To evaluate the security of cipher algo- rithrrs with secret operations, we built a new reverse engineering analysis based on Differential Fault Analysis (DFA) to recover the secret S-boxes in Secret Private Network...To evaluate the security of cipher algo- rithrrs with secret operations, we built a new reverse engineering analysis based on Differential Fault Analysis (DFA) to recover the secret S-boxes in Secret Private Network (SPN) and Feistel structures, which are two of the most typical structures in block ciphers. This paper gives the general definitions of these two structures and proposes the reverse engineering analysis of each structure. Furthermore, we evaluate the complexity of the proposed reverse analyses and theoretically prove the effectiveness of the reverse method. For the Twoflsh-like and AES-like algorithrm, the experimental results verify the correctness and efficiency of the reverse analysis. The proposed reverse analysis can efficiently recover the secret S-boxes in the encryp'don algorithms writh SPN and Feistel structures. It can successfully recover the Twoflsh- like algorithm in 2.3 s with 256 faults and the AES- like algorithm in 0.33 s with 23 faults.展开更多
Glycerides are first separated to classes of triglycerides(TGs), diglycerides(DGs) and monoglycerides(MGs) by normal phase HPLC on silica gel column. Individual triglyceride separation is then achieved by non-aqueous ...Glycerides are first separated to classes of triglycerides(TGs), diglycerides(DGs) and monoglycerides(MGs) by normal phase HPLC on silica gel column. Individual triglyceride separation is then achieved by non-aqueous reversed phase(NARP) HPLC on C_(18) column with UV detection at 215nm.展开更多
This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and...This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and decision-making target intervals are determined using the interval analysis method.As an example,an inverse analysis method for uncertainty is presented.The intervals of unknown parameters can be obtained by sampling measured data.Even for limited measured data,robust results can also be obtained with the inverse analysis method,which can be intuitively evaluated by the uncertainty expressed in terms of an interval.For complex nonlinear problems,an iteratively optimized inverse analysis model is proposed.In a given set of loose parameter intervals,all the unknown parameter intervals that satisfy the measured information can be obtained by an iteratively optimized inverse analysis model.The influences of measured precisions and the number of parameters on the results of the inverse analysis are evaluated.Finally,the uniqueness of the interval inverse analysis method is discussed.展开更多
Nanocrystalline powders of ZrO_2–8mol%SmO1.5(8Sm SZ), ZrO_2–8mol%GdO1.5(8Gd SZ), and ZrO_2–8mol%YO1.5(8YSZ) were prepared by a simple reverse-coprecipitation technique. Differential thermal analysis/thermogra...Nanocrystalline powders of ZrO_2–8mol%SmO1.5(8Sm SZ), ZrO_2–8mol%GdO1.5(8Gd SZ), and ZrO_2–8mol%YO1.5(8YSZ) were prepared by a simple reverse-coprecipitation technique. Differential thermal analysis/thermogravimetry(DTA/TG), Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), Raman spectroscopy, and high-resolution transmission electron microscopy(HRTEM) were used to study the phase transformation and crystal growth behavior. The DTA results showed that the ZrO_2 freeze-dried precipitates crystallized at 529, 465, and 467°C in the case of 8Sm SZ, 8Gd SZ, and 8YSZ, respectively. The XRD and Raman results confirmed the presence of tetragonal ZrO_2 when the dried precipitates were calcined in the temperature range from 600 to 1000°C for 2 h. The crystallite size increased with increasing calcination temperature. The activation energies were calculated as 12.39, 12.45, and 16.59 k J/mol for 8Sm SZ, 8Gd SZ, and 8YSZ respectively.展开更多
A principal direction Gaussian image (PDGI)-based algorithm is proposed to extract the regular swept surface from point cloud. Firstly, the PDGI of the regular swept surface is constructed from point cloud, then the...A principal direction Gaussian image (PDGI)-based algorithm is proposed to extract the regular swept surface from point cloud. Firstly, the PDGI of the regular swept surface is constructed from point cloud, then the bounding box of the Gaussian sphere is uniformly partitioned into a number of small cubes (3D grids) and the PDGI points on the Gaussian sphere are associated with the corresponding 3D grids. Secondly, cluster analysis technique is used to sort out a group of 3D grids containing more PDGI points among the 3D grids. By the connected-region growing algorithm, the congregation point or the great circle is detected from the 3D grids. Thus the translational direction is determined by the congregation point and the direction of the rotational axis is determined by the great circle. In addition, the positional point of the rotational axis is obtained by the intersection of all the projected normal lines of the rotational surface on the plane being perpendicular to the estimated direction of the rotational axis. Finally, a pattem search method is applied to optimize the translational direction and the rotational axis. Some experiments are used to illustrate the feasibility of the above algorithm.展开更多
