For a class of elliptic Hessian operators, one type of corresponding parabolic Hessian equations is studied on Riemannian manifolds. uniqueness of the admissible solution to the first initial boundary the equations ar...For a class of elliptic Hessian operators, one type of corresponding parabolic Hessian equations is studied on Riemannian manifolds. uniqueness of the admissible solution to the first initial boundary the equations are shown. The existence and value problem for展开更多
The paper studies a class of nonlinear elliptic partial differential equations on a compact Riemannian manifold (M,g) with some curvature restriction. The authors try to prove some uniqueness and nonexistent results...The paper studies a class of nonlinear elliptic partial differential equations on a compact Riemannian manifold (M,g) with some curvature restriction. The authors try to prove some uniqueness and nonexistent results for the positive solutions of the equations concerned.展开更多
L_(ν) operator is an important extrinsic differential operator of divergence type and has profound geometric settings.In this paper,we consider the clamped plate problem of L_(ν)^(2)operator on a bounded domain of t...L_(ν) operator is an important extrinsic differential operator of divergence type and has profound geometric settings.In this paper,we consider the clamped plate problem of L_(ν)^(2)operator on a bounded domain of the complete Riemannian manifolds.A general formula of eigenvalues of L_(ν)^(2) operator is established.Applying this general formula,we obtain some estimates for the eigenvalues with higher order on the complete Riemannian manifolds.As several fascinating applications,we discuss this eigenvalue problem on the complete translating solitons,minimal submanifolds on the Euclidean space,submanifolds on the unit sphere and projective spaces.In particular,we get a universal inequality with respect to the L_(II) operator on the translating solitons.Usually,it is very difficult to get universal inequalities for weighted Laplacian and even Laplacian on the complete Riemannian manifolds.Therefore,this work can be viewed as a new contribution to universal estimate.展开更多
We prove the existence of multiple solutions of an elliptic equation with critical Sobolev growth and critical Hardy potential on compact Riemannian manifolds.
The authors analyze continuity equations with Stratonovich stochasticity,■ρ+divh[ρo(u(t,x)+∑_(i=1)^(N)a_(i)(x)w_(i)(t))]=0defined on a smooth closed Riemannian manifold M with metric h.The velocity field u is pert...The authors analyze continuity equations with Stratonovich stochasticity,■ρ+divh[ρo(u(t,x)+∑_(i=1)^(N)a_(i)(x)w_(i)(t))]=0defined on a smooth closed Riemannian manifold M with metric h.The velocity field u is perturbed by Gaussian noise terms Wi(t),:WN(t)driven by smooth spatially dependent vector fields a1(x),...,aN(x)on M.The velocity u belongs to L_(t)^(1)W_(x)^(1,2)with divh u bounded in Lf,for p>d+2,where d is the dimension of M(they do not assume div_(h) u∈L_(t,x)^(∞)).For carefully chosen noise vector fields ai(and the number N of them),they show that the initial-value problem is well-posed in the class of weak L^(2) solutions,although the problem can be ill-posed in the deterministic case because of concentration effects.The proof of this“regularization by noise”result is based on a L^(2) estimate,which is obtained by a duality method,and a weak compactness argument.展开更多
