Since 2000, the Chinese government has implemented emergency water diversion measures to restore the damaged riparian forest ecosystem with dominant tree species Euphrat poplar(Populus euphratica Oliv.)at the lower re...Since 2000, the Chinese government has implemented emergency water diversion measures to restore the damaged riparian forest ecosystem with dominant tree species Euphrat poplar(Populus euphratica Oliv.)at the lower reaches of the Tarim River. In the present study, comparative analysis of variations in the vitality of P. euphratica trees were made using 2005 and 2010 data to illustrate the revitalization process of riparian forest. Poplar trees within 300 m of the riverbed were positively revitalized, while the vitality of trees farther than 300 m from the river decreased. Population structure was studied to demonstrate the development of poplar community. In the first belt, the class structure for the diameter at breast height(DBH) of P. euphratica fit a logistic model, and the 2nd, 3rd and 4th belt curve fittings were close to a Gaussian model; in other plots they were bimodal. Cluster analysis of the composition of the DBH class of poplar trees demonstrated that those within 16–36 cm DBH were the most abundant(58.49% of total) in study area, under 16 cm of DBH were second(31.36%), and trees >40 cm DBH were the least abundant(10.15%). More than 80% of the trees were young and medium-sized, which means that the poplar forest community in the vicinity of the lower Tarim River is at a stable developmental stage. The abundance of juvenile trees of P. euphratica in the first and second measuring belts was 12.13% in 2005 and increased to 25.52% in 2010, which means that the emergency water transfer had a positive impact on the generation of young P. euphratica trees in the vicinity of the river.展开更多
Nighttime sap flow is a potentially important factor that affects whole-plant water balance and water-use efficiency (WUE). Its functions include predawn disequilibrium between plant and soil water potentials as wel...Nighttime sap flow is a potentially important factor that affects whole-plant water balance and water-use efficiency (WUE). Its functions include predawn disequilibrium between plant and soil water potentials as well as between the increments of oxygen supply and nutrient uptake. However, main factors that drive nighttime sap flow remain unclear, and researches related to the relationship between nighttime sap flow velocity and environmental factors are limited. Accordingly, we investigated the variations in the nighttime sap flow of Populus euphratica in a desert riparian forest of an extremely arid region, Northwest China. Results indicated that P. euphratica sap flow occurred throughout the night during the growing season because of the partial stomata opening. Nighttime sap flow for the P. euphratica forest accounted for 31%-47% of its daily sap flow during the growing season. The high value of nighttime sap flow could be the result of high stomatal conductance and could have significant implications for water budgets. Throughout the whole growing season, nighttime sap flow velocity of P. euphratica was positively correlated with the vapor pressure deficit (VPD), air temperature and soil water content. We found that VPD and soil water content were the main driving factors for nighttime sap flow of P. euphratica.展开更多
Understanding forest ecosystem evapotranspiration(ET) is crucial for water-limited environments,particularly those that lack adequate quantified data such as the lower Heihe River basin of northwest China which is p...Understanding forest ecosystem evapotranspiration(ET) is crucial for water-limited environments,particularly those that lack adequate quantified data such as the lower Heihe River basin of northwest China which is primarily dominated by Tamarix ramosissima Ledeb.and Populus euphratica Oliv.forests.Accordingly,we selected the growing season for 2 years (2012 and 2014) of two such forests under similar meteorological conditions to compare ET using the eddy covariance(EC) technique.During the growing seasons,daily ET of T.ramosissima ranged from 0.3 to 8.0 mm day^(-1) with a mean of 3.6 mm day^(-1),and daily ET of P.euphratica ranged from 0.9 to 7.9 mm day^(-1) with a mean of 4.6 mm day^(-1) for a total of 548 and 707 mm,respectively.The significantly higher ET of the P.euphratica stand was directly linked to high soil evaporation rates under sufficient water availability from irrigation.When the soil evaporation was disregarded,water use was comparable to two contrasting riparian forests,a P.euphratica forest with a total transpiration of 465 mm and a T.ramosissima forest with 473 mm.Regression analysis demonstrated that climate factors accounted for at least 80% of ET variation in both forest types.In conclusion,water use of the riparian forests was low and comparable in this arid region,that suggest the long-term plant adaptation to the local climate and conditions of water availability.展开更多
Background:Tree mortality and regeneration(seedling and sapling recruitment)are essential components of forest dynamics in arid regions,especially where subjected to serious eco-hydrological problems.In recent decades...Background:Tree mortality and regeneration(seedling and sapling recruitment)are essential components of forest dynamics in arid regions,especially where subjected to serious eco-hydrological problems.In recent decades,the mortality of the Euphrates poplar(Populus euphratica)along the Tarim River in Northwest China has increased.However,few studies have quantified the causes of mortality and regeneration in this azonal riparian forest type.Methods:The present study describes the annual hydrological response of tree mortality and regeneration in forest gaps.A total of 60 canopy gaps were investigated in six replicate grid plots(50m×50 m)and the annual runoff and water consumption data during the period of 1955–2016 were collected from hydrological stations in the middle reaches of the Tarim River.We compared the regeneration density of seedlings and saplings within the canopy gap areas(CGAs),undercanopy areas(UCAs),and uncovered riverbank areas(RBAs)through detailed field investigation.Results:Our study found that the mortality of young and middle-aged gap makers has increased remarkably over recent decades,particularly since the year 1996.The main results indicated that regional water scarcity was the primary limiting factor for long-term changes in tree mortality,as shown by a significant correlation between the diameter at breast height(DBH)of dead trees and the annual surface water.The average density(or regeneration rate)of seedlings and saplings was highest in the RBAs,intermediate in the CGAs,and lowest in the UCAs.Compared with the UCAs,the CGAs promote tree regeneration to some extent by providing favorable conditions for the survival and growth of seedlings and saplings,which would otherwise be suppressed in the understory.Furthermore,although the density of seedlings and saplings in the CGAs was not as high as in the RBAs,the survival rate was higher in the CGAs than in the RBAs.Conclusion:Forest canopy gaps in floodplain areas can play a decisive role in the long-term germination and regeneration of plant species.However,as a typical phreatophyte in this hyper-arid region,the ecosystem structure,functions and services of this fragile P.euphratica floodplain forests are threatened by a continuous decrease of water resources,due to excessive water use for agricultural irrigation,which has resulted in a severe reduction of intact poplar forests.Furthermore,the survival of seedlings and saplings is influenced by light availability and soil water at the regional scale.Our findings suggest that policymakers may need to reconsider the restoration and regeneration measures implemented in riparian P.euphratica forests to improve flood water efficiency and create canopy gaps.Our results provide with valuable reference information for the conservation and sustainable development of floodplain forest ecosystems.展开更多
