stimulating bone regeneration,limitations such as graft source and complications still exist.SmartBone?is a xeno-hybrid bone graft(made from bovine bone matrix,poly(L-lactic-co-e-caprolactone),and gelatin)with a positive clinical record for bone regen-eration.In this study,the formulation for designing xeno-hybrid bone grafts using gelatins from different sources(bovine-and porcine-derived gelatin,with bone grafts named SBN and SPK,respectively)was investigated,and the biological responses were evaluated in vitro and in vivo.The results demonstrate that gelatins from both bovine and porcine sources can be loaded onto SmartBone?successfully and safely,withstanding the aggressive manufacturing processes.Different bone cell responses were observed in vitro.SBN was found to enhance osteocalcin secretion while SPK was found to upregulate osteopontin from human osteoblasts.In vivo,both bone grafts promoted osteogenesis,but SPK degraded earlier than SBN.Our findings suggest that SBN and SPK provide different yet comparable solutions for optimizing the bone resorption and regeneration balance.These xeno-hybrid bone grafts possess ideal potential for bone defect repairing.
基金We thank technicians Daisuke Arai and Yoshiaki Izuka,of Yamagata University Research Forest and the students of the Watershed Preservation Laboratory,Yamagata University,for their very helpful assistance with fi eldwork.
文摘In northeastern Japan,an area of high precipitation and mountains,beech(Fagus creanata Blume),larch(Larix kaempferi Lamb.),cedar(Cryptomeria japonica D.Don)and black locust(Robinia pseudoacacia L.)were evaluated for N resorption and N isotope fractionation in preand post-abscission leaves in comparison to green leaves.The highest leaf N concentration in summer corresponded to the N-fi xing black locust,followed in decreasing order by the deciduous beech and larch and evergreen cedar.On the other hand,the lowest N resorption effi ciency corresponded to black locust and the highest to beech,in increasing order by larch and cedar.All tree species returned signifi cant amounts of N before leaf abscission;however,N isotope fractionation during leaf N resorption was only found for beech,with a depleted N isotope value from green to pre-abscission leaf.The most N,however,was resorbed from pre-abscission to post-abscission.This result may indicate thatδ15 N fractionation took place during N transformation processes,such as protein hydrolysis,when the concentration of free amino acids increased sharply.The diff erence in the type of amino acid produced by each species could have infl uenced the N isotope ratio in beech but not in the other tree species.The results of this study showed that it is possible to infer the type and timing of processes relevant to N resorption by analyzing leafδ15 N variation during senescence.
文摘BACKGROUND The objective of this work is displaying a successful treatment for an internal resorption case under operating microscope using bioceramic material.CASE SUMMARY Periapical radiograph showed radiolucent lesion representing large internal resorption of the root.The respective defect was obturated using endoscquence bioceramic material follow up at the month 18 after treatment revealed no abnormal finings clinically and radiographically.CONCLUSION New generations bioceramics have many advantages that internal root resorption cases can benefit from.The use of operating microscope helps to apply obturating materials with precision.However,long term study on a large sample is required in future studies.