Learning mappings between functions(operators)defined on complex computational domains is a common theoretical challenge in machine learning.Existing operator learning methods mainly focus on regular computational dom...Learning mappings between functions(operators)defined on complex computational domains is a common theoretical challenge in machine learning.Existing operator learning methods mainly focus on regular computational domains,and have many components that rely on Euclidean structural data.However,many real-life operator learning problems involve complex computational domains such as surfaces and solids,which are non-Euclidean and widely referred to as Riemannian manifolds.Here,we report a new concept,neural operator on Riemannian manifolds(NORM),which generalises neural operator from Euclidean spaces to Riemannian manifolds,and can learn the operators defined on complex geometries while preserving the discretisation-independent model structure.NORM shifts the function-to-function mapping to finite-dimensional mapping in the Laplacian eigenfunctions’subspace of geometry,and holds universal approximation property even with only one fundamental block.The theoretical and experimental analyses prove the significant performance of NORM in operator learning and show its potential for many scientific discoveries and engineering applications.展开更多
In this paper,we discuss a Kazdan-Warner typed equation on certain non-compact Rie- mannian manifolds.As an application,we prove an existence theorem of Hermitian-Yang-Mills-Higgs metrics on holomorphic line bundles o...In this paper,we discuss a Kazdan-Warner typed equation on certain non-compact Rie- mannian manifolds.As an application,we prove an existence theorem of Hermitian-Yang-Mills-Higgs metrics on holomorphic line bundles over certain non-compact K(?)hler manifolds.展开更多
In this paper,nonparametric estimation for a stationary strongly mixing and manifoldvalued process(X_(j))is considered.In this non-Euclidean and not necessarily i.i.d setting,we propose kernel density estimators of th...In this paper,nonparametric estimation for a stationary strongly mixing and manifoldvalued process(X_(j))is considered.In this non-Euclidean and not necessarily i.i.d setting,we propose kernel density estimators of the joint probability density function,of the conditional probability density functions and of the conditional expectations of functionals of X_(j)given the past behavior of the process.We prove the strong consistency of these estimators under sufficient conditions,and we illustrate their performance through simulation studies and real data analysis.展开更多
In this paper, we study flat Riemannian manifolds which have codimension two orbits, under the action of a closed and connected Lie group G of isometries. We assume that G has fixed points, then characterize M and orb...In this paper, we study flat Riemannian manifolds which have codimension two orbits, under the action of a closed and connected Lie group G of isometries. We assume that G has fixed points, then characterize M and orbits of M.展开更多
We investigate the integral conditions to extend the mean curvature flow in a Riemannian manifold. We prove that the mean curvature flow solution with finite total mean curvature at a finite time interval [0,T) can be...We investigate the integral conditions to extend the mean curvature flow in a Riemannian manifold. We prove that the mean curvature flow solution with finite total mean curvature at a finite time interval [0,T) can be extended over time T. Moreover,we show that the condition is optimal in some sense.展开更多
The present paper is concerned with the existence of golbal smooth solutions for the homogeneous Dirichlet boundary value problem of the Darboux equation and the case degenerate onthe boundary is contained As some app...The present paper is concerned with the existence of golbal smooth solutions for the homogeneous Dirichlet boundary value problem of the Darboux equation and the case degenerate onthe boundary is contained As some applications the smooth isometric embeddings of positivelyand nonnegatively curved disks into R^3 are constructed.展开更多
Let M be a complete, simply connected Riemannian manifold with negative curvature. We obtain an interpolation of Hardy inequality and Moser-Trudinger inequality on M. Furthermore, the constant we obtain is sharp.
This article gives some geometric inequalities for a submanifold with parallel second fundamental form in a pinched Riemannian manifold and the distribution for the square norm of its second fundamental form.