Tree species composition and diversity were investigated in the riparian forest around Lake Barombi Kotto, Cameroon. This study aimed at determining</span><span style="font-family:""> </s...Tree species composition and diversity were investigated in the riparian forest around Lake Barombi Kotto, Cameroon. This study aimed at determining</span><span style="font-family:""> </span><span style="font-family:Verdana;">the tree species composition, population structure, and providing evidence of anthropogenic disturbances in the riparian forest of Lake Barombi Kotto. The objectives were to determine the tree species composition and diversity in the riparian forest around Lake Barombi Kotto, to elucidate the forest structure and to document the anthropogenic disturbances in this forest. Five plots were laid within which </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">tree enumeration and measurement of dbh were carried out.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">Trees were identified using scientific identification keys in the Flora of W</span><span style="font-family:Verdana;">est Africa. Disturbance scores were given to each site by qualitatively assessing various disturbances. A total of 340 trees belonging to 70 plant species, 63 genera and 28 plant families were enumerated. Shannon-Wiener diversity varied across sites, with the highest value (H = 3.45) recorded in Tung and the lowest (H = 2.21) in Malenda. Population structure differed across sites,</span><span style="font-family:Verdana;"> the largest stand basal area of 43.78 m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">/ha was recorded in Bondokombo while the smallest (2.15 m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">/ha)</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">was recorded in the Sacred Island. </span><i><span style="font-family:Verdana;">Cecropia</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">peltata</span></i><span style="font-family:""><span style="font-family:Verdana;"> L., </span><i><span style="font-family:Verdana;">Pseudospondias</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">macrocarpa</span></i><i><span style="font-family:""> </span></i><span style="font-family:""><span style="font-family:Verdana;">Oliv. Pierre and </span><i><span style="font-family:Verdana;">Ceiba</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">pentandra</span></i><span style="font-family:Verdana;"> (L.) Gaertn had the largest basal areas across the different sites. Species rich families were Malvaceae (9 species), Fabaceae (9 species), Annonaceae</span><span style="font-family:""> </span><span style="font-family:Verdana;">(4 species), and Anacardiaceae (4). This study shows that, there is a high tree species diversity in the protected forest (Tung) but the other unprotected sites are highly disturbed by anthropogenic activities. There is need to develop and enhance existing management policies for this riparian forest, especially by replanting the cut trees and creating a protected riparian buffer to conserve its floristic diversity and ecological functions.展开更多
Soil bioengineering has been applied more and more in different regions of Brazil in recent years. The study in hand presents the installation of “new” riparian forest based on soil bioengineering techniques. This r...Soil bioengineering has been applied more and more in different regions of Brazil in recent years. The study in hand presents the installation of “new” riparian forest based on soil bioengineering techniques. This riverbank restoration work was implemented in the year 2010 and two onsite vegetation surveys, one shortly after the construction, and one in 2013. Besides that, the structures of reinforcement work, and its effectiveness were evaluated. By means of the vegetation survey, the applied species were examined for their ability to establish the riverbank in an environmentally sustainable way. Most notably, the species Calliandra brevipes Benth. (Fabaceae, Mimosoideae), Phyllanthus sellowianus Müller Arg. (Euphorbiaceae), Salix humboldtiana Willd. (Salicaceae), Bauhinia forficate Link (Leguminosae), Inga marginata Willd. (Mimosoideae) and Ateleia glazioveana Baill. (Leguminosae, Papilionoideae) showed a good growth development. The proportion of spontaneous vegetation increased significantly, with Pennisetum purpureum Schumach. becoming a dominating species. Resulting from that, the intervention can be assessed as functional and safe, but the strong increase of spontaneous vegetation is undesirable due to less flood resistance. The vegetated riprap could be the best to meet the expectations of the construction elements. Partly, the anchored willows showed as well a good growth development whereas the species used for the hedge brush layer could not develop as expected in large parts of the construction.展开更多
The major objective of this study was to evaluate the effects of sand mining disturbances on the diversity of arbuscular mycorrhizal fungi(AMF). In addition, the proportional changes in the diversity of AMF to the d...The major objective of this study was to evaluate the effects of sand mining disturbances on the diversity of arbuscular mycorrhizal fungi(AMF). In addition, the proportional changes in the diversity of AMF to the distances from riverbanks were assessed. For this purpose, the riparian forest of the Maroon River, Iran was divided into three locations with a 200-meter wide zone in between. Thus, the locations studied were named Distance I(riverbank), Distance II(intermediate), and Distance III(farthest from riverbank). In each of these distances, 10 Tamarix arceuthoides and Populus euphratica of each species were randomly selected. At the same time, soil and root samples were collected from the rhizosphere of the tree species studied. Results indicated that totally 13 AMF species were observed in T. arceuthoides and 19 AMF species were recorded in P. euphratica rhizosphere belonging to 6 genera and 6 families. In these AMF species, Glomus segmentatum, G. geosporum, G. rubiforme, G. nanolumen, G. spinuliferum, Claroideoglomus drummondii, Gigaspora gigantea and Acaulospora paulinae appeared only in P. euphratica rhizosphere, while G. multiforum and Claroideoglomus claroideum were observed only in T. arceuthoides rhizosphere. Moreover, Distance II had the least AMF species both in T. arceuthoides and in P. euphratica rhizospheres, and also the least spore density and root colonization rate. Our results are important in that they provide a list of resistant AMF species that could be used in the conservation of biodiversity.展开更多
Seasonal and microhabitat variations of chemical constituents of foliar organic carbon (C), total nitrogen (N), total phosphorus (P), and total potassium (K), in Populus euphratica growing in desert riparian f...Seasonal and microhabitat variations of chemical constituents of foliar organic carbon (C), total nitrogen (N), total phosphorus (P), and total potassium (K), in Populus euphratica growing in desert riparian forests in northwestern China and their correlations were studied. Results show that ranges of C, N, P and K contents in the leaves ofP. euphratica were 39.08%-46.16%, 0.28%-2.81%, 0.05%-0.18% and 0.35%-2.03%, with means of 43.51%, 1.49%, 0.102% and 1.17%, respectively. The ratio of C/N, C/P and N/P changed from 16.26 to 146.61, from 258.08 to 908.67 and from 2.89 to 26.67; the mean was 37.24, 466.27 and 15.14, respectively. The mean N content was significantly lower than of deciduous trees in China, but the mean P content was nearly equivalent. The ratio of C/N was remarkably higher than of global land plants. The ratio of N/P indicated that growth ofP. euphratica was jointly limited by N and P nutrient deficiency. During the growth season, total trends of leaf C, N, P and K contents decreased. The max- imum appeared in May, and the minimum in September. Among microhabitats, C, N and K contents gradually increased from ri- parian lowland, flatland, sandpile, Gobi and dune, but C/N ratio was opposite, and P content was not apparent. Foliar C content was extremely, significantly and positively correlated with N and K contents, respectively. The relationships of N-K and P-K were both significantly positive.展开更多
Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only he...Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling(WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes,China, to assess effects of groundwater-depth change on the canopy leaf area index(LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7-2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin.展开更多
