The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the qu...The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the quake-hit areas,and the channel-fill deposit problem caused by the debris flow was the most destructive.Moreover,it is of high possibility that an even severe deposit problem would reappear and result in worse consequences.In order to maximize risk reduction of this problem,relevant departments of the government established a series of emergency river restoration schemes,for which the numerical analysis is an important procedure to evaluate and determine the optimized one.This study presents a numerical analysis by applying a twodimensional debris flow model combined with a relevant water-sediment model to simulate the deposit during the progress of the debris flow,and to calculate and analyze the river flow field under both the present condition and different restoration conditions.The results show that the debris flow model,which takes the confluence of the Wenjia Gully to the main river into account,could simulate the deposit process quite well.In the reproduced debris flow from the simulation of the '8.13' Debris Flow,the original river flow path has switched to a relatively lower place just along the right bank with a high speed of near 7m.s-1 after being blocked by the deposit,which is highly hazardous.To prevent this hazard,a recommended scheme is derived through inter-comparison of different restoration conditions.It shows that the recommended scheme is able to reduce the water level and as well to regulate the flow path.Based on the given conditions of the mainstream and the tributary confluence for the simulated '8.13' Debris Flow,when encountering a debris flow with deposit volume less than 0.5 million m3,the river channel can endure a 20-year return flood;however,when the deposit volume increases to 2 million m3,the flood capacity of the river will be greatly impacted and the scheme becomes invalid.The recommended scheme supported by the present study has been applied to the emergency river restoration after this mega-debris flow.展开更多
Public willingness to pay (WTP) for urban rivers res- toration was investigated in Shanghai, Nanjing and Hangzhou in China with a sample of 1,285. The factors influencing positive WTP against zero WTP are analyzed u...Public willingness to pay (WTP) for urban rivers res- toration was investigated in Shanghai, Nanjing and Hangzhou in China with a sample of 1,285. The factors influencing positive WTP against zero WTP are analyzed using a binary logit model. The results indicate that income, Huff (residential registration) status, household size, home property ownership, riverfront access, and attitudes toward current water quality arc statistically signifi- cant in the likelihood of positive WTR It is also found that respon- dents without local Huff are less willingness to pay positively in pooled sample and Shanghai sample. In the group holding property right of house but without local Huff is less willingness to pay positively in Hangzhou. Respondents in Nanjing are more will- ingness to pay positively than those in Hangzhou. Most common arguments against to pay for the restoration are "government's duty", "low income", "non-local-Huji" and "lack of trust in the government in how it spends money". The results are generally consistent with the hypothesis and specific situations in China. The findings make some contributions to the non-market valua- tion studies as well as provide useful information for public policy making in China.展开更多
River restoration activities are challenging for the native vegetation and the colonization process. The development of invasive alien plant species (IAS) as well as the development of the pioneer vegetation cover and...River restoration activities are challenging for the native vegetation and the colonization process. The development of invasive alien plant species (IAS) as well as the development of the pioneer vegetation cover and seed bank were observed in one year prior to construction of a new river bed and within the first two years after construction, along the downstream section of the river Traisen in Austria. One year after completion of the new river channel, the occurrence of IAS above ground decreased while the occurrence of target species increased. Furthermore, no seeds of IAS were detected in the new river bed as a result of proper management of soil movement. Despite the positive impact on the abundance of IAS, the restoration project of the river Traisen shows that the fact that such a restoration activity is a disturbance event must be taken into consideration already during the planning process. Supporting the competitiveness of native plant species is an important tool for reducing the danger of