A twin ovary mutant derived from the doubled haploid (DH) progeny of a cross,02428/Gui 630, was presumably related to the transposition of some transposable elements. Up to date, all reported the active transposable ...A twin ovary mutant derived from the doubled haploid (DH) progeny of a cross,02428/Gui 630, was presumably related to the transposition of some transposable elements. Up to date, all reported the active transposable elements in rice (Oryza sativa L.) are copia like retrotransposons. In the present study, the reverse transcriptase domains of copia like retrotransposons were amplified from the total DNA isolated from the mutant plants with the degenerated oligonucleotide primers for the domain. Three cloned insert DNAs, R33 1, R33 4 and R33 8, representing putative different copia like retrotransposons were screened out. Two of them displayed high polymorphism between “Zhaiyeqing 8” and “Jingxi 17”. Nine of the polymorphic bands were mapped on seven rice chromosomes. Sequencing analysis revealed that stop codons frequently occur in the sequence of R33 8, while both R33 1 and R33 4 contain a continuous coding region for 81 putative amino acid residues. No significant variation in hybridization patterns was found between indica and japonica rice or among 26 varieties of indica rice when R33 1 was used as a probe. Nevertheless, when R33 4 was used as a probe, high polymorphisms were detected both between indica and japonica rice and among 26 indica varieties, implying that this element might still be active in rice genomes.展开更多
One possible mechanism suggested for somaclonal variation is the activation of transposable elements. The activation of retrotransposons by stresses and external changes is commonly observed in plants. In previous stu...One possible mechanism suggested for somaclonal variation is the activation of transposable elements. The activation of retrotransposons by stresses and external changes is commonly observed in plants. In previous study, we isolated the reverse transcriptase (RT) gene sequences of Ty 1-copia retrotransposons from tissue culture strawberry (Fragaria x ananassa) plant, but not the transcriptionally active sequence. For further understanding the relationship between retrotransposon and somaclonal varation, in this study, we isolated the transcriptionally active RT gene sequences from strawberry plants subjected to different abiotic stresses. These retrotransposons were activated by spraying strawberry leaves with 2 mmol L^-1 salicylic acid (SA), 50 mmol L^-1 methyl jasmonate (MeJA), 50 mmol L^-1 abscisic acid (ABA), 50 mmol L^-1 2,4- dichlorophenoxyacetic acid (2,4-D) or by inducing callus growth in 2 types of MS media: first medium supplemented with 0.5 mg L^-1 6-benzylaminopurine (6-BA), 0.5 mg L^-1 gibberellic acid (GA3), 1.0 mg L^-1 thidiazuron (TDZ), and 0.1 mg L^-1 2,4-D, and the second medium supplemented with 0.5 mg L^-1 6-BA, 0.5 mg L^-1 GA3, 2.0 mg L^-1 TDZ, and 0.02 mg L^-1 indole butyric acid (1BA). Analysis of gene sequences of 17 RTs revealed that none of them contained stop codons and/or indels disrupting the reading frame. These different stress-origin transcriptionally active RTs were remarkably similar to each other- FATEXP2-8 and FATEYS9-7 showed 100% sequence identity. Analysis of pylogenetic of these transcriptionally active RTs and the RT sequences from genome showed that there were close phylogenetic relationships of most of the transcriptionally active RTs. The results of this study have contributed to the background information necessary for future studies for evaluating the relationship between retrotransposons and somaclonal variation.展开更多
Retrotransposon-like elements are major constituents of most eukaryotic genomes. For example, they account for roughly 90% of the wheat (Triticum aestivum) genome, Previous study on a wheat strain treated by low-ene...Retrotransposon-like elements are major constituents of most eukaryotic genomes. For example, they account for roughly 90% of the wheat (Triticum aestivum) genome, Previous study on a wheat strain treated by low-energy N^+ ions indicated the variations in AFLP (Amplified Fragment Length Polymorphism ) markers, One such variation was caused by the re-activation of Tyl-copia-like retrotransposons, implying that the mutagenic effects of lowenergy ions might work through elevated activation of retrotransposons, In this paper an expression profile of Tyl-copia-like retrotransposons in wheat treated by low-energy N^+ ions is reported, The reverse transcriptase (RT) domains of these retrotransposons were amplified by reverse-transcriptional polymerase chain reaction (RT-PCR) and sequentially cloned, 42 and 65 clones were obtained from the treated (CL) and control materials (CK), respectively, Sequence analysis of each clone was performed by software. Phylogeny and classification were calculated responding to the sequences of the RT domains. All the results show that there is much difference in the RT domain between the control sample and the treated sample, Especially, the RT domains from the treated group encode significantly more functional ORF (open reading frames) than those from the control sample, This observation suggests that the treated sample has higher activation of retrotransposons, possibly as a consequence of low-energy ion beam irradiation, It also suggests that retrotransposons in the two groups impact the host gene expression in two different ways and carry out different functions in wheat cells.展开更多
As the largest transposable element in the plant genome, retrotransposons are thought to be involved in citrus genetic instability and genome evolution, especially in sweet orange, which is prone to bud mutation. In t...As the largest transposable element in the plant genome, retrotransposons are thought to be involved in citrus genetic instability and genome evolution, especially in sweet orange, which is prone to bud mutation. In the present study, the presence of copia-like retrotransposons, their heterogeneity, genomic distribution, and transcriptional activities in Citrus were investigated in 12 sweet orange (Citrus sinensis Osbeck) cultivars using a PCR assay designed to detect copia-like reverse transcriptase (RT) sequences. Twelve amplification products from each cultivar were cloned and sequenced. The cloned sequences showed great heterogeneity, except “Dream” navel and “Hamlin”, both of which shared the same sequence. Frame shifting, termination, deletion, and substitution accounted for the heterogeneity of RT sequences. Southern blot hybridization using the RT1 clone from the “Cara Cara” navel as a probe showed that multiple copies were integrated throughout the sweet orange genomes, which made the retrotransposon possible an effective molecular marker to detect citrus evolution events and to reveal its relationship with bud mutation. No transcriptional activities of the retrotransposon were detected by RT-PCR and Northern analysis in the fruits and leaves of either “Cara Cara” or “Seike” navels.展开更多
