期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于Ricker子波核的支持向量回归方法及其在地震勘探记录去噪处理中的应用 被引量:3
1
作者 邓小英 李月 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2007年第4期821-827,共7页
针对地震勘探中强随机噪声的去噪问题,引进支持向量回归方法,提出并证明一种新的Ricker子波核函数。支持向量回归采用核映射的基本思想,基于结构风险最小化原则,将回归问题转化为一个二次规划问题。对单道记录或多道记录中任选道的仿真... 针对地震勘探中强随机噪声的去噪问题,引进支持向量回归方法,提出并证明一种新的Ricker子波核函数。支持向量回归采用核映射的基本思想,基于结构风险最小化原则,将回归问题转化为一个二次规划问题。对单道记录或多道记录中任选道的仿真实验表明,与传统的基于径向基核函数的支持向量回归及褶积滤波方法相比,使用本方法去噪后的同相轴更为清晰,波形恢复得更好,信噪比也较高,因此有可能将其应用于地震勘探记录的去噪处理中。 展开更多
关键词 支持向量回归 ricker子波函数 褶积滤波 地震勘探同相轴
下载PDF
Ricker子波核支持向量回归的Mercer条件拓展问题研究 被引量:2
2
作者 邓小英 杨顶辉 +1 位作者 刘涛 谢静 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2009年第9期2335-2344,共10页
Ricker子波核支持向量回归方法是消减地震勘探记录强随机噪声的新滤波技术.用判定支持向量允许核函数的Mercer条件探讨Ricker子波核函数的有效性,经过数值计算相应的核矩阵的最小特征值,发现在一个较大范围内存在极小的负值带,数量级为1... Ricker子波核支持向量回归方法是消减地震勘探记录强随机噪声的新滤波技术.用判定支持向量允许核函数的Mercer条件探讨Ricker子波核函数的有效性,经过数值计算相应的核矩阵的最小特征值,发现在一个较大范围内存在极小的负值带,数量级为10^(-13)-10^(-16),且在正值带中亦存在10^(-13)-10^(-15)数量级的量.考虑到正负极小量值的计算误差机理相近,认为判定核函数有效性的Mercer条件在工程应用时有可能适当放宽,即核矩阵不严格半正定,接近半正定亦可.为了将Ricker子波核支持向量回归滤波方法向实际应用发展,本文对不同的理论模型的Ricker子波核滤波和小波变换滤波、自适应维纳滤波这三种技术的效果进行了比较,包括时域波形、频域振幅谱、滤波前后的信噪比以及均方误差等方面.结果表明,Ricker子波核滤波方法优于另两种方法.为实际应用Ricker子波核滤波方法奠定基础. 展开更多
关键词 ricker子波核支持向量回归滤波方法 Mercer条件拓展 混合相位子波 强随机噪声 信噪比 均方差
下载PDF
最小二乘支持向量回归滤波系统性能分析 被引量:6
3
作者 邓小英 杨顶辉 +2 位作者 刘涛 李月 杨宝俊 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2010年第8期2004-2011,共8页
支持向量机(Support Vector Machine:SVM)一直作为机器学习方法在统计学习理论基础上被研究和发展,本文从信号与系统的角度出发,证明了平移不变核最小二乘支持向量机(Least Squares SVM:LS-SVM)是一个线性时不变系统.以Ricker子波核为例... 支持向量机(Support Vector Machine:SVM)一直作为机器学习方法在统计学习理论基础上被研究和发展,本文从信号与系统的角度出发,证明了平移不变核最小二乘支持向量机(Least Squares SVM:LS-SVM)是一个线性时不变系统.以Ricker子波核为例,探讨了不同参数对最小二乘支持向量回归(Least Squares Support VectorRegression:LS-SVR)滤波器频率响应特性的影响,这些参数的不同选择相应地控制着滤波器通带上升沿的陡峭性、通带的中心频率、通带带宽以及信号能量的衰减,即滤波器长度越长通带的上升沿越陡,核参数值越大通带的中心频率越高,且通带带宽越宽,正则化参数值越小,通带带宽越窄(但通带中心频率基本保持恒定),有效信号幅度衰减越严重.合成地震记录的仿真实验结果表明,Ricker子波核LS-SVR滤波器在处理地震勘探信号的应用中,滤波性能优于径向基函数(Radial Basic Function:RBF)核LS-SVR滤波器以及小波变换滤波和Wiener滤波方法. 展开更多
关键词 支持向量 ricker子波 最小二乘支持向量回归滤波系统 频率响应 随机噪声
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部