Background: Blocking the Rho A/ROCK Ⅱ/MLC 2(Ras homolog gene family member A/Rho kinase Ⅱ/myosin light chain 2) signaling pathway can initiate neuroprotective mechanisms against neurological diseases such as stroke,...Background: Blocking the Rho A/ROCK Ⅱ/MLC 2(Ras homolog gene family member A/Rho kinase Ⅱ/myosin light chain 2) signaling pathway can initiate neuroprotective mechanisms against neurological diseases such as stroke, cerebral ischemia, and subarachnoid hemorrhage. Nevertheless, it is not clear whether and how disrupting the Rho A/ROCK Ⅱ/MLC 2 signaling pathway changes the pathogenic processes of the blood–brain barrier(BBB) after intracerebral hemorrhage(ICH). The present investigation included the injection of rat caudal vein blood into the basal ganglia area to replicate the pathophysiological conditions caused by ICH. Methods: Scalp acupuncture(SA) therapy was performed on rats with ICH at the acupuncture point “Baihui”-penetrating “Qubin,” and the ROCK selective inhibitor fasudil was used as a positive control to evaluate the inhibitory effect of acupuncture on the Rho A/ROCK Ⅱ/MLC 2 signaling pathway. Post-assessments included neurological deficits, brain edema, Evans blue extravasation, Western blot, quantitative polymerase chain reaction, and transmission electron microscope imaging. Results: We found that ROCK Ⅱ acts as a promoter of the Rho A/ROCK Ⅱ/MLC 2 signaling pathway, and its expression increased at 6 h after ICH, peaked at 3 days, and then decreased at 7 days after ICH, but was still higher than the preintervention level. According to some experimental results, although 3 days is the peak, 7 days is the best time point for acupuncture treatment. Starting from 6 h after ICH, the neurovascular structure and endothelial cell morphology around the hematoma began to change. Based on the changes in the promoter ROCK Ⅱ, a 7-day time point was selected as the breakthrough point for treating ICH model rats in the main experiment. The results of this experiment showed that both SA at “Baihui”-penetrating “Qubin” and treatment with fasudil could improve the expression of endothelial-related proteins by inhibiting the Rho A/ROCK Ⅱ/MLC 2 signaling pathway and reduce neurological dysfunction, brain edema, and BBB permeability in rats. Conclusion: This study found that these experimental data indicated that SA at “Baihui”-penetrating “Qubin” could preserve BBB integrity and neurological function recovery after ICH by inhibiting Rho A/ROCK Ⅱ/MLC 2 signaling pathway activation and by regulating endothelial cell–related proteins.展开更多
Mesenchymal stem cell (MSC)-based treatments have shown promise for improving tendon healing and repair. MSCs have the potential to differentiate into multiple lineages in response to select chemical and physical st...Mesenchymal stem cell (MSC)-based treatments have shown promise for improving tendon healing and repair. MSCs have the potential to differentiate into multiple lineages in response to select chemical and physical stimuli, including into tenocytes. Cell elongation and cytoskeletal tension have been shown to be instrumental to the process of MSC differentiation. Previous studies have shown that inhibition of stress fiber formation leads MSCs to default toward an adipogenic lineage, which suggests that stress fibers are required for MSCs to sense the environmental factors that can induce differentiation into tenocytes. As the Rho/ROCK signal transduction pathway plays a critical role in both stress fiber formation and in cell sensation, we examined whether the activation of this pathway was required when inducing MSC tendon differentiation using rope-like silk scaffolds. To accomplish this, we employed a loss-of-function approach by knocking out ROCK, actin and myosin (two other components of the pathway) using the specific inhibitors Y-27632, Latrunculin A and blebbistatin, respectively. We demonstrated that independently disrupting the cytoskeleton and the Rho/ ROCK pathway abolished the expression of tendon differentiation markers and led to a loss of spindle morphology. Together, these studies suggest that the tension that is generated by MSC elongation is essential for MSC teno-differentiation and that the Rho/ROCK pathway is a critical mediator of tendon differentiation on rope-like silk scaffolds.展开更多
RhoA (Ras homolog gene family member A) belongs to the Rho subfamily of GTPases. ROCK (Rho—associated coiled—coil forming protein kinase) is downstream of the active RhoA and affects the generation and secretion of ...RhoA (Ras homolog gene family member A) belongs to the Rho subfamily of GTPases. ROCK (Rho—associated coiled—coil forming protein kinase) is downstream of the active RhoA and affects the generation and secretion of cellular element, which will result in relevant biologic effects. The RhoA/ROCK signaling pathway consists of these serious reactions. Therefore, the activation and inhibition of this pathway are closely related to the occurrence and development of many diseases. The research on the molecular mechanism of these diseases may be instructive and helpful to the clinical treatmen and prognosis of diseases. Recent studies of these typical diseases related to RhoA/ROCK signaling pathway are viewed in this article.展开更多