New classes of repetitive DNA elements were effectively identified by isolating small fragments of the elements from the wheat genome. A wheat A genome library was constructed from Triticum monococcum by degenerate cl...New classes of repetitive DNA elements were effectively identified by isolating small fragments of the elements from the wheat genome. A wheat A genome library was constructed from Triticum monococcum by degenerate cleavage with EcoO1091, the recognition sites of which consisted of 5'-PuGGNCCPy-3' multi-sequences. Three novel repetitive sequences pTm6, pTm69 and pTm58 derived from the A genome were screened and tested for high copy number using a blotting approach, pTm6 showed identity with integrase domains of the barley Tyl-Copia-retrotransposon BARE-1 and pTm58 showed similarity to the barley Ty3-gypsy-like retrotransposon Romani. pTm69, however, constituted a tandem array with useful genomic specificities, but did not share any identity with known repetitive elements. This study also sought to isolate wheat D-genome-specific repetitive elements regardless of the level of methylation, by genomic subtraction. Total genomic DNA of Aegilops tauschii was cleaved into short fragments with a methylation-insensitive 4 bp cutter, Mbol, and then common DNA sequences between Ae. tauschii and Triticum turgidum were subtracted by annealing with excess T. turgidum genomic DNA. The D genome repetitive sequence pAt1 was isolated and used to identify an additional novel repetitive sequence family from wheat bacterial artificial chromosomes with a size range of 1 395-1 850 bp. The methods successfully led pathfinding of two unique repetitive families.展开更多
The dynamic activity of transposable elements(TEs)contributes to the vast diversity of genome size and architecture among plants.Here,we examined the genomic distribution and transposition activity of long terminal re...The dynamic activity of transposable elements(TEs)contributes to the vast diversity of genome size and architecture among plants.Here,we examined the genomic distribution and transposition activity of long terminal repeat retrotransposons(LTR-RTs)in Arabidopsis thaliana(Ath)and three of its relatives,Arabidopsis lyrata(Aly),Eutrema salsugineum(Esa),and Schrenkiella parvula(Spa),in Brassicaceae.Our analyses revealed the distinct evolutionary dynamics of Gypsy retrotransposons,which reflects the different patterns of genome size changes of the four species over the past million years.The rate of Gypsy transposition in Aly is approximately five times more rapid than that of Ath and Esa,suggesting an expanding Aly genome.Gypsy insertions in Esa are strictly confined to pericentromeric heterochromatin and associated with dramatic centromere expansion.In contrast,Gypsy insertions in Spa have been largely suppressed over the last million years,likely as a result of a combination of an inherent molecular mechanism of preferential DNA removal and purifying selection at Gypsy elements.Additionally,species-specific clades of Gypsy elements shaped the distinct genome architectures of Aly and Esa.展开更多
Long terminal repeat (LTR) retrotransposons, one of the foremost types of transposons, continually change or modify gene function and reorganize the genome through bursts of dramatic proliferation. Many LTR-TEs pref...Long terminal repeat (LTR) retrotransposons, one of the foremost types of transposons, continually change or modify gene function and reorganize the genome through bursts of dramatic proliferation. Many LTR-TEs preferen-tially insert within other LTR-TEs, but the cause and evolutionary significance of these nested LTR-TEs are not well under-stood. In this study, a total of 1.52 Gb of Brassica sequence containing 2020 bacterial artificial chromosomes (BACs) was scanned, and six bacterial artificial chromosome (BAC) clones with extremely nested LTR-TEs (LTR-TEs density: 7.24/kb) were selected for further analysis. The majority of the LTR-TEs in four of the six BACs were found to be derived from the rapid proliferation of retrotransposons originating within the BAC regions, with only a few LTR-TEs originating from the proliferation and insertion of retrotransposons from outside the BAC regions approximately 5-23 Mya. LTR-TEs also pref-erably inserted into TA-rich repeat regions. Gene prediction by Genescan identified 207 genes in the 0.84Mb of total BAC sequences. Only a few genes (3/207) could be matched to the Brassica expressed sequence tag (EST) database, indicating that most genes were inactive after retrotransposon insertion. Five of the six BACs were putatively centromeric. Hence, nested LTR-TEs in centromere regions are rapidly duplicated, repeatedly inserted, and act to suppress activity of genes and to reshuffle the structure of the centromeric sequences. Our results suggest that LTR-TEs burst and proliferate on a local scale to create nested LTR-TE regions, and that these nested LTR-TEs play a role in the formation of centromeres.展开更多
The conserved domains of reverse transcriptase (RT) genes of Tyl-copia and Ty3-gypsy groups of long terminal repeat (LTR) retrotransposons were isolated from the Malus domestica genome using degenerate oligonucleo...The conserved domains of reverse transcriptase (RT) genes of Tyl-copia and Ty3-gypsy groups of long terminal repeat (LTR) retrotransposons were isolated from the Malus domestica genome using degenerate oligonucleotide primers. Sequence analysis showed that 45% of Ty1-copia and 63% of Ty3-gypsy RT sequences contained premature stop codons and/or indels disrupting the reading frame. High heterogeneity among RT sequences of both Ty1-copia and Ty3-gypsy group retrotransposons was observed, but Ty3-gypsy group retrotransposons in the apple genome are less heterogeneous than Ty1-copia elements. Retrotransposon copy number was estimated by dot blot hybridizations for Ty1-copia (-5000) and Ty3-gypsy (-26000). All elements of the two types of LTR retrotransposons comprise approximately 38% of the M. domestica genome, with the Ty3-gypsy group contribution being higher (33.5%) than the Tyl.copia one (4.6%). Transcription was not detected by reverse transcription-polymerase chain reaction for either Ty1-copia or Ty3-gypsy retrotransposons in the leaves of plants in vitro or in leaf explants cultured on medium supplemented with high concentration benzylaminopurine. This research reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons in the apple genome. Ty1-copia retrotransposon has higher heterogeneity than Ty3-gypsy retrotransposon, but the latter has a higher copy number, which implies that Ty3-gypsy retrotransposons may play a more important role in the apple genome evolution.展开更多
Eight intact LTR retrotransposons (Nbr1-Nbr8) have been previously characterized from the genome of Nosema bombycis, a eu- karyotic parasite with a compact and reduced genome. Here we describe six novel transcribed ...Eight intact LTR retrotransposons (Nbr1-Nbr8) have been previously characterized from the genome of Nosema bombycis, a eu- karyotic parasite with a compact and reduced genome. Here we describe six novel transcribed Nbr elements (Nbr9-Nbr14) identified through either cDNA library or RT-PCR. Like previously determined ones, all of them belong to the Ty3/Gypsy superfamily. Retrotransposon diversity and incomplete domains with insertions (Nbr12), deletions (Nbrll) and in-frame stop codons in coding regions (Nbr9) were detected, suggesting that both defective and loss events of LTR retrotransposon have happened in N. bornbycis genome. Analysis of selection showed that strong purifying selection acts on all elements except Nbr11. This implies that selective pressure keeps both these Nbrs and their functions in genome. Interestingly, Nbrll is under positive selection and some positively selected codons were identified, indicating that new functionality might have evolved in the Nbrll retrotransposon. Unlike other transposable elements, Nbrll has integrated into a conserved syntenic block and probably resulted in the inversion of both flanking regions. This demonstrates that transposable element is an important factor for the reshuffling and evolution of their host genomes, and may be maintained under natural selection.展开更多