Evapotranspiration(ET) and its controlling mechanism over the desert riparian forests in arid regions are the important scientific basis for the water resources managements of the lower reaches of the inland rivers of...Evapotranspiration(ET) and its controlling mechanism over the desert riparian forests in arid regions are the important scientific basis for the water resources managements of the lower reaches of the inland rivers of China. Nearly three years of continuous measurements of surface ET, soil water content at different depths and groundwater table over a typical Tamarix spp. stand and a typical Populus euphratica stand were conducted in the lower reach of the Tarim River. The ET seasonal trends in the growing season were controlled by plant phenology, and ET in non-growing season was weak. The diurnal variations of ET resulting from the comprehensive effects of all atmospheric factors were significantly related with reference ET. The spatial pattern of ET was determined by vegetation LAI, more vegetation coverage, more ET amount. Groundwater is the water source of surface ET, and the soil water in shallow layers hardly took part in the water exchange in the groundwatersoil-plant-air system. The temporal processes of ET over the Tamarix stand and the Populus stand were similar, but the water consumption of the well-grown Populus euphratica was higher than that of the well-grown Tamarix spp. Further analysis indicates that plant transpiration accounts for most of the surface ET, with soil evaporation weak and negligible; groundwater table is a crucial factor influencing ET over the desert riparian forests, groundwater influences the processes and amounts of ET by controlling the growth and spatial distribution of desert riparian forests; quantifying the water stress of desert riparian forests using groundwater table is more appropriate, rather than soil water content. Based on the understanding of ET and water movements in the groundwater-soil-plant-air system, a generalized framework expressing the water cycling and its key controlling mechanism in the lower reaches of the inland rivers of China is described, and a simple model to estimate water requirements of the desert riparian forests is presented.展开更多
The object of this paper is the different plant communities in the Ejina desert riparian forest. Groundwater depth, soil moisture, plant water potential, relative leaf moisture content and water use efficiency was mon...The object of this paper is the different plant communities in the Ejina desert riparian forest. Groundwater depth, soil moisture, plant water potential, relative leaf moisture content and water use efficiency was monitored, and the response of soil moisture and plant ecology to the groundwater depth and the water use efficiency of the different plant communities was analyzed. The results showed that:(1) Along with the groundwater depth increasing, predawn and midday water potential of the plants, with the exception of Reaumuria soongorica, did not decrease significantly, indicating that when the groundwater depth is less than 3 m, the plant communities in the range of 4 km from the river way did not suffer or slightly suffer from water stress;(2) The distribution of higher soil moisture content within 0–3 m soil layer is suitable with the plants’ root system, as indicated in the communities of coexisting overripe Populus euphratica or Taramrix chinensis, both of which can release excessive water into soil for shallow rooted shrubs or herbaceous plants when there is water shortage;(3) R. soongorica can absorb deep soil moisture through deep roots for their own survival;(4) The community consisting of Sophora alopecuroides, Karelinia caspica, T. chinensis, and overripe P. euphratica has the best species combination for restoring the damaged eco-environment in the lower reaches of Heihe River;(5) The order of plants’ relative leaf water contents is K. caspica &gt; S. alopecuroides &gt; young P. euphratica &gt; overripe P. euphratica &gt; mature P. euphratica = T. chinensis coexisting with other species &gt; single R. soongorica &gt; single T. chinensis and the order of WUE is single T. chinensis &gt; single R. soongorica &gt; T. chinensis living in symbiosis with other species &gt; S. alopecuroides = young P. euphratica &gt; mature P. euphratica &gt; overripe P. euphratica &gt; K. caspica. Therefore, with ample soil moisture, the plant community helps rapid growth of T. chinensis, young P. euphratica and R. soongorica plants of less moisture content. Despite this they do not have much water storage capability, but have strong drought resistance, and higher moisture contents of S. alopecuroides and K. caspica, thus leaving them with poor drought resistance. Overall, the desert riparian forest plant community in the lower reaches of Heihe River helps the species of higher WUE live on it.展开更多
By using the theories and methods of landscape ecology and the technology of GIS and RS, a study has been carried out on the responses of distribution pattern of desert riparian forest to hydrologic process on the bas...By using the theories and methods of landscape ecology and the technology of GIS and RS, a study has been carried out on the responses of distribution pattern of desert riparian forest to hydrologic process on the basis of the hydrologic data from 1990 to 2000 and the TM image of 2001 year. The results showed that: (1) there appears an even distribution pattern for the relative forest area in oasis, however, the degenerated forest diaplays an increasing tendency from west to east; (2) the desert riparian forest in Ejina is in completely degenerated process at the patch scale; (3) the number of patch is influenced not only by hydrologic process,but also by agricultural activity such as cultivation. The severe deterioration of the degraded vegetation in whole oasis initiates from lower reaches, and gradually impels to upstream; the fragmentation of landscape in the terminal site is more obvious, which is influenced by river shape and decreasing flux of water. It is found that the influence of surface hydrologic process to the ground hydrologic process of desert riparian forest in Ejina oasis is little for the recent ten years. The relative area of the degenerated forest increased with increasing ground water depth in the direction of parallel to river channel. On the contrary, in the direction perpendicular to river channel, there is a decreasing tendency for the average patch area of the forest and the degenerated forest with increasing ground water depth.展开更多
Watershed and riparian areas of Mau Forest Complex in Kenya are experiencing increased threats due to unsustainable land use activities geared towards economic growth amidst growing population. This study was carried ...Watershed and riparian areas of Mau Forest Complex in Kenya are experiencing increased threats due to unsustainable land use activities geared towards economic growth amidst growing population. This study was carried out to examine effects of land use activities on riparian vegetation, soil and water quality along two major rivers (Chemosit and Kipsonoi) of South West Mau Forest (SWMF). Land use activities adjacent to these rivers and biodiversity disturbance on the riparian zone were identified and underpinned to changes on Total Nitrogen, Total Phosphorous, Potassium, Sulphur, Cadmium, Copper, Lead, Total Suspended Solids and soil Organic Carbon. Three sampling sites designated(upstream, midstream and downstream) were identified and established along each river as guided by existing land use activities represented by forest, tea plantation and mixed agricultural farming respectively. At each sampling site, a 200 m × 50 m section was systematically marked on each side of the river bank;the longest side being parallel to the river flow and divided into three belts transects each 20 m × 50 m, spaced 70 m apart. Six distinct land use activities (indigenous forest, food crop, tree and tea farming, livestock keeping and urban settlement) were identified as the major land use activities in SWMF. Plant species richness decreased and overall riparian disturbance increased from upstream (intact canopy with native vegetation) to mid-stream and downstream as epitomized by the structure, biodiversity disturbance resulting from extensive and intensive farming, intrusion of exotic species to livestock grazing and urban settlement. Variation among sampling sites in Total Suspended Solids, pH, Total Nitrogen, Phosphorus and Potassium were associated to different land use activities along the riparian zone. Total Nitrogen and water pH showed significant sensitivity to land use changes (p < 0.05). Put together these results indicate loss of biodiversity, riparian disturbance hence a need to adopt environmental-friendly land use planning and sustainable farming systems in SWMF.展开更多