The classical theory of mass-spring-damper-type dynamical systems on the ordinary flat space R^3 may be generalized to higher-dimensional Riemannian manifolds by reformulating the basic underlying physical principles ...The classical theory of mass-spring-damper-type dynamical systems on the ordinary flat space R^3 may be generalized to higher-dimensional Riemannian manifolds by reformulating the basic underlying physical principles through differential geometry.Nonlinear dynamical systems have been studied in the scientific literature because they arise naturally from the modeling of complex physical structures and because such dynamical systems constitute the basis for several modern applications such as the secure transmission of information.The flows of nonlinear dynamical systems may evolve over time in complex,non-repeating(although deterministic) patterns.The focus of the present paper is on formulating the general equations that describe the dynamics of a point-wise particle sliding on a Riemannian manifold in a coordinate-free manner.The paper shows how the equations particularize in the case of some manifolds of interest in the scientific literature,such as the Stiefel manifold and the manifold of symmetric positive-definite matrices.展开更多
In this paper,we deal with a singular quasilinear critical elliptic equation of Lichnerowicz type involving the p-Laplacian operator.With the help of the subcritical approach from the variational method,we obtain the ...In this paper,we deal with a singular quasilinear critical elliptic equation of Lichnerowicz type involving the p-Laplacian operator.With the help of the subcritical approach from the variational method,we obtain the non-existence,existence,and multiplicity results under some given assumptions.展开更多
Seventy years ago, Myers and Steenrod showed that the isometry group of a Riemannian manifold without boundary has a structure of Lie group. In 2007, Bagaev and Zhukova proved the same result for a Riemannian orbifold...Seventy years ago, Myers and Steenrod showed that the isometry group of a Riemannian manifold without boundary has a structure of Lie group. In 2007, Bagaev and Zhukova proved the same result for a Riemannian orbifold. In this paper, the authors first show that the isometry group of a Riemannian manifold M with boundary has dimension at most 1/2 dim M(dim M - 1). Then such Riemannian manifolds with boundary that their isometry groups attain the preceding maximal dimension are completely classified.展开更多
In this paper,the authors consider a family of smooth immersions Ft : Mn→Nn+1of closed hypersurfaces in Riemannian manifold Nn+1with bounded geometry,moving by the Hkmean curvature flow.The authors show that if the s...In this paper,the authors consider a family of smooth immersions Ft : Mn→Nn+1of closed hypersurfaces in Riemannian manifold Nn+1with bounded geometry,moving by the Hkmean curvature flow.The authors show that if the second fundamental form stays bounded from below,then the Hkmean curvature flow solution with finite total mean curvature on a finite time interval [0,Tmax)can be extended over Tmax.This result generalizes the extension theorems in the paper of Li(see "On an extension of the Hkmean curvature flow,Sci.China Math.,55,2012,99–118").展开更多
Using the theory of harmonic maps the authors discuss theproperties of the fundamental group of a complete nonpositivelycurved Riemannian manifold, and prove that the finitely generatedvirtual solvable subgroup of fun...Using the theory of harmonic maps the authors discuss theproperties of the fundamental group of a complete nonpositivelycurved Riemannian manifold, and prove that the finitely generatedvirtual solvable subgroup of fundamental group of a completenonpositively curved Riemannian manifold either is a peripheralsubgroup of fundamental group or can be realized by animmersed totall geodesic closed flat manifold. It generalizessome results of Gromoll-Wolf, Lawson-Yan and Schoen-Yau.展开更多
文摘For a class of elliptic Hessian operators, one type of corresponding parabolic Hessian equations is studied on Riemannian manifolds. uniqueness of the admissible solution to the first initial boundary the equations are shown. The existence and value problem for
文摘The paper studies a class of nonlinear elliptic partial differential equations on a compact Riemannian manifold (M,g) with some curvature restriction. The authors try to prove some uniqueness and nonexistent results for the positive solutions of the equations concerned.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11861036 and 11826213)the Natural Science Foundation of Jiangxi Province(Grant No.20224BAB201002)。
文摘L_(ν) operator is an important extrinsic differential operator of divergence type and has profound geometric settings.In this paper,we consider the clamped plate problem of L_(ν)^(2)operator on a bounded domain of the complete Riemannian manifolds.A general formula of eigenvalues of L_(ν)^(2) operator is established.Applying this general formula,we obtain some estimates for the eigenvalues with higher order on the complete Riemannian manifolds.As several fascinating applications,we discuss this eigenvalue problem on the complete translating solitons,minimal submanifolds on the Euclidean space,submanifolds on the unit sphere and projective spaces.In particular,we get a universal inequality with respect to the L_(II) operator on the translating solitons.Usually,it is very difficult to get universal inequalities for weighted Laplacian and even Laplacian on the complete Riemannian manifolds.Therefore,this work can be viewed as a new contribution to universal estimate.
文摘We prove the existence of multiple solutions of an elliptic equation with critical Sobolev growth and critical Hardy potential on compact Riemannian manifolds.