Transposable elements constitute about half of the mammalian genome,and can be divided into two classes:the class I(retrotransposons)and the class II(DNA transposons).A few hundred types of retrotransposons,which are ...Transposable elements constitute about half of the mammalian genome,and can be divided into two classes:the class I(retrotransposons)and the class II(DNA transposons).A few hundred types of retrotransposons,which are dynamic and stage specific,have been annotated.The copy numbers and genomic locations are significantly varied in species.Retrotransposons are active in germ cells,early embryos and pluripotent stem cells(PSCs)correlated with low levels of DNA methylation in epigenetic regulation.Some key pluripotency transcriptional factors(such as OCT4,SOX2,and NANOG)bind retrotransposons and regulate their activities in PSCs,suggesting a vital role of retrotransposons in pluripotency maintenance and self-renewal.In response to retrotransposons transposition,cells employ a number of silencing mechanisms,such as DNA methylation and histone modification.This review summarizes expression patterns,functions,and regulation of retrotransposons in PSCs and early embryonic development.展开更多
Stochastic introgression of alien DNA may impose a genomic stress to the recipient genome. Herein, we report that apparent de novo genomic rearrangements in 10 of 13 selected endogenous, lowcopy, and potentially activ...Stochastic introgression of alien DNA may impose a genomic stress to the recipient genome. Herein, we report that apparent de novo genomic rearrangements in 10 of 13 selected endogenous, lowcopy, and potentially active long terminal repeat (LTR) retrotransposons occurred in one or more of three rice lines studied that were introgressed by wild rice (Zizania latifolia Griseb.). For nine retrotransposons in which both the reverse-transcriptase (RT) region and the LTR region were available, largely concordant rearrangements occurred at both regions in five elements and at the RT region only in the remaining four elements. A marked proportion of the genomic changes was shared by two or all three introgression lines that were derived from a single F~ plant. This indicates that most of the genomic changes occurred at early developmental stages of the F~ somatic cells, which then gave rise to germline cells, and, hence, ensured inheritance of the changes to later generations. Possible causes and potential implications of the introgression-induced genomic rearrangements in LTR retrotransposons are discussed in the context of plant genome evolution and breeding.展开更多
[Objective] To analyze genetic polymorphism of different species of wheat. [Method] The DNA of young seedlings from 21 species of wheat was isolated,and their genetic polymorphism was analyzed by inter-retrotransposon...[Objective] To analyze genetic polymorphism of different species of wheat. [Method] The DNA of young seedlings from 21 species of wheat was isolated,and their genetic polymorphism was analyzed by inter-retrotransposon amplified polymorphism (IRAP) using a molecule marker technology based on wheat retrotransposon Wis2-1 A. [Result] As shown by clustering map of the electrophoresis results,19 species of wheat assembled as cluster with different genetic distance. Most of the wheat species were distinguished. The genetic polymorphism among different species of wheat could be evaluated by this method objectively. [Conclusion] The analysis of IRAP based on wheat retrotransposon Wis2-1A could give a basis for breeding of wheat.展开更多
A maize (Zea mays L.) genome_specific repeated DNA sequence (clone MR64) has been transferred into one DH line of wheat through wheat (Triticum persicum Vav. ex Zhuk.) and maize cross. In the present study by RFLP ana...A maize (Zea mays L.) genome_specific repeated DNA sequence (clone MR64) has been transferred into one DH line of wheat through wheat (Triticum persicum Vav. ex Zhuk.) and maize cross. In the present study by RFLP analysis the authors proved that this DNA sequence could stably transmit into DH3 plants, the next generation derived from DH2 self_crossing. A similarity search in all DNA databases using BLASTN program showed that the DNA sequence of MR64 had as high as 93% identity to PREM_2 and 79% to Opie_2 in nucleotides. Both PREM_2 and Opie_2 are known as retrotransposons in maize genome, suggesting that MR64 likely is the partial sequence of a maize retrotransposon. Therefore, the results indicate that some retrotransposon might involve the DNA introgression from maize to wheat genome through wide fertilization. Stable inheritance of this maize genome_specific retrotransposon_like DNA in the wheat genome opens up the possibility of using retrotransposon as a new tool for gene tagging, function analysis, and insertional mutagenesis in wheat genome.展开更多
Reverse transcriptase (rt) fragments from LINE retrotransposons in the mulberry genome were analyzed in terms of heterogeneity, phylogeny, and chromosomal distribution. We amplified and characterized conserved domains...Reverse transcriptase (rt) fragments from LINE retrotransposons in the mulberry genome were analyzed in terms of heterogeneity, phylogeny, and chromosomal distribution. We amplified and characterized conserved domains of the rt using degenerate primer pairs. Sequence analyses indicated that the rt fragments were highly heterogeneous and rich in A/T bases. The sequence identity ranged from 31.8% to 99.4%. Based on sequence similarities, the rt fragments were categorized into eight groups. Furthermore, similar stop codon distribution patterns among a series of clones in the same group indicated that they underwent a similar evolutionary process. Interestingly, phylogenetic analyses of the rt fragments isolated from mulberry and 13 other plant species revealed that two distantly related taxa (mulberry and Paeonia suffruticosa) grouped together. It does not appear that this phenomenon resulted from horizontal transposable element transfer. Fluorescence in situ hybridization analysis revealed that most of the rt fragments were concentrated in the subtelomeric and pericentromeric regions of the mulberry chromosomes, but that these elements were not abundant in the mulberry genome. Future studies will focus on the potential roles of these elements in the subtelomeric and pericentromeric regions of the mulberry genome.展开更多
The self-incompatibility ( S) loci from the Solanaceae, Rosaceae and Scrophulariaceae encode a class of ribonucleases, known as S RNases, which have been shown to control the pistil expression of self-incompatible rea...The self-incompatibility ( S) loci from the Solanaceae, Rosaceae and Scrophulariaceae encode a class of ribonucleases, known as S RNases, which have been shown to control the pistil expression of self-incompatible reaction. In the former two families, the S loci have been shown to be located near centromere. However, the chromosomal location of the S locus in Antirrhinum, a species of the Scrophulariaceae, is not known. To determine its chromosomal location and genomic organization, an S-2 RNase gene and its corresponding 63 kb BAC clone were separately used for fluorescence in situ hybridization (FISH) of mitotic metaphase chromosomes of a self-incompatible Antirrhinum line Of S2S5. The results showed that the S-2 RNase detected a doublet signal near the centromere of the smallest chromosome (2n = 16). Two separate doublet signals of the tested BAC sequence were shown on both sides of the centromeres of all eight pairs of the chromosomes, suggesting that the Antirrhinum S locus is located in a pericentromeric region. Furthermore, a retrotransposon, named RIS1 (retrotransposon in the S locus), which has not been identified yet in. Antirrhinum, was found next to S-2 RNase. Taken together, the centromeric location of the S locus from the three S-RNase-based self-incompatible families provides a further support on a common origin of their evolution as well as suppressed recombination.展开更多