Riparian vegetations are important in supporting ecological connectivity between aquatic and terrestrial ecosystems. The structure and species composition of riparian woody plants have been subjected to multiple force...Riparian vegetations are important in supporting ecological connectivity between aquatic and terrestrial ecosystems. The structure and species composition of riparian woody plants have been subjected to multiple forces with varying degree of influences. This study examined the influence of land use and environmental gradient to the structure and composition of the riparian woody plants in northern Tanzania. A total of 270 plots were surveyed for woody plant species in the riparian ecosystems and later analysed to determine the influence of land use categories (homegarden, crop field, woodlot, open canopy forest, and closed canopy forest) and environmental variables (temperature, precipitation, elevation and slope) to the species richness, abundance, and stand parameters. Basal area was higher in woodlots, homegardens and crop fields than in the open and closed canopy forests;and as expected the reverse was true for the number of stocking density. Correlation among stand parameters with environmental variables varied significantly. Species richness and species abundance were negatively correlated to precipitation, temperature and elevation, while stocking density and basal area were positively correlated to precipitation. The study recommends continual retentions of trees on farm, further promoting of agroforestry interventions and sustainable utilization of woody plants in open and close canopy forests.展开更多
Taihu Lake is located at the center of Changjiang delta region, the Lake and its effluent rivers are important water sources for 40 million around inhabitants and rapidly increasing industrial factories in Shanghai, J...Taihu Lake is located at the center of Changjiang delta region, the Lake and its effluent rivers are important water sources for 40 million around inhabitants and rapidly increasing industrial factories in Shanghai, Ji-angsu and Zhejiang. The pollutants originate mainly from acidy rain, home sewage of the vast number of inhabitants, livestock manure, agricultural fertilizers & pesticides applied over fields in the drainage basin, and the industrial sewage. Due to the kinds of pollutants, the Lake water is getting highly eutrophic, with frequent blooms of blue-green algae. Compared with point-source pollutants, diffuse pollution is much com-plicated and difficult to control. Thus combating non-point pollution (NPP) is paid much great attention. Based on analysis on source-sink of NPP in Taihu Lake basin, it is concluded that the function of forests on NPP control is multiple and important by both source reduction and sink expansion. The primary objective of planting trees through constructing forested wetlands and establishing riparian forest buffers is to control soil & water erosion, decrease agrochemicals application, and improve farming conditions in the region of Taihu Lake basin. Moreover forests help to intercept acidy rain, protect streambanks, uptake nutrients, hold up pollutants and provide habitat for wildlife.展开更多
Trees serve important functions in riparian areas. Guidelines often suggest how riparian forests should be managed to sustain functions, including tree retention and increasing the component of conifers and later-succ...Trees serve important functions in riparian areas. Guidelines often suggest how riparian forests should be managed to sustain functions, including tree retention and increasing the component of conifers and later-successional species. While regeneration of early successional species is not discouraged, there is uncertainty about the ability to regenerate the latter along with more desirable species. We investigated the regeneration of species differing in successional status and growth forms under different amounts of residual basal area. The study was conducted in riparian sites in northern Minnesota USA. At each site, one portion of the riparian area was uncut, while a downstream area was harvested to 16 or 8 m2·ha-1. Woody vegetation was sampled before and five-years after harvesting and summarized as early, mid-, and late successional hardwoods, as well as conifers and shrubs. After five years, the density of early successional trees was lower at 16 m2·ha-1 compared to 8 m2·ha-1;densities in both treatments were lower than in clearcuts. Densities of mid- and late successional hardwoods and conifers did not increase in either treatment. The higher basal area treatment resulted in a lower density of shrubs, which might be important for establishing more desirable tree species, although this may require additional activities to promote establishment.展开更多
In the context of ongoing climate change,rela-tionships between tree growth and climate present uncertain-ties,which limits the predictions of future forest dynamics.Northwest China is a region undergoing notable warm...In the context of ongoing climate change,rela-tionships between tree growth and climate present uncertain-ties,which limits the predictions of future forest dynamics.Northwest China is a region undergoing notable warming and increased precipitation;how forests in this region will respond to climate change has not been fully understood.We used dendrochronological methods to examine the rela-tionship between climate and the radial growth of four tree species in a riparian forest habitat in Altai region:European aspen(Populus tremula),bitter poplar(Populus laurifolia),Swedish birch(Betula pendula),and Siberian spruce(Picea obovata).The results reveal that European aspen was insen-sitive to climate changes.In contrast,bitter poplar showed a positive response to elevated temperatures and negative to increased moisture during the growing season.Swedish birch and Siberian spruce were adversely affected by higher temperatures but benefited from increased precipitation.A moving correlation analysis suggested that,against a back-drop of continuous warming,growth patterns of these spe-cies will diverge:European aspen will require close moni-toring,bitter poplar may likely to show accelerated growth,and the growth of Swedish birch and Siberian spruce may be inhibited,leading to a decline.These findings offer insight into the future dynamics of riparian forests under changing climate.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos:31360200,31270742)the German Volkswagen Foundation within the framework of EcoCAR project(Az.:88497)
文摘Since 2000, the Chinese government has implemented emergency water diversion measures to restore the damaged riparian forest ecosystem with dominant tree species Euphrat poplar(Populus euphratica Oliv.)at the lower reaches of the Tarim River. In the present study, comparative analysis of variations in the vitality of P. euphratica trees were made using 2005 and 2010 data to illustrate the revitalization process of riparian forest. Poplar trees within 300 m of the riverbed were positively revitalized, while the vitality of trees farther than 300 m from the river decreased. Population structure was studied to demonstrate the development of poplar community. In the first belt, the class structure for the diameter at breast height(DBH) of P. euphratica fit a logistic model, and the 2nd, 3rd and 4th belt curve fittings were close to a Gaussian model; in other plots they were bimodal. Cluster analysis of the composition of the DBH class of poplar trees demonstrated that those within 16–36 cm DBH were the most abundant(58.49% of total) in study area, under 16 cm of DBH were second(31.36%), and trees >40 cm DBH were the least abundant(10.15%). More than 80% of the trees were young and medium-sized, which means that the poplar forest community in the vicinity of the lower Tarim River is at a stable developmental stage. The abundance of juvenile trees of P. euphratica in the first and second measuring belts was 12.13% in 2005 and increased to 25.52% in 2010, which means that the emergency water transfer had a positive impact on the generation of young P. euphratica trees in the vicinity of the river.