基金supported by the Research Council of Norway through the projects Stochastic Conservation Laws (No. 250674)(in part) Waves and Nonlinear Phenomena (No. 250070)
文摘The authors analyze continuity equations with Stratonovich stochasticity,■ρ+divh[ρo(u(t,x)+∑_(i=1)^(N)a_(i)(x)w_(i)(t))]=0defined on a smooth closed Riemannian manifold M with metric h.The velocity field u is perturbed by Gaussian noise terms Wi(t),:WN(t)driven by smooth spatially dependent vector fields a1(x),...,aN(x)on M.The velocity u belongs to L_(t)^(1)W_(x)^(1,2)with divh u bounded in Lf,for p>d+2,where d is the dimension of M(they do not assume div_(h) u∈L_(t,x)^(∞)).For carefully chosen noise vector fields ai(and the number N of them),they show that the initial-value problem is well-posed in the class of weak L^(2) solutions,although the problem can be ill-posed in the deterministic case because of concentration effects.The proof of this“regularization by noise”result is based on a L^(2) estimate,which is obtained by a duality method,and a weak compactness argument.
基金supported by the National Science Fund for Distinguished Young Scholars (51925505)the General Program of National Natural Science Foundation of China (52275491)+3 种基金the Major Program of the National Natural Science Foundation of China (52090052)the Joint Funds of the National Natural Science Foundation of China (U21B2081)the National Key R&D Program of China (2022YFB3402600)the New Cornerstone Science Foundation through the XPLORER PRIZE
文摘Learning mappings between functions(operators)defined on complex computational domains is a common theoretical challenge in machine learning.Existing operator learning methods mainly focus on regular computational domains,and have many components that rely on Euclidean structural data.However,many real-life operator learning problems involve complex computational domains such as surfaces and solids,which are non-Euclidean and widely referred to as Riemannian manifolds.Here,we report a new concept,neural operator on Riemannian manifolds(NORM),which generalises neural operator from Euclidean spaces to Riemannian manifolds,and can learn the operators defined on complex geometries while preserving the discretisation-independent model structure.NORM shifts the function-to-function mapping to finite-dimensional mapping in the Laplacian eigenfunctions’subspace of geometry,and holds universal approximation property even with only one fundamental block.The theoretical and experimental analyses prove the significant performance of NORM in operator learning and show its potential for many scientific discoveries and engineering applications.
基金the National Natural Science Foundation of China(Grant No.10771188)the Natural Science Foundation of Zhejiang Province(Grant No.Y605091)
文摘In this paper,we discuss a Kazdan-Warner typed equation on certain non-compact Rie- mannian manifolds.As an application,we prove an existence theorem of Hermitian-Yang-Mills-Higgs metrics on holomorphic line bundles over certain non-compact K(?)hler manifolds.
文摘In this paper,nonparametric estimation for a stationary strongly mixing and manifoldvalued process(X_(j))is considered.In this non-Euclidean and not necessarily i.i.d setting,we propose kernel density estimators of the joint probability density function,of the conditional probability density functions and of the conditional expectations of functionals of X_(j)given the past behavior of the process.We prove the strong consistency of these estimators under sufficient conditions,and we illustrate their performance through simulation studies and real data analysis.
文摘In this paper, we study flat Riemannian manifolds which have codimension two orbits, under the action of a closed and connected Lie group G of isometries. We assume that G has fixed points, then characterize M and orbits of M.
基金supported by National Natural Science Foundation of China (Grant Nos. 10771187, 11071211)the Trans-Century Training Programme Foundation for Talents by the Ministry of Education of China+1 种基金the Natural Science Foundation of Zhejiang Province (Grant No. 101037)the China Postdoctoral Science Foundation (Grant No. 20090461379)
文摘We investigate the integral conditions to extend the mean curvature flow in a Riemannian manifold. We prove that the mean curvature flow solution with finite total mean curvature at a finite time interval [0,T) can be extended over time T. Moreover,we show that the condition is optimal in some sense.
文摘The present paper is concerned with the existence of golbal smooth solutions for the homogeneous Dirichlet boundary value problem of the Darboux equation and the case degenerate onthe boundary is contained As some applications the smooth isometric embeddings of positivelyand nonnegatively curved disks into R^3 are constructed.