Based on load-displacement curves,indentation is widely used to extract the elastoplastic properties of materials.It is generally believed that such a measure is non-unique and a full stress-strain curve cannot be obt...Based on load-displacement curves,indentation is widely used to extract the elastoplastic properties of materials.It is generally believed that such a measure is non-unique and a full stress-strain curve cannot be obtained using plural sharp and deep spherical indenters.In this paper we show that by introducing an additional dimensionless function of A/A (the ratio of residual area to the area of an indenter profile) in the reverse analysis,the elastoplastic properties of several unknown materials that exhibit visually indistinguishable load-displacement curves can be uniquely determined with a sharp indentation.展开更多
Nanoindentation testing and its Reverse Analysis Method(RAM)show great potential in understanding the tensile properties of metallic alloys with various microstructures.Nevertheless,the tensile properties of heterogen...Nanoindentation testing and its Reverse Analysis Method(RAM)show great potential in understanding the tensile properties of metallic alloys with various microstructures.Nevertheless,the tensile properties of heterogeneous materials such as nickel-based superalloy welded joints have not been well interpreted by combining the microstructures and nanoindentation results,due to their diverse and complex microscopic zones,which throws shade on the properties of separated zones in the material.Here we demonstrated a new method of implanting nanoindentation results into Finite Element Method(FEM)and applied the method to the welded joints with the zones of various microstructure features.The local properties are calculated by the nanoindentation data using RAM,and used as input of Finite Element(FE)simulation of an identical indentation process,to in turn verify the accuracy and reliability of the reverse model.The simulation results reveal that the global mechanical behaviors,such as Young's modulus,yield strength and strain hardening exponent,are related to the local properties to a great extent.Thus,the global properties can be verified by simulation straight after experiments,taking consideration of local properties and dimension parameters of different zones.It is shown that the maximum error between calculation of RAM and testing is within 5.1%in different zones,and the errors of maximum indentation depth and residual depth obtained by FE simulation are less than 2.4%,which indicates that the method provides a reliable prediction of mechanical properties of superalloy welded joints.展开更多
基金This work was supported by the National Natural Science Foundation of China under Cxants No.60970116, No. 60970115, No. 61202386, No. 61003267.
文摘To evaluate the security of cipher algo- rithrrs with secret operations, we built a new reverse engineering analysis based on Differential Fault Analysis (DFA) to recover the secret S-boxes in Secret Private Network (SPN) and Feistel structures, which are two of the most typical structures in block ciphers. This paper gives the general definitions of these two structures and proposes the reverse engineering analysis of each structure. Furthermore, we evaluate the complexity of the proposed reverse analyses and theoretically prove the effectiveness of the reverse method. For the Twoflsh-like and AES-like algorithrm, the experimental results verify the correctness and efficiency of the reverse analysis. The proposed reverse analysis can efficiently recover the secret S-boxes in the encryp'don algorithms writh SPN and Feistel structures. It can successfully recover the Twoflsh- like algorithm in 2.3 s with 256 faults and the AES- like algorithm in 0.33 s with 23 faults.
文摘Glycerides are first separated to classes of triglycerides(TGs), diglycerides(DGs) and monoglycerides(MGs) by normal phase HPLC on silica gel column. Individual triglyceride separation is then achieved by non-aqueous reversed phase(NARP) HPLC on C_(18) column with UV detection at 215nm.
基金Supported by the National Natural Science Foundation of China(50978083)the Fundamental Research Funds for the Central Universities(2010B02814)
文摘This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and decision-making target intervals are determined using the interval analysis method.As an example,an inverse analysis method for uncertainty is presented.The intervals of unknown parameters can be obtained by sampling measured data.Even for limited measured data,robust results can also be obtained with the inverse analysis method,which can be intuitively evaluated by the uncertainty expressed in terms of an interval.For complex nonlinear problems,an iteratively optimized inverse analysis model is proposed.In a given set of loose parameter intervals,all the unknown parameter intervals that satisfy the measured information can be obtained by an iteratively optimized inverse analysis model.The influences of measured precisions and the number of parameters on the results of the inverse analysis are evaluated.Finally,the uniqueness of the interval inverse analysis method is discussed.