We report the isolation of AtL1, a 249 bp non-LTR retrotransposon fragment from Arabidopsis thaliana by fingerprinting mRNAs extracted from A. thaliana plants, ecotype Columbia, in different heat stress conditions. So...We report the isolation of AtL1, a 249 bp non-LTR retrotransposon fragment from Arabidopsis thaliana by fingerprinting mRNAs extracted from A. thaliana plants, ecotype Columbia, in different heat stress conditions. Southern blot and PCR analysis suggested that AtL1 occurs as a single- or low-copy insert in the genome of A. thaliana ecotype Columbia. The presence of AtL1 in the genome of different Arabidopsis ecotypes was confirmed by PCR amplification and sequencing thus excluding all possible contamination. A preliminary scan of the AtL1 nucleotide sequence against the EMBL and NCBI databases revealed a high degree of similarity to a group of LINE type L1 retrotransposons of mammals and with a cDNA sequence of Artemisia annua. A phylogenetic analysis of LINE elements from animals and plants placed AtL1 and A. annua sequences in close proximity to some mammalian sequences but distant from the other plants LINE elements including those from Arabidopsis.展开更多
Virus-related cancers in humans are widely recognized,but in the case of renal cancer,the link with the world of viruses is not clearly established in humans,despite being known in animal biology.In the present review...Virus-related cancers in humans are widely recognized,but in the case of renal cancer,the link with the world of viruses is not clearly established in humans,despite being known in animal biology.In the present review,we aimed to explore the literature on renal cell carcinoma(RCC)for a possible role of viruses in human RCC tumorigenesis and immune homeostasis,hypothesizing the contribution of viruses to the immunogenicity of this tumor.A scientific literature search was conducted using the PubMed,Web of Science,and Google Scholar databases with the keywords“virus”or“viruses”or“viral infection”matched with(“AND”)“renal cell carcinoma”or“kidney cancer”or“renal cancer”or“renal carcinoma”or“renal tumor”or“RCC”.The retrieved findings evidenced two main aspects testifying to the relationship between RCC and viruses:The presence of viruses within the tumor,especially in non-clear cell RCC cases,and RCC occurrence in cases with pre-existing chronic viral infections.Some retrieved translational and clinical data suggest the possible contribution of viruses,particularly Epstein-Barr virus,to the marked immunogenicity of sarcomatoid RCC.In addition,it was revealed the possible role of endogenous retrovirus reactivation in RCC oncogenesis,introducing new fascinating hypotheses about this tumor’s immunogenicity and likeliness of response to immune checkpoint inhibitors.展开更多
Retrotransposons account for a large proportion of the genome and genomic variation, and play key roles in creating novel genes and diversifying the genome in many eukaryotic species. Although retrotransposons are abu...Retrotransposons account for a large proportion of the genome and genomic variation, and play key roles in creating novel genes and diversifying the genome in many eukaryotic species. Although retrotransposons are abundant in plants, their roles had been underestimated because of a lack of research. Here, we characterized a gibberellin Acid (GA)-insensitive dwarf mutant, 84133, in foxtail millet. Map-based cloning revealed a 5.5-kb Copia-like retrotransposon insertion in DWARF1 (D1), which encodes a DELLA protein. Transcriptional analysis showed that the Copia retrotransposon mediated the transcriptional reprogramming of D1 leading to a novel N-terminal-deleted truncated DELLA transcript that was putatively driven by Copia's LTR, namely D1-TT, and another chimeric transcript. The presence of D1-TT was confirmed by protein immunodetection analysis. Furthermore, D1-TT protein was resistant to GA3 treatment compared with the intact DELLA protein due to its inability to interact with the GA receptor, SiGID1. Overexpression of D1-TT in foxtail millet resulted in dwarf plants, confirming that it determines the dwarfism of 84133. Thus, our study documents a rare instance of long terminal repeat (LTR) retrotransposon-mediated transcriptional reprograming in the plant kingdom. These results shed light on the function of LTR retrotransposons in generating new gene functions and genetic diversity.展开更多
The impact of long terminal repeat (LTR) retrotransposition on cell fate is unknown. Here, we investigated the effect of VL30 retrotransposition on cell death in SV40-transformed mouse SVTT1 cells. Transfection of a...The impact of long terminal repeat (LTR) retrotransposition on cell fate is unknown. Here, we investigated the effect of VL30 retrotransposition on cell death in SV40-transformed mouse SVTT1 cells. Transfection of a VL30 retrotransposon decreased the clonogenicity of SVTT1 by 17-fold, as compared to parental NIH3T3 cells. Correlated levels of retrotransposition frequency and cell death rates were found in retrotransposition-positive SVTT1 cloned cells, exhibiting DNA fragmentation, nuclear condensation, multinucleation and cytoplasmic vacuolization. Analysis of activation of effector caspases revealed a caspase-independent cell death mechanism. However, cell death was associated with p53 induction and concomitant upregulation of PUMAa and Bax and downregulation of Bcl-2 and Hsp70 protein expression. Moreover, we found partial loss of colocalization of large T-antigen (LT)/p53 and p53 translocation to mitochondria, leading to mitochondrial outer membrane permeabilization (MOMP) accompanied by lysosomal membrane permeabilization (LMP). Interestingly, treatment with the antioxidant N-acetylcysteiue abolished cell death, suggesting the involvement of mitochondrial-derived reactive oxygen species, and resulted in an increase of retrotransposition frequency. Importantly, the induction of cell death was VL30 retrotransposon-specilic as VL30 mobilization was induced; in contrast, mobilization of the non-LTR L1 (LINE-1, long interspersed nuclear element-1), B2 and LTR MusD retrotransposons decreased. Our results provide, for the first time, strong evidence that VL30 retrotransposition mediates cell death via mitochondrial and lysosomal damage, uncovering the role of retrotransposition as a nuclear signal activating a mitochondrial-lysosomal crosstalk in triggering cell death.展开更多