基金supported by the Major Research Plan of the National Natural Science Foundation of China (91025024)the Key Project of the Chinese Academy of Sciences (KZZD-EW-04-05)the West Light Foundation of the Chinese Academy of Sciences
文摘Nighttime sap flow is a potentially important factor that affects whole-plant water balance and water-use efficiency (WUE). Its functions include predawn disequilibrium between plant and soil water potentials as well as between the increments of oxygen supply and nutrient uptake. However, main factors that drive nighttime sap flow remain unclear, and researches related to the relationship between nighttime sap flow velocity and environmental factors are limited. Accordingly, we investigated the variations in the nighttime sap flow of Populus euphratica in a desert riparian forest of an extremely arid region, Northwest China. Results indicated that P. euphratica sap flow occurred throughout the night during the growing season because of the partial stomata opening. Nighttime sap flow for the P. euphratica forest accounted for 31%-47% of its daily sap flow during the growing season. The high value of nighttime sap flow could be the result of high stomatal conductance and could have significant implications for water budgets. Throughout the whole growing season, nighttime sap flow velocity of P. euphratica was positively correlated with the vapor pressure deficit (VPD), air temperature and soil water content. We found that VPD and soil water content were the main driving factors for nighttime sap flow of P. euphratica.
基金supported by the National Natural Science Foundation of China(41401033,31370466,and 41271037)the China Postdoctoral Science Foundation(2014M560819)the National Key Research and Development Program of China(2016YFC0501002)
文摘Understanding forest ecosystem evapotranspiration(ET) is crucial for water-limited environments,particularly those that lack adequate quantified data such as the lower Heihe River basin of northwest China which is primarily dominated by Tamarix ramosissima Ledeb.and Populus euphratica Oliv.forests.Accordingly,we selected the growing season for 2 years (2012 and 2014) of two such forests under similar meteorological conditions to compare ET using the eddy covariance(EC) technique.During the growing seasons,daily ET of T.ramosissima ranged from 0.3 to 8.0 mm day^(-1) with a mean of 3.6 mm day^(-1),and daily ET of P.euphratica ranged from 0.9 to 7.9 mm day^(-1) with a mean of 4.6 mm day^(-1) for a total of 548 and 707 mm,respectively.The significantly higher ET of the P.euphratica stand was directly linked to high soil evaporation rates under sufficient water availability from irrigation.When the soil evaporation was disregarded,water use was comparable to two contrasting riparian forests,a P.euphratica forest with a total transpiration of 465 mm and a T.ramosissima forest with 473 mm.Regression analysis demonstrated that climate factors accounted for at least 80% of ET variation in both forest types.In conclusion,water use of the riparian forests was low and comparable in this arid region,that suggest the long-term plant adaptation to the local climate and conditions of water availability.
基金funded by the National Natural Science Foundation of China(31860134,U1703102,31700386).
文摘Background:Tree mortality and regeneration(seedling and sapling recruitment)are essential components of forest dynamics in arid regions,especially where subjected to serious eco-hydrological problems.In recent decades,the mortality of the Euphrates poplar(Populus euphratica)along the Tarim River in Northwest China has increased.However,few studies have quantified the causes of mortality and regeneration in this azonal riparian forest type.Methods:The present study describes the annual hydrological response of tree mortality and regeneration in forest gaps.A total of 60 canopy gaps were investigated in six replicate grid plots(50m×50 m)and the annual runoff and water consumption data during the period of 1955–2016 were collected from hydrological stations in the middle reaches of the Tarim River.We compared the regeneration density of seedlings and saplings within the canopy gap areas(CGAs),undercanopy areas(UCAs),and uncovered riverbank areas(RBAs)through detailed field investigation.Results:Our study found that the mortality of young and middle-aged gap makers has increased remarkably over recent decades,particularly since the year 1996.The main results indicated that regional water scarcity was the primary limiting factor for long-term changes in tree mortality,as shown by a significant correlation between the diameter at breast height(DBH)of dead trees and the annual surface water.The average density(or regeneration rate)of seedlings and saplings was highest in the RBAs,intermediate in the CGAs,and lowest in the UCAs.Compared with the UCAs,the CGAs promote tree regeneration to some extent by providing favorable conditions for the survival and growth of seedlings and saplings,which would otherwise be suppressed in the understory.Furthermore,although the density of seedlings and saplings in the CGAs was not as high as in the RBAs,the survival rate was higher in the CGAs than in the RBAs.Conclusion:Forest canopy gaps in floodplain areas can play a decisive role in the long-term germination and regeneration of plant species.However,as a typical phreatophyte in this hyper-arid region,the ecosystem structure,functions and services of this fragile P.euphratica floodplain forests are threatened by a continuous decrease of water resources,due to excessive water use for agricultural irrigation,which has resulted in a severe reduction of intact poplar forests.Furthermore,the survival of seedlings and saplings is influenced by light availability and soil water at the regional scale.Our findings suggest that policymakers may need to reconsider the restoration and regeneration measures implemented in riparian P.euphratica forests to improve flood water efficiency and create canopy gaps.Our results provide with valuable reference information for the conservation and sustainable development of floodplain forest ecosystems.