文摘Nanocrystalline powders of ZrO_2–8mol%SmO1.5(8Sm SZ), ZrO_2–8mol%GdO1.5(8Gd SZ), and ZrO_2–8mol%YO1.5(8YSZ) were prepared by a simple reverse-coprecipitation technique. Differential thermal analysis/thermogravimetry(DTA/TG), Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), Raman spectroscopy, and high-resolution transmission electron microscopy(HRTEM) were used to study the phase transformation and crystal growth behavior. The DTA results showed that the ZrO_2 freeze-dried precipitates crystallized at 529, 465, and 467°C in the case of 8Sm SZ, 8Gd SZ, and 8YSZ, respectively. The XRD and Raman results confirmed the presence of tetragonal ZrO_2 when the dried precipitates were calcined in the temperature range from 600 to 1000°C for 2 h. The crystallite size increased with increasing calcination temperature. The activation energies were calculated as 12.39, 12.45, and 16.59 k J/mol for 8Sm SZ, 8Gd SZ, and 8YSZ respectively.
基金This project is supported by Key Program of National Natural Science Foundation of China(No.50435020).
文摘A principal direction Gaussian image (PDGI)-based algorithm is proposed to extract the regular swept surface from point cloud. Firstly, the PDGI of the regular swept surface is constructed from point cloud, then the bounding box of the Gaussian sphere is uniformly partitioned into a number of small cubes (3D grids) and the PDGI points on the Gaussian sphere are associated with the corresponding 3D grids. Secondly, cluster analysis technique is used to sort out a group of 3D grids containing more PDGI points among the 3D grids. By the connected-region growing algorithm, the congregation point or the great circle is detected from the 3D grids. Thus the translational direction is determined by the congregation point and the direction of the rotational axis is determined by the great circle. In addition, the positional point of the rotational axis is obtained by the intersection of all the projected normal lines of the rotational surface on the plane being perpendicular to the estimated direction of the rotational axis. Finally, a pattem search method is applied to optimize the translational direction and the rotational axis. Some experiments are used to illustrate the feasibility of the above algorithm.
基金supported by the National Natural Science Foundation of China (Grant Nos.11102176,11002122,51172192,and 11172258)the Natural Science Foundation of Hunan Province for Innovation Group(Grant No.09JJ7004)the Key Special Program for Science and Technology of Hunan Province (Grant No.2009FJ1002)
文摘Based on load-displacement curves,indentation is widely used to extract the elastoplastic properties of materials.It is generally believed that such a measure is non-unique and a full stress-strain curve cannot be obtained using plural sharp and deep spherical indenters.In this paper we show that by introducing an additional dimensionless function of A/A (the ratio of residual area to the area of an indenter profile) in the reverse analysis,the elastoplastic properties of several unknown materials that exhibit visually indistinguishable load-displacement curves can be uniquely determined with a sharp indentation.
基金the financial support by the National Nature Science Foundation of China(No.52075021)the support from Department of Materials Science&Engineering at The University of Toronto.
文摘Nanoindentation testing and its Reverse Analysis Method(RAM)show great potential in understanding the tensile properties of metallic alloys with various microstructures.Nevertheless,the tensile properties of heterogeneous materials such as nickel-based superalloy welded joints have not been well interpreted by combining the microstructures and nanoindentation results,due to their diverse and complex microscopic zones,which throws shade on the properties of separated zones in the material.Here we demonstrated a new method of implanting nanoindentation results into Finite Element Method(FEM)and applied the method to the welded joints with the zones of various microstructure features.The local properties are calculated by the nanoindentation data using RAM,and used as input of Finite Element(FE)simulation of an identical indentation process,to in turn verify the accuracy and reliability of the reverse model.The simulation results reveal that the global mechanical behaviors,such as Young's modulus,yield strength and strain hardening exponent,are related to the local properties to a great extent.Thus,the global properties can be verified by simulation straight after experiments,taking consideration of local properties and dimension parameters of different zones.It is shown that the maximum error between calculation of RAM and testing is within 5.1%in different zones,and the errors of maximum indentation depth and residual depth obtained by FE simulation are less than 2.4%,which indicates that the method provides a reliable prediction of mechanical properties of superalloy welded joints.