Retrotransposons are present in all plant genomes and play important roles in genome size,genome structure remodeling,gene function and genome evolution.Me07Em02 marked by sequence-related amplified polymorphism (SRAP...Retrotransposons are present in all plant genomes and play important roles in genome size,genome structure remodeling,gene function and genome evolution.Me07Em02 marked by sequence-related amplified polymorphism (SRAP) is verified,recovered,sequenced and analyzed,which closely link to the flesh color around the stone.By comparison with the peach genome Peach v1.0,a part of the sequence of copia-like retrotransposons is obtained.With the aid of DANMAN and DNASTAR sequence analysis software,BLASTn alignment is carried out in the peach genome database and GenBank.The whole genome sequence of the copialike retrotransposon in the peach is located at 9 939 764~9 944 771 bp in Scaffold-1 of Peach v1.0,with a total length of 5 008 bp.The LTR on both sides is exactly the same,the length is 444 bp,and the largest ORF box is located at the 487~4 545 bp of the sequence,encoding 1 535 amino acids.The amino acid sequence was submitted to GenBank for Protein BLAST alignment,The results showed that this sequence also has the typical amino acid sequence characteristics of the copia-like retrotransposon.At the same time,the method of peach retrotransposon labeling is preliminarily established,and the genetic diversity of the peach is analyzed.展开更多
文摘A twin ovary mutant derived from the doubled haploid (DH) progeny of a cross,02428/Gui 630, was presumably related to the transposition of some transposable elements. Up to date, all reported the active transposable elements in rice (Oryza sativa L.) are copia like retrotransposons. In the present study, the reverse transcriptase domains of copia like retrotransposons were amplified from the total DNA isolated from the mutant plants with the degenerated oligonucleotide primers for the domain. Three cloned insert DNAs, R33 1, R33 4 and R33 8, representing putative different copia like retrotransposons were screened out. Two of them displayed high polymorphism between “Zhaiyeqing 8” and “Jingxi 17”. Nine of the polymorphic bands were mapped on seven rice chromosomes. Sequencing analysis revealed that stop codons frequently occur in the sequence of R33 8, while both R33 1 and R33 4 contain a continuous coding region for 81 putative amino acid residues. No significant variation in hybridization patterns was found between indica and japonica rice or among 26 varieties of indica rice when R33 1 was used as a probe. Nevertheless, when R33 4 was used as a probe, high polymorphisms were detected both between indica and japonica rice and among 26 indica varieties, implying that this element might still be active in rice genomes.
基金supported by the National Natural Sci-ence Foundation of China (30871689)the Program for New Century Excellent Talents in University, China(NCET-07-0565)Science Foundation from the Department of Education of Liaoning Province, China(20060772)
文摘One possible mechanism suggested for somaclonal variation is the activation of transposable elements. The activation of retrotransposons by stresses and external changes is commonly observed in plants. In previous study, we isolated the reverse transcriptase (RT) gene sequences of Ty 1-copia retrotransposons from tissue culture strawberry (Fragaria x ananassa) plant, but not the transcriptionally active sequence. For further understanding the relationship between retrotransposon and somaclonal varation, in this study, we isolated the transcriptionally active RT gene sequences from strawberry plants subjected to different abiotic stresses. These retrotransposons were activated by spraying strawberry leaves with 2 mmol L^-1 salicylic acid (SA), 50 mmol L^-1 methyl jasmonate (MeJA), 50 mmol L^-1 abscisic acid (ABA), 50 mmol L^-1 2,4- dichlorophenoxyacetic acid (2,4-D) or by inducing callus growth in 2 types of MS media: first medium supplemented with 0.5 mg L^-1 6-benzylaminopurine (6-BA), 0.5 mg L^-1 gibberellic acid (GA3), 1.0 mg L^-1 thidiazuron (TDZ), and 0.1 mg L^-1 2,4-D, and the second medium supplemented with 0.5 mg L^-1 6-BA, 0.5 mg L^-1 GA3, 2.0 mg L^-1 TDZ, and 0.02 mg L^-1 indole butyric acid (1BA). Analysis of gene sequences of 17 RTs revealed that none of them contained stop codons and/or indels disrupting the reading frame. These different stress-origin transcriptionally active RTs were remarkably similar to each other- FATEXP2-8 and FATEYS9-7 showed 100% sequence identity. Analysis of pylogenetic of these transcriptionally active RTs and the RT sequences from genome showed that there were close phylogenetic relationships of most of the transcriptionally active RTs. The results of this study have contributed to the background information necessary for future studies for evaluating the relationship between retrotransposons and somaclonal variation.
基金supported by National Natural Science Foundation of China (No.10505018)Natural Science Foundation of Henan Province (No.511030400)
文摘Retrotransposon-like elements are major constituents of most eukaryotic genomes. For example, they account for roughly 90% of the wheat (Triticum aestivum) genome, Previous study on a wheat strain treated by low-energy N^+ ions indicated the variations in AFLP (Amplified Fragment Length Polymorphism ) markers, One such variation was caused by the re-activation of Tyl-copia-like retrotransposons, implying that the mutagenic effects of lowenergy ions might work through elevated activation of retrotransposons, In this paper an expression profile of Tyl-copia-like retrotransposons in wheat treated by low-energy N^+ ions is reported, The reverse transcriptase (RT) domains of these retrotransposons were amplified by reverse-transcriptional polymerase chain reaction (RT-PCR) and sequentially cloned, 42 and 65 clones were obtained from the treated (CL) and control materials (CK), respectively, Sequence analysis of each clone was performed by software. Phylogeny and classification were calculated responding to the sequences of the RT domains. All the results show that there is much difference in the RT domain between the control sample and the treated sample, Especially, the RT domains from the treated group encode significantly more functional ORF (open reading frames) than those from the control sample, This observation suggests that the treated sample has higher activation of retrotransposons, possibly as a consequence of low-energy ion beam irradiation, It also suggests that retrotransposons in the two groups impact the host gene expression in two different ways and carry out different functions in wheat cells.
基金the National Natural Science Foundation of China,国家科技攻关项目
文摘As the largest transposable element in the plant genome, retrotransposons are thought to be involved in citrus genetic instability and genome evolution, especially in sweet orange, which is prone to bud mutation. In the present study, the presence of copia-like retrotransposons, their heterogeneity, genomic distribution, and transcriptional activities in Citrus were investigated in 12 sweet orange (Citrus sinensis Osbeck) cultivars using a PCR assay designed to detect copia-like reverse transcriptase (RT) sequences. Twelve amplification products from each cultivar were cloned and sequenced. The cloned sequences showed great heterogeneity, except “Dream” navel and “Hamlin”, both of which shared the same sequence. Frame shifting, termination, deletion, and substitution accounted for the heterogeneity of RT sequences. Southern blot hybridization using the RT1 clone from the “Cara Cara” navel as a probe showed that multiple copies were integrated throughout the sweet orange genomes, which made the retrotransposon possible an effective molecular marker to detect citrus evolution events and to reveal its relationship with bud mutation. No transcriptional activities of the retrotransposon were detected by RT-PCR and Northern analysis in the fruits and leaves of either “Cara Cara” or “Seike” navels.