Rho-associated kinase (ROCK) is a serine/threonine kinase and one of the major downstream effectors of the small GTPase RhoA. The Rho/ROCK pathway is closely related to the pathogenesis of several central nervous syst...Rho-associated kinase (ROCK) is a serine/threonine kinase and one of the major downstream effectors of the small GTPase RhoA. The Rho/ROCK pathway is closely related to the pathogenesis of several central nervous system (CNS) disorders, and involved in many aspects of neuronal functions including neurite outgrowth and retraction. In the adult CNS, the damaged neuron regeneration is very difficult due to the presence of myelin-associated axon growth inhibitors such as Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (Omgp), etc. The effects of these axon growth inhibitors are reversed by blocking the Rho/ROCK pathway 47 vitro, and the inhibition of Rho/ROCK pathway can promote axon regeneration and functional recovery in the injured CNS in viva In addition, the therapeutic effects of the Rho/ROCK inhibitors have also been demonstrated in some animal models and the Rho/ROCK pathway becomes an attractive target for the development of drugs for treating CNS disorders. In this review, we summarized on the effect of the Rho and the downstream factor ROCK in neural regeneration, and the potential therapeutic effect of Rho/ROCK inhibitors in the survival and axonal regeneration of retinal ganglion cell was also discussed.展开更多
Objective:To investigate the role of oxidative stress in human renal tubular epithelial cells(HK-2)induced by high glucose and the underlying signal pathway in vitro.Methods:MYPT1,pro-caspase-3,PGC-1α,and Drpl protei...Objective:To investigate the role of oxidative stress in human renal tubular epithelial cells(HK-2)induced by high glucose and the underlying signal pathway in vitro.Methods:MYPT1,pro-caspase-3,PGC-1α,and Drpl protein expressions were measured by Western blot.MnSOD2,Drp1 and PGC-1αmRNA expressions were detected by real time PCR.Results:Results showed that high glucose significantly up-regulated the protein expressions of MYPT1,pro-caspase-3 and the mRNA expression of MnSOD2 in HK-2 cells;while Rho kinase inhibitor fasudil and ROCK1 siRNA inhibited protein expressions of pro-caspase-3 and the mRNA expression of MnSOD2 in HK-2 cells induced by high glucose.Importantly,fasudil and ROCK1 siRNA markedly inhibited the expressions of mitochondrial motor proteins Drp1 and mitochondrial gene PGC-la in HK-2 cell=s induced by high glucose.Conclusions:Our findings suggest that Rho kinase signal pathway is involved in mitochondrial oxidative damage and apoptosis in high glucose-induced renal tubular epithelial cells by regulating mitochondrial motor proteins Drp1 and mitochondrial gene PGC-1α.Targeting Rho kinase signal pathway might be a potential strategy for the treatment of diabetic nephropathy.展开更多
基金supported by the National Natural Science Foundation of China(numbers:81774416 and 81473764)。
文摘Background: Blocking the Rho A/ROCK Ⅱ/MLC 2(Ras homolog gene family member A/Rho kinase Ⅱ/myosin light chain 2) signaling pathway can initiate neuroprotective mechanisms against neurological diseases such as stroke, cerebral ischemia, and subarachnoid hemorrhage. Nevertheless, it is not clear whether and how disrupting the Rho A/ROCK Ⅱ/MLC 2 signaling pathway changes the pathogenic processes of the blood–brain barrier(BBB) after intracerebral hemorrhage(ICH). The present investigation included the injection of rat caudal vein blood into the basal ganglia area to replicate the pathophysiological conditions caused by ICH. Methods: Scalp acupuncture(SA) therapy was performed on rats with ICH at the acupuncture point “Baihui”-penetrating “Qubin,” and the ROCK selective inhibitor fasudil was used as a positive control to evaluate the inhibitory effect of acupuncture on the Rho A/ROCK Ⅱ/MLC 2 signaling pathway. Post-assessments included neurological deficits, brain edema, Evans blue extravasation, Western blot, quantitative polymerase chain reaction, and transmission electron microscope imaging. Results: We found that ROCK Ⅱ acts as a promoter of the Rho A/ROCK Ⅱ/MLC 2 signaling pathway, and its expression increased at 6 h after ICH, peaked at 3 days, and then decreased at 7 days after ICH, but was still higher than the preintervention level. According to some experimental results, although 3 days is the peak, 7 days is the best time point for acupuncture treatment. Starting from 6 h after ICH, the neurovascular structure and endothelial cell morphology around the hematoma began to change. Based on the changes in the promoter ROCK Ⅱ, a 7-day time point was selected as the breakthrough point for treating ICH model rats in the main experiment. The results of this experiment showed that both SA at “Baihui”-penetrating “Qubin” and treatment with fasudil could improve the expression of endothelial-related proteins by inhibiting the Rho A/ROCK Ⅱ/MLC 2 signaling pathway and reduce neurological dysfunction, brain edema, and BBB permeability in rats. Conclusion: This study found that these experimental data indicated that SA at “Baihui”-penetrating “Qubin” could preserve BBB integrity and neurological function recovery after ICH by inhibiting Rho A/ROCK Ⅱ/MLC 2 signaling pathway activation and by regulating endothelial cell–related proteins.