基金Supported by National Natural Science Foundation of China(Grant No.11201346)
文摘Let M be a complete, simply connected Riemannian manifold with negative curvature. We obtain an interpolation of Hardy inequality and Moser-Trudinger inequality on M. Furthermore, the constant we obtain is sharp.
基金Supported by the NNSF of China(10231010)the Trans-Century Training Programme Foundation for Talents by the Ministry of Education of China+1 种基金the Natural Science Foundation of Zhejiang Province(101037) Fudan Postgraduate Students Innovation Project(CQH5928002)
文摘This article gives some geometric inequalities for a submanifold with parallel second fundamental form in a pinched Riemannian manifold and the distribution for the square norm of its second fundamental form.
基金supported by the Grant 'Ricerca Scientifica di Ateneo(RSA-B)2014'
文摘The classical theory of mass-spring-damper-type dynamical systems on the ordinary flat space R^3 may be generalized to higher-dimensional Riemannian manifolds by reformulating the basic underlying physical principles through differential geometry.Nonlinear dynamical systems have been studied in the scientific literature because they arise naturally from the modeling of complex physical structures and because such dynamical systems constitute the basis for several modern applications such as the secure transmission of information.The flows of nonlinear dynamical systems may evolve over time in complex,non-repeating(although deterministic) patterns.The focus of the present paper is on formulating the general equations that describe the dynamics of a point-wise particle sliding on a Riemannian manifold in a coordinate-free manner.The paper shows how the equations particularize in the case of some manifolds of interest in the scientific literature,such as the Stiefel manifold and the manifold of symmetric positive-definite matrices.
基金National Natural Science Foundation of China(Grant Nos.11771342 and 11571259)the Natural Science Foundation of Hubei Province(Grant No.2019CFA007)。
文摘In this paper,we deal with a singular quasilinear critical elliptic equation of Lichnerowicz type involving the p-Laplacian operator.With the help of the subcritical approach from the variational method,we obtain the non-existence,existence,and multiplicity results under some given assumptions.
基金Project supported by the National Natural Science Foundation of China (Nos. 10601053, 10671096,10871184, 10971104)Beijing International Mathematical Research Center for the hospitality and financial support during the course of this work
文摘Seventy years ago, Myers and Steenrod showed that the isometry group of a Riemannian manifold without boundary has a structure of Lie group. In 2007, Bagaev and Zhukova proved the same result for a Riemannian orbifold. In this paper, the authors first show that the isometry group of a Riemannian manifold M with boundary has dimension at most 1/2 dim M(dim M - 1). Then such Riemannian manifolds with boundary that their isometry groups attain the preceding maximal dimension are completely classified.
基金supported by the National Natural Science Foundation of China(Nos.11301399,11126189,11171259,11126190)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120141120058)+1 种基金the China Postdoctoral Science Foundation(No.20110491212)the Fundamental Research Funds for the Central Universities(Nos.2042011111054,20420101101025)
文摘In this paper,the authors consider a family of smooth immersions Ft : Mn→Nn+1of closed hypersurfaces in Riemannian manifold Nn+1with bounded geometry,moving by the Hkmean curvature flow.The authors show that if the second fundamental form stays bounded from below,then the Hkmean curvature flow solution with finite total mean curvature on a finite time interval [0,Tmax)can be extended over Tmax.This result generalizes the extension theorems in the paper of Li(see "On an extension of the Hkmean curvature flow,Sci.China Math.,55,2012,99–118").
文摘Using the theory of harmonic maps the authors discuss theproperties of the fundamental group of a complete nonpositivelycurved Riemannian manifold, and prove that the finitely generatedvirtual solvable subgroup of fundamental group of a completenonpositively curved Riemannian manifold either is a peripheralsubgroup of fundamental group or can be realized by animmersed totall geodesic closed flat manifold. It generalizessome results of Gromoll-Wolf, Lawson-Yan and Schoen-Yau.