基金Supported by Grants-in-Aid for Scientific Research (01760004 and 04760006) from the Japanese Ministry of Education,Culture,Sports,Science and Technology (MEXT)
文摘New classes of repetitive DNA elements were effectively identified by isolating small fragments of the elements from the wheat genome. A wheat A genome library was constructed from Triticum monococcum by degenerate cleavage with EcoO1091, the recognition sites of which consisted of 5'-PuGGNCCPy-3' multi-sequences. Three novel repetitive sequences pTm6, pTm69 and pTm58 derived from the A genome were screened and tested for high copy number using a blotting approach, pTm6 showed identity with integrase domains of the barley Tyl-Copia-retrotransposon BARE-1 and pTm58 showed similarity to the barley Ty3-gypsy-like retrotransposon Romani. pTm69, however, constituted a tandem array with useful genomic specificities, but did not share any identity with known repetitive elements. This study also sought to isolate wheat D-genome-specific repetitive elements regardless of the level of methylation, by genomic subtraction. Total genomic DNA of Aegilops tauschii was cleaved into short fragments with a methylation-insensitive 4 bp cutter, Mbol, and then common DNA sequences between Ae. tauschii and Triticum turgidum were subtracted by annealing with excess T. turgidum genomic DNA. The D genome repetitive sequence pAt1 was isolated and used to identify an additional novel repetitive sequence family from wheat bacterial artificial chromosomes with a size range of 1 395-1 850 bp. The methods successfully led pathfinding of two unique repetitive families.
基金the“Innovation Project for the Postdoctoral Researchers”in Chinathe“Open Research Fund Program”of Beijing Key Lab of Plant Resource Research and Development,Beijing Technology and Business University。
文摘The dynamic activity of transposable elements(TEs)contributes to the vast diversity of genome size and architecture among plants.Here,we examined the genomic distribution and transposition activity of long terminal repeat retrotransposons(LTR-RTs)in Arabidopsis thaliana(Ath)and three of its relatives,Arabidopsis lyrata(Aly),Eutrema salsugineum(Esa),and Schrenkiella parvula(Spa),in Brassicaceae.Our analyses revealed the distinct evolutionary dynamics of Gypsy retrotransposons,which reflects the different patterns of genome size changes of the four species over the past million years.The rate of Gypsy transposition in Aly is approximately five times more rapid than that of Ath and Esa,suggesting an expanding Aly genome.Gypsy insertions in Esa are strictly confined to pericentromeric heterochromatin and associated with dramatic centromere expansion.In contrast,Gypsy insertions in Spa have been largely suppressed over the last million years,likely as a result of a combination of an inherent molecular mechanism of preferential DNA removal and purifying selection at Gypsy elements.Additionally,species-specific clades of Gypsy elements shaped the distinct genome architectures of Aly and Esa.
文摘Long terminal repeat (LTR) retrotransposons, one of the foremost types of transposons, continually change or modify gene function and reorganize the genome through bursts of dramatic proliferation. Many LTR-TEs preferen-tially insert within other LTR-TEs, but the cause and evolutionary significance of these nested LTR-TEs are not well under-stood. In this study, a total of 1.52 Gb of Brassica sequence containing 2020 bacterial artificial chromosomes (BACs) was scanned, and six bacterial artificial chromosome (BAC) clones with extremely nested LTR-TEs (LTR-TEs density: 7.24/kb) were selected for further analysis. The majority of the LTR-TEs in four of the six BACs were found to be derived from the rapid proliferation of retrotransposons originating within the BAC regions, with only a few LTR-TEs originating from the proliferation and insertion of retrotransposons from outside the BAC regions approximately 5-23 Mya. LTR-TEs also pref-erably inserted into TA-rich repeat regions. Gene prediction by Genescan identified 207 genes in the 0.84Mb of total BAC sequences. Only a few genes (3/207) could be matched to the Brassica expressed sequence tag (EST) database, indicating that most genes were inactive after retrotransposon insertion. Five of the six BACs were putatively centromeric. Hence, nested LTR-TEs in centromere regions are rapidly duplicated, repeatedly inserted, and act to suppress activity of genes and to reshuffle the structure of the centromeric sequences. Our results suggest that LTR-TEs burst and proliferate on a local scale to create nested LTR-TE regions, and that these nested LTR-TEs play a role in the formation of centromeres.
基金the National Natural Science Foundation of China (30500348)Specialized Research Fund for the Doctoral Program of Higher Education(20050157003)
文摘The conserved domains of reverse transcriptase (RT) genes of Tyl-copia and Ty3-gypsy groups of long terminal repeat (LTR) retrotransposons were isolated from the Malus domestica genome using degenerate oligonucleotide primers. Sequence analysis showed that 45% of Ty1-copia and 63% of Ty3-gypsy RT sequences contained premature stop codons and/or indels disrupting the reading frame. High heterogeneity among RT sequences of both Ty1-copia and Ty3-gypsy group retrotransposons was observed, but Ty3-gypsy group retrotransposons in the apple genome are less heterogeneous than Ty1-copia elements. Retrotransposon copy number was estimated by dot blot hybridizations for Ty1-copia (-5000) and Ty3-gypsy (-26000). All elements of the two types of LTR retrotransposons comprise approximately 38% of the M. domestica genome, with the Ty3-gypsy group contribution being higher (33.5%) than the Tyl.copia one (4.6%). Transcription was not detected by reverse transcription-polymerase chain reaction for either Ty1-copia or Ty3-gypsy retrotransposons in the leaves of plants in vitro or in leaf explants cultured on medium supplemented with high concentration benzylaminopurine. This research reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons in the apple genome. Ty1-copia retrotransposon has higher heterogeneity than Ty3-gypsy retrotransposon, but the latter has a higher copy number, which implies that Ty3-gypsy retrotransposons may play a more important role in the apple genome evolution.