文摘Mesenchymal stem cell (MSC)-based treatments have shown promise for improving tendon healing and repair. MSCs have the potential to differentiate into multiple lineages in response to select chemical and physical stimuli, including into tenocytes. Cell elongation and cytoskeletal tension have been shown to be instrumental to the process of MSC differentiation. Previous studies have shown that inhibition of stress fiber formation leads MSCs to default toward an adipogenic lineage, which suggests that stress fibers are required for MSCs to sense the environmental factors that can induce differentiation into tenocytes. As the Rho/ROCK signal transduction pathway plays a critical role in both stress fiber formation and in cell sensation, we examined whether the activation of this pathway was required when inducing MSC tendon differentiation using rope-like silk scaffolds. To accomplish this, we employed a loss-of-function approach by knocking out ROCK, actin and myosin (two other components of the pathway) using the specific inhibitors Y-27632, Latrunculin A and blebbistatin, respectively. We demonstrated that independently disrupting the cytoskeleton and the Rho/ ROCK pathway abolished the expression of tendon differentiation markers and led to a loss of spindle morphology. Together, these studies suggest that the tension that is generated by MSC elongation is essential for MSC teno-differentiation and that the Rho/ROCK pathway is a critical mediator of tendon differentiation on rope-like silk scaffolds.
文摘RhoA (Ras homolog gene family member A) belongs to the Rho subfamily of GTPases. ROCK (Rho—associated coiled—coil forming protein kinase) is downstream of the active RhoA and affects the generation and secretion of cellular element, which will result in relevant biologic effects. The RhoA/ROCK signaling pathway consists of these serious reactions. Therefore, the activation and inhibition of this pathway are closely related to the occurrence and development of many diseases. The research on the molecular mechanism of these diseases may be instructive and helpful to the clinical treatmen and prognosis of diseases. Recent studies of these typical diseases related to RhoA/ROCK signaling pathway are viewed in this article.
基金Supported by National Nature Science Foundation of China (No.81070728)Shanghai "Science and Technology Innovation Action Plan" Basic Research Key Project,China (No.11JC1407700 and 11 JC1407701)+1 种基金Shanghai Nature Science Foundation, China (No.08ZR1413900)Shanghai Leading Academic Discipline Project, China(No.S30205)
文摘Rho-associated kinase (ROCK) is a serine/threonine kinase and one of the major downstream effectors of the small GTPase RhoA. The Rho/ROCK pathway is closely related to the pathogenesis of several central nervous system (CNS) disorders, and involved in many aspects of neuronal functions including neurite outgrowth and retraction. In the adult CNS, the damaged neuron regeneration is very difficult due to the presence of myelin-associated axon growth inhibitors such as Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (Omgp), etc. The effects of these axon growth inhibitors are reversed by blocking the Rho/ROCK pathway 47 vitro, and the inhibition of Rho/ROCK pathway can promote axon regeneration and functional recovery in the injured CNS in viva In addition, the therapeutic effects of the Rho/ROCK inhibitors have also been demonstrated in some animal models and the Rho/ROCK pathway becomes an attractive target for the development of drugs for treating CNS disorders. In this review, we summarized on the effect of the Rho and the downstream factor ROCK in neural regeneration, and the potential therapeutic effect of Rho/ROCK inhibitors in the survival and axonal regeneration of retinal ganglion cell was also discussed.
基金supported by National Natural Science Foundation of China(No.81560124)Hainan Key Research and Development Projects(ZDYF2018131,ZDYF2017113,ZDYF2017114)+1 种基金Hainan Science and Technology Planned Project of Youth Outstanding Ability of Innovation(201704)Hainan Health Family Planning Industry Project(13A210277)
文摘Objective:To investigate the role of oxidative stress in human renal tubular epithelial cells(HK-2)induced by high glucose and the underlying signal pathway in vitro.Methods:MYPT1,pro-caspase-3,PGC-1α,and Drpl protein expressions were measured by Western blot.MnSOD2,Drp1 and PGC-1αmRNA expressions were detected by real time PCR.Results:Results showed that high glucose significantly up-regulated the protein expressions of MYPT1,pro-caspase-3 and the mRNA expression of MnSOD2 in HK-2 cells;while Rho kinase inhibitor fasudil and ROCK1 siRNA inhibited protein expressions of pro-caspase-3 and the mRNA expression of MnSOD2 in HK-2 cells induced by high glucose.Importantly,fasudil and ROCK1 siRNA markedly inhibited the expressions of mitochondrial motor proteins Drp1 and mitochondrial gene PGC-la in HK-2 cell=s induced by high glucose.Conclusions:Our findings suggest that Rho kinase signal pathway is involved in mitochondrial oxidative damage and apoptosis in high glucose-induced renal tubular epithelial cells by regulating mitochondrial motor proteins Drp1 and mitochondrial gene PGC-1α.Targeting Rho kinase signal pathway might be a potential strategy for the treatment of diabetic nephropathy.