文摘Tree species composition and diversity were investigated in the riparian forest around Lake Barombi Kotto, Cameroon. This study aimed at determining</span><span style="font-family:""> </span><span style="font-family:Verdana;">the tree species composition, population structure, and providing evidence of anthropogenic disturbances in the riparian forest of Lake Barombi Kotto. The objectives were to determine the tree species composition and diversity in the riparian forest around Lake Barombi Kotto, to elucidate the forest structure and to document the anthropogenic disturbances in this forest. Five plots were laid within which </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">tree enumeration and measurement of dbh were carried out.</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">Trees were identified using scientific identification keys in the Flora of W</span><span style="font-family:Verdana;">est Africa. Disturbance scores were given to each site by qualitatively assessing various disturbances. A total of 340 trees belonging to 70 plant species, 63 genera and 28 plant families were enumerated. Shannon-Wiener diversity varied across sites, with the highest value (H = 3.45) recorded in Tung and the lowest (H = 2.21) in Malenda. Population structure differed across sites,</span><span style="font-family:Verdana;"> the largest stand basal area of 43.78 m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">/ha was recorded in Bondokombo while the smallest (2.15 m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">/ha)</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">was recorded in the Sacred Island. </span><i><span style="font-family:Verdana;">Cecropia</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">peltata</span></i><span style="font-family:""><span style="font-family:Verdana;"> L., </span><i><span style="font-family:Verdana;">Pseudospondias</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">macrocarpa</span></i><i><span style="font-family:""> </span></i><span style="font-family:""><span style="font-family:Verdana;">Oliv. Pierre and </span><i><span style="font-family:Verdana;">Ceiba</span></i></span><i><span style="font-family:""> </span></i><i><span style="font-family:Verdana;">pentandra</span></i><span style="font-family:Verdana;"> (L.) Gaertn had the largest basal areas across the different sites. Species rich families were Malvaceae (9 species), Fabaceae (9 species), Annonaceae</span><span style="font-family:""> </span><span style="font-family:Verdana;">(4 species), and Anacardiaceae (4). This study shows that, there is a high tree species diversity in the protected forest (Tung) but the other unprotected sites are highly disturbed by anthropogenic activities. There is need to develop and enhance existing management policies for this riparian forest, especially by replanting the cut trees and creating a protected riparian buffer to conserve its floristic diversity and ecological functions.
文摘Soil bioengineering has been applied more and more in different regions of Brazil in recent years. The study in hand presents the installation of “new” riparian forest based on soil bioengineering techniques. This riverbank restoration work was implemented in the year 2010 and two onsite vegetation surveys, one shortly after the construction, and one in 2013. Besides that, the structures of reinforcement work, and its effectiveness were evaluated. By means of the vegetation survey, the applied species were examined for their ability to establish the riverbank in an environmentally sustainable way. Most notably, the species Calliandra brevipes Benth. (Fabaceae, Mimosoideae), Phyllanthus sellowianus Müller Arg. (Euphorbiaceae), Salix humboldtiana Willd. (Salicaceae), Bauhinia forficate Link (Leguminosae), Inga marginata Willd. (Mimosoideae) and Ateleia glazioveana Baill. (Leguminosae, Papilionoideae) showed a good growth development. The proportion of spontaneous vegetation increased significantly, with Pennisetum purpureum Schumach. becoming a dominating species. Resulting from that, the intervention can be assessed as functional and safe, but the strong increase of spontaneous vegetation is undesirable due to less flood resistance. The vegetated riprap could be the best to meet the expectations of the construction elements. Partly, the anchored willows showed as well a good growth development whereas the species used for the hedge brush layer could not develop as expected in large parts of the construction.
基金Behbahan Khatam Al-Anbia University of Technology for its support during this study
文摘The major objective of this study was to evaluate the effects of sand mining disturbances on the diversity of arbuscular mycorrhizal fungi(AMF). In addition, the proportional changes in the diversity of AMF to the distances from riverbanks were assessed. For this purpose, the riparian forest of the Maroon River, Iran was divided into three locations with a 200-meter wide zone in between. Thus, the locations studied were named Distance I(riverbank), Distance II(intermediate), and Distance III(farthest from riverbank). In each of these distances, 10 Tamarix arceuthoides and Populus euphratica of each species were randomly selected. At the same time, soil and root samples were collected from the rhizosphere of the tree species studied. Results indicated that totally 13 AMF species were observed in T. arceuthoides and 19 AMF species were recorded in P. euphratica rhizosphere belonging to 6 genera and 6 families. In these AMF species, Glomus segmentatum, G. geosporum, G. rubiforme, G. nanolumen, G. spinuliferum, Claroideoglomus drummondii, Gigaspora gigantea and Acaulospora paulinae appeared only in P. euphratica rhizosphere, while G. multiforum and Claroideoglomus claroideum were observed only in T. arceuthoides rhizosphere. Moreover, Distance II had the least AMF species both in T. arceuthoides and in P. euphratica rhizospheres, and also the least spore density and root colonization rate. Our results are important in that they provide a list of resistant AMF species that could be used in the conservation of biodiversity.
基金supported by the National Natural Science Foundation (40861026,40801001)Major project of the National Natural Science Foundation (91025024)+1 种基金Science and Technology Department Project of Qinghai Province(2010-Z-706,2011-Z-743)the Western Light Project of Chinese Academy of Sciences (2009-14)
文摘Seasonal and microhabitat variations of chemical constituents of foliar organic carbon (C), total nitrogen (N), total phosphorus (P), and total potassium (K), in Populus euphratica growing in desert riparian forests in northwestern China and their correlations were studied. Results show that ranges of C, N, P and K contents in the leaves ofP. euphratica were 39.08%-46.16%, 0.28%-2.81%, 0.05%-0.18% and 0.35%-2.03%, with means of 43.51%, 1.49%, 0.102% and 1.17%, respectively. The ratio of C/N, C/P and N/P changed from 16.26 to 146.61, from 258.08 to 908.67 and from 2.89 to 26.67; the mean was 37.24, 466.27 and 15.14, respectively. The mean N content was significantly lower than of deciduous trees in China, but the mean P content was nearly equivalent. The ratio of C/N was remarkably higher than of global land plants. The ratio of N/P indicated that growth ofP. euphratica was jointly limited by N and P nutrient deficiency. During the growth season, total trends of leaf C, N, P and K contents decreased. The max- imum appeared in May, and the minimum in September. Among microhabitats, C, N and K contents gradually increased from ri- parian lowland, flatland, sandpile, Gobi and dune, but C/N ratio was opposite, and P content was not apparent. Foliar C content was extremely, significantly and positively correlated with N and K contents, respectively. The relationships of N-K and P-K were both significantly positive.
基金supported by the National Key Research and Development program (2016YFC0400908)the National Natural Science Foundation of China (Nos. 41101026, 31370466)the STS project of Chinese academy of sciences (29Y829731)
文摘Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling(WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes,China, to assess effects of groundwater-depth change on the canopy leaf area index(LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7-2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin.
基金supported by the National Natural Science Foundation of China(Grant No.41271050)the National Basic Research Program of China(Grant No.2010CB951002)
文摘Evapotranspiration(ET) and its controlling mechanism over the desert riparian forests in arid regions are the important scientific basis for the water resources managements of the lower reaches of the inland rivers of China. Nearly three years of continuous measurements of surface ET, soil water content at different depths and groundwater table over a typical Tamarix spp. stand and a typical Populus euphratica stand were conducted in the lower reach of the Tarim River. The ET seasonal trends in the growing season were controlled by plant phenology, and ET in non-growing season was weak. The diurnal variations of ET resulting from the comprehensive effects of all atmospheric factors were significantly related with reference ET. The spatial pattern of ET was determined by vegetation LAI, more vegetation coverage, more ET amount. Groundwater is the water source of surface ET, and the soil water in shallow layers hardly took part in the water exchange in the groundwatersoil-plant-air system. The temporal processes of ET over the Tamarix stand and the Populus stand were similar, but the water consumption of the well-grown Populus euphratica was higher than that of the well-grown Tamarix spp. Further analysis indicates that plant transpiration accounts for most of the surface ET, with soil evaporation weak and negligible; groundwater table is a crucial factor influencing ET over the desert riparian forests, groundwater influences the processes and amounts of ET by controlling the growth and spatial distribution of desert riparian forests; quantifying the water stress of desert riparian forests using groundwater table is more appropriate, rather than soil water content. Based on the understanding of ET and water movements in the groundwater-soil-plant-air system, a generalized framework expressing the water cycling and its key controlling mechanism in the lower reaches of the inland rivers of China is described, and a simple model to estimate water requirements of the desert riparian forests is presented.
基金supported financially by the National Natural Science Foundation of China(Grant No.91025025)National Basic Research Program of China(Grant.No.2010CB951003)
文摘The object of this paper is the different plant communities in the Ejina desert riparian forest. Groundwater depth, soil moisture, plant water potential, relative leaf moisture content and water use efficiency was monitored, and the response of soil moisture and plant ecology to the groundwater depth and the water use efficiency of the different plant communities was analyzed. The results showed that:(1) Along with the groundwater depth increasing, predawn and midday water potential of the plants, with the exception of Reaumuria soongorica, did not decrease significantly, indicating that when the groundwater depth is less than 3 m, the plant communities in the range of 4 km from the river way did not suffer or slightly suffer from water stress;(2) The distribution of higher soil moisture content within 0–3 m soil layer is suitable with the plants’ root system, as indicated in the communities of coexisting overripe Populus euphratica or Taramrix chinensis, both of which can release excessive water into soil for shallow rooted shrubs or herbaceous plants when there is water shortage;(3) R. soongorica can absorb deep soil moisture through deep roots for their own survival;(4) The community consisting of Sophora alopecuroides, Karelinia caspica, T. chinensis, and overripe P. euphratica has the best species combination for restoring the damaged eco-environment in the lower reaches of Heihe River;(5) The order of plants’ relative leaf water contents is K. caspica &gt; S. alopecuroides &gt; young P. euphratica &gt; overripe P. euphratica &gt; mature P. euphratica = T. chinensis coexisting with other species &gt; single R. soongorica &gt; single T. chinensis and the order of WUE is single T. chinensis &gt; single R. soongorica &gt; T. chinensis living in symbiosis with other species &gt; S. alopecuroides = young P. euphratica &gt; mature P. euphratica &gt; overripe P. euphratica &gt; K. caspica. Therefore, with ample soil moisture, the plant community helps rapid growth of T. chinensis, young P. euphratica and R. soongorica plants of less moisture content. Despite this they do not have much water storage capability, but have strong drought resistance, and higher moisture contents of S. alopecuroides and K. caspica, thus leaving them with poor drought resistance. Overall, the desert riparian forest plant community in the lower reaches of Heihe River helps the species of higher WUE live on it.
基金supported by Grand Project of Knowledge Innovation Program of Chinese Academy of Sciences(Grand Nos.KZCX3-SW-329 and KZCX1-09)National Natural Science Foundation of China(Grand No.40235053).
文摘By using the theories and methods of landscape ecology and the technology of GIS and RS, a study has been carried out on the responses of distribution pattern of desert riparian forest to hydrologic process on the basis of the hydrologic data from 1990 to 2000 and the TM image of 2001 year. The results showed that: (1) there appears an even distribution pattern for the relative forest area in oasis, however, the degenerated forest diaplays an increasing tendency from west to east; (2) the desert riparian forest in Ejina is in completely degenerated process at the patch scale; (3) the number of patch is influenced not only by hydrologic process,but also by agricultural activity such as cultivation. The severe deterioration of the degraded vegetation in whole oasis initiates from lower reaches, and gradually impels to upstream; the fragmentation of landscape in the terminal site is more obvious, which is influenced by river shape and decreasing flux of water. It is found that the influence of surface hydrologic process to the ground hydrologic process of desert riparian forest in Ejina oasis is little for the recent ten years. The relative area of the degenerated forest increased with increasing ground water depth in the direction of parallel to river channel. On the contrary, in the direction perpendicular to river channel, there is a decreasing tendency for the average patch area of the forest and the degenerated forest with increasing ground water depth.
文摘Watershed and riparian areas of Mau Forest Complex in Kenya are experiencing increased threats due to unsustainable land use activities geared towards economic growth amidst growing population. This study was carried out to examine effects of land use activities on riparian vegetation, soil and water quality along two major rivers (Chemosit and Kipsonoi) of South West Mau Forest (SWMF). Land use activities adjacent to these rivers and biodiversity disturbance on the riparian zone were identified and underpinned to changes on Total Nitrogen, Total Phosphorous, Potassium, Sulphur, Cadmium, Copper, Lead, Total Suspended Solids and soil Organic Carbon. Three sampling sites designated(upstream, midstream and downstream) were identified and established along each river as guided by existing land use activities represented by forest, tea plantation and mixed agricultural farming respectively. At each sampling site, a 200 m × 50 m section was systematically marked on each side of the river bank;the longest side being parallel to the river flow and divided into three belts transects each 20 m × 50 m, spaced 70 m apart. Six distinct land use activities (indigenous forest, food crop, tree and tea farming, livestock keeping and urban settlement) were identified as the major land use activities in SWMF. Plant species richness decreased and overall riparian disturbance increased from upstream (intact canopy with native vegetation) to mid-stream and downstream as epitomized by the structure, biodiversity disturbance resulting from extensive and intensive farming, intrusion of exotic species to livestock grazing and urban settlement. Variation among sampling sites in Total Suspended Solids, pH, Total Nitrogen, Phosphorus and Potassium were associated to different land use activities along the riparian zone. Total Nitrogen and water pH showed significant sensitivity to land use changes (p < 0.05). Put together these results indicate loss of biodiversity, riparian disturbance hence a need to adopt environmental-friendly land use planning and sustainable farming systems in SWMF.
文摘Riparian vegetations are important in supporting ecological connectivity between aquatic and terrestrial ecosystems. The structure and species composition of riparian woody plants have been subjected to multiple forces with varying degree of influences. This study examined the influence of land use and environmental gradient to the structure and composition of the riparian woody plants in northern Tanzania. A total of 270 plots were surveyed for woody plant species in the riparian ecosystems and later analysed to determine the influence of land use categories (homegarden, crop field, woodlot, open canopy forest, and closed canopy forest) and environmental variables (temperature, precipitation, elevation and slope) to the species richness, abundance, and stand parameters. Basal area was higher in woodlots, homegardens and crop fields than in the open and closed canopy forests;and as expected the reverse was true for the number of stocking density. Correlation among stand parameters with environmental variables varied significantly. Species richness and species abundance were negatively correlated to precipitation, temperature and elevation, while stocking density and basal area were positively correlated to precipitation. The study recommends continual retentions of trees on farm, further promoting of agroforestry interventions and sustainable utilization of woody plants in open and close canopy forests.
文摘Taihu Lake is located at the center of Changjiang delta region, the Lake and its effluent rivers are important water sources for 40 million around inhabitants and rapidly increasing industrial factories in Shanghai, Ji-angsu and Zhejiang. The pollutants originate mainly from acidy rain, home sewage of the vast number of inhabitants, livestock manure, agricultural fertilizers & pesticides applied over fields in the drainage basin, and the industrial sewage. Due to the kinds of pollutants, the Lake water is getting highly eutrophic, with frequent blooms of blue-green algae. Compared with point-source pollutants, diffuse pollution is much com-plicated and difficult to control. Thus combating non-point pollution (NPP) is paid much great attention. Based on analysis on source-sink of NPP in Taihu Lake basin, it is concluded that the function of forests on NPP control is multiple and important by both source reduction and sink expansion. The primary objective of planting trees through constructing forested wetlands and establishing riparian forest buffers is to control soil & water erosion, decrease agrochemicals application, and improve farming conditions in the region of Taihu Lake basin. Moreover forests help to intercept acidy rain, protect streambanks, uptake nutrients, hold up pollutants and provide habitat for wildlife.
文摘Trees serve important functions in riparian areas. Guidelines often suggest how riparian forests should be managed to sustain functions, including tree retention and increasing the component of conifers and later-successional species. While regeneration of early successional species is not discouraged, there is uncertainty about the ability to regenerate the latter along with more desirable species. We investigated the regeneration of species differing in successional status and growth forms under different amounts of residual basal area. The study was conducted in riparian sites in northern Minnesota USA. At each site, one portion of the riparian area was uncut, while a downstream area was harvested to 16 or 8 m2·ha-1. Woody vegetation was sampled before and five-years after harvesting and summarized as early, mid-, and late successional hardwoods, as well as conifers and shrubs. After five years, the density of early successional trees was lower at 16 m2·ha-1 compared to 8 m2·ha-1;densities in both treatments were lower than in clearcuts. Densities of mid- and late successional hardwoods and conifers did not increase in either treatment. The higher basal area treatment resulted in a lower density of shrubs, which might be important for establishing more desirable tree species, although this may require additional activities to promote establishment.
基金supported by the Natural Science Foundation of Shanxi Province(202203021221008)the Special Funding for Shanxi Provincial Science and Technology Innovation Talent Team(202204051001010)the National Natural Science Foundation of China(41701047).
文摘In the context of ongoing climate change,rela-tionships between tree growth and climate present uncertain-ties,which limits the predictions of future forest dynamics.Northwest China is a region undergoing notable warming and increased precipitation;how forests in this region will respond to climate change has not been fully understood.We used dendrochronological methods to examine the rela-tionship between climate and the radial growth of four tree species in a riparian forest habitat in Altai region:European aspen(Populus tremula),bitter poplar(Populus laurifolia),Swedish birch(Betula pendula),and Siberian spruce(Picea obovata).The results reveal that European aspen was insen-sitive to climate changes.In contrast,bitter poplar showed a positive response to elevated temperatures and negative to increased moisture during the growing season.Swedish birch and Siberian spruce were adversely affected by higher temperatures but benefited from increased precipitation.A moving correlation analysis suggested that,against a back-drop of continuous warming,growth patterns of these spe-cies will diverge:European aspen will require close moni-toring,bitter poplar may likely to show accelerated growth,and the growth of Swedish birch and Siberian spruce may be inhibited,leading to a decline.These findings offer insight into the future dynamics of riparian forests under changing climate.