基金supported by the National Basic Research Program of China(No.2005CB121000)the project of Chongqing Science & Technology Commission(CSTC,No.2006AA5019 and 2009BB1241)+1 种基金the Programme of Introducing Talents of Discipline to Universities(No.B07045)State Development Fund at Risk of Callus Silk(No.M012005-000Y-00070)
文摘Eight intact LTR retrotransposons (Nbr1-Nbr8) have been previously characterized from the genome of Nosema bombycis, a eu- karyotic parasite with a compact and reduced genome. Here we describe six novel transcribed Nbr elements (Nbr9-Nbr14) identified through either cDNA library or RT-PCR. Like previously determined ones, all of them belong to the Ty3/Gypsy superfamily. Retrotransposon diversity and incomplete domains with insertions (Nbr12), deletions (Nbrll) and in-frame stop codons in coding regions (Nbr9) were detected, suggesting that both defective and loss events of LTR retrotransposon have happened in N. bornbycis genome. Analysis of selection showed that strong purifying selection acts on all elements except Nbr11. This implies that selective pressure keeps both these Nbrs and their functions in genome. Interestingly, Nbrll is under positive selection and some positively selected codons were identified, indicating that new functionality might have evolved in the Nbrll retrotransposon. Unlike other transposable elements, Nbrll has integrated into a conserved syntenic block and probably resulted in the inversion of both flanking regions. This demonstrates that transposable element is an important factor for the reshuffling and evolution of their host genomes, and may be maintained under natural selection.
基金This work was supported by the National Key R&D Program of China(2017YFA0102801 and 2017YFC1001901)the National Natural Science Foundation(31671540and 31971365)+2 种基金the Natural Science Foundation of Guangdong Province(2017A030313093 and 2017A030313491)the Guangdong Basic and Applied Basic Research Foundation(2019A1515011422)the Guangzhou Science and Technology Project(201803010020。
文摘Transposable elements constitute about half of the mammalian genome,and can be divided into two classes:the class I(retrotransposons)and the class II(DNA transposons).A few hundred types of retrotransposons,which are dynamic and stage specific,have been annotated.The copy numbers and genomic locations are significantly varied in species.Retrotransposons are active in germ cells,early embryos and pluripotent stem cells(PSCs)correlated with low levels of DNA methylation in epigenetic regulation.Some key pluripotency transcriptional factors(such as OCT4,SOX2,and NANOG)bind retrotransposons and regulate their activities in PSCs,suggesting a vital role of retrotransposons in pluripotency maintenance and self-renewal.In response to retrotransposons transposition,cells employ a number of silencing mechanisms,such as DNA methylation and histone modification.This review summarizes expression patterns,functions,and regulation of retrotransposons in PSCs and early embryonic development.
文摘Stochastic introgression of alien DNA may impose a genomic stress to the recipient genome. Herein, we report that apparent de novo genomic rearrangements in 10 of 13 selected endogenous, lowcopy, and potentially active long terminal repeat (LTR) retrotransposons occurred in one or more of three rice lines studied that were introgressed by wild rice (Zizania latifolia Griseb.). For nine retrotransposons in which both the reverse-transcriptase (RT) region and the LTR region were available, largely concordant rearrangements occurred at both regions in five elements and at the RT region only in the remaining four elements. A marked proportion of the genomic changes was shared by two or all three introgression lines that were derived from a single F~ plant. This indicates that most of the genomic changes occurred at early developmental stages of the F~ somatic cells, which then gave rise to germline cells, and, hence, ensured inheritance of the changes to later generations. Possible causes and potential implications of the introgression-induced genomic rearrangements in LTR retrotransposons are discussed in the context of plant genome evolution and breeding.
基金Supported by Natural Science Foundation of Educational Commission of Henan Province (2009B180019)~~
文摘[Objective] To analyze genetic polymorphism of different species of wheat. [Method] The DNA of young seedlings from 21 species of wheat was isolated,and their genetic polymorphism was analyzed by inter-retrotransposon amplified polymorphism (IRAP) using a molecule marker technology based on wheat retrotransposon Wis2-1 A. [Result] As shown by clustering map of the electrophoresis results,19 species of wheat assembled as cluster with different genetic distance. Most of the wheat species were distinguished. The genetic polymorphism among different species of wheat could be evaluated by this method objectively. [Conclusion] The analysis of IRAP based on wheat retrotransposon Wis2-1A could give a basis for breeding of wheat.
文摘A maize (Zea mays L.) genome_specific repeated DNA sequence (clone MR64) has been transferred into one DH line of wheat through wheat (Triticum persicum Vav. ex Zhuk.) and maize cross. In the present study by RFLP analysis the authors proved that this DNA sequence could stably transmit into DH3 plants, the next generation derived from DH2 self_crossing. A similarity search in all DNA databases using BLASTN program showed that the DNA sequence of MR64 had as high as 93% identity to PREM_2 and 79% to Opie_2 in nucleotides. Both PREM_2 and Opie_2 are known as retrotransposons in maize genome, suggesting that MR64 likely is the partial sequence of a maize retrotransposon. Therefore, the results indicate that some retrotransposon might involve the DNA introgression from maize to wheat genome through wide fertilization. Stable inheritance of this maize genome_specific retrotransposon_like DNA in the wheat genome opens up the possibility of using retrotransposon as a new tool for gene tagging, function analysis, and insertional mutagenesis in wheat genome.
文摘Reverse transcriptase (rt) fragments from LINE retrotransposons in the mulberry genome were analyzed in terms of heterogeneity, phylogeny, and chromosomal distribution. We amplified and characterized conserved domains of the rt using degenerate primer pairs. Sequence analyses indicated that the rt fragments were highly heterogeneous and rich in A/T bases. The sequence identity ranged from 31.8% to 99.4%. Based on sequence similarities, the rt fragments were categorized into eight groups. Furthermore, similar stop codon distribution patterns among a series of clones in the same group indicated that they underwent a similar evolutionary process. Interestingly, phylogenetic analyses of the rt fragments isolated from mulberry and 13 other plant species revealed that two distantly related taxa (mulberry and Paeonia suffruticosa) grouped together. It does not appear that this phenomenon resulted from horizontal transposable element transfer. Fluorescence in situ hybridization analysis revealed that most of the rt fragments were concentrated in the subtelomeric and pericentromeric regions of the mulberry chromosomes, but that these elements were not abundant in the mulberry genome. Future studies will focus on the potential roles of these elements in the subtelomeric and pericentromeric regions of the mulberry genome.
文摘The self-incompatibility ( S) loci from the Solanaceae, Rosaceae and Scrophulariaceae encode a class of ribonucleases, known as S RNases, which have been shown to control the pistil expression of self-incompatible reaction. In the former two families, the S loci have been shown to be located near centromere. However, the chromosomal location of the S locus in Antirrhinum, a species of the Scrophulariaceae, is not known. To determine its chromosomal location and genomic organization, an S-2 RNase gene and its corresponding 63 kb BAC clone were separately used for fluorescence in situ hybridization (FISH) of mitotic metaphase chromosomes of a self-incompatible Antirrhinum line Of S2S5. The results showed that the S-2 RNase detected a doublet signal near the centromere of the smallest chromosome (2n = 16). Two separate doublet signals of the tested BAC sequence were shown on both sides of the centromeres of all eight pairs of the chromosomes, suggesting that the Antirrhinum S locus is located in a pericentromeric region. Furthermore, a retrotransposon, named RIS1 (retrotransposon in the S locus), which has not been identified yet in. Antirrhinum, was found next to S-2 RNase. Taken together, the centromeric location of the S locus from the three S-RNase-based self-incompatible families provides a further support on a common origin of their evolution as well as suppressed recombination.
文摘We report the isolation of AtL1, a 249 bp non-LTR retrotransposon fragment from Arabidopsis thaliana by fingerprinting mRNAs extracted from A. thaliana plants, ecotype Columbia, in different heat stress conditions. Southern blot and PCR analysis suggested that AtL1 occurs as a single- or low-copy insert in the genome of A. thaliana ecotype Columbia. The presence of AtL1 in the genome of different Arabidopsis ecotypes was confirmed by PCR amplification and sequencing thus excluding all possible contamination. A preliminary scan of the AtL1 nucleotide sequence against the EMBL and NCBI databases revealed a high degree of similarity to a group of LINE type L1 retrotransposons of mammals and with a cDNA sequence of Artemisia annua. A phylogenetic analysis of LINE elements from animals and plants placed AtL1 and A. annua sequences in close proximity to some mammalian sequences but distant from the other plants LINE elements including those from Arabidopsis.
文摘Virus-related cancers in humans are widely recognized,but in the case of renal cancer,the link with the world of viruses is not clearly established in humans,despite being known in animal biology.In the present review,we aimed to explore the literature on renal cell carcinoma(RCC)for a possible role of viruses in human RCC tumorigenesis and immune homeostasis,hypothesizing the contribution of viruses to the immunogenicity of this tumor.A scientific literature search was conducted using the PubMed,Web of Science,and Google Scholar databases with the keywords“virus”or“viruses”or“viral infection”matched with(“AND”)“renal cell carcinoma”or“kidney cancer”or“renal cancer”or“renal carcinoma”or“renal tumor”or“RCC”.The retrieved findings evidenced two main aspects testifying to the relationship between RCC and viruses:The presence of viruses within the tumor,especially in non-clear cell RCC cases,and RCC occurrence in cases with pre-existing chronic viral infections.Some retrieved translational and clinical data suggest the possible contribution of viruses,particularly Epstein-Barr virus,to the marked immunogenicity of sarcomatoid RCC.In addition,it was revealed the possible role of endogenous retrovirus reactivation in RCC oncogenesis,introducing new fascinating hypotheses about this tumor’s immunogenicity and likeliness of response to immune checkpoint inhibitors.
基金supported by the National Natural Science Foundation of China (31871634, 31500985)
文摘Retrotransposons account for a large proportion of the genome and genomic variation, and play key roles in creating novel genes and diversifying the genome in many eukaryotic species. Although retrotransposons are abundant in plants, their roles had been underestimated because of a lack of research. Here, we characterized a gibberellin Acid (GA)-insensitive dwarf mutant, 84133, in foxtail millet. Map-based cloning revealed a 5.5-kb Copia-like retrotransposon insertion in DWARF1 (D1), which encodes a DELLA protein. Transcriptional analysis showed that the Copia retrotransposon mediated the transcriptional reprogramming of D1 leading to a novel N-terminal-deleted truncated DELLA transcript that was putatively driven by Copia's LTR, namely D1-TT, and another chimeric transcript. The presence of D1-TT was confirmed by protein immunodetection analysis. Furthermore, D1-TT protein was resistant to GA3 treatment compared with the intact DELLA protein due to its inability to interact with the GA receptor, SiGID1. Overexpression of D1-TT in foxtail millet resulted in dwarf plants, confirming that it determines the dwarfism of 84133. Thus, our study documents a rare instance of long terminal repeat (LTR) retrotransposon-mediated transcriptional reprograming in the plant kingdom. These results shed light on the function of LTR retrotransposons in generating new gene functions and genetic diversity.
文摘The impact of long terminal repeat (LTR) retrotransposition on cell fate is unknown. Here, we investigated the effect of VL30 retrotransposition on cell death in SV40-transformed mouse SVTT1 cells. Transfection of a VL30 retrotransposon decreased the clonogenicity of SVTT1 by 17-fold, as compared to parental NIH3T3 cells. Correlated levels of retrotransposition frequency and cell death rates were found in retrotransposition-positive SVTT1 cloned cells, exhibiting DNA fragmentation, nuclear condensation, multinucleation and cytoplasmic vacuolization. Analysis of activation of effector caspases revealed a caspase-independent cell death mechanism. However, cell death was associated with p53 induction and concomitant upregulation of PUMAa and Bax and downregulation of Bcl-2 and Hsp70 protein expression. Moreover, we found partial loss of colocalization of large T-antigen (LT)/p53 and p53 translocation to mitochondria, leading to mitochondrial outer membrane permeabilization (MOMP) accompanied by lysosomal membrane permeabilization (LMP). Interestingly, treatment with the antioxidant N-acetylcysteiue abolished cell death, suggesting the involvement of mitochondrial-derived reactive oxygen species, and resulted in an increase of retrotransposition frequency. Importantly, the induction of cell death was VL30 retrotransposon-specilic as VL30 mobilization was induced; in contrast, mobilization of the non-LTR L1 (LINE-1, long interspersed nuclear element-1), B2 and LTR MusD retrotransposons decreased. Our results provide, for the first time, strong evidence that VL30 retrotransposition mediates cell death via mitochondrial and lysosomal damage, uncovering the role of retrotransposition as a nuclear signal activating a mitochondrial-lysosomal crosstalk in triggering cell death.
文摘Retrotransposons are present in all plant genomes and play important roles in genome size,genome structure remodeling,gene function and genome evolution.Me07Em02 marked by sequence-related amplified polymorphism (SRAP) is verified,recovered,sequenced and analyzed,which closely link to the flesh color around the stone.By comparison with the peach genome Peach v1.0,a part of the sequence of copia-like retrotransposons is obtained.With the aid of DANMAN and DNASTAR sequence analysis software,BLASTn alignment is carried out in the peach genome database and GenBank.The whole genome sequence of the copialike retrotransposon in the peach is located at 9 939 764~9 944 771 bp in Scaffold-1 of Peach v1.0,with a total length of 5 008 bp.The LTR on both sides is exactly the same,the length is 444 bp,and the largest ORF box is located at the 487~4 545 bp of the sequence,encoding 1 535 amino acids.The amino acid sequence was submitted to GenBank for Protein BLAST alignment,The results showed that this sequence also has the typical amino acid sequence characteristics of the copia-like retrotransposon.At the same time,the method of peach retrotransposon labeling is preliminarily established,and the genetic diversity of the peach is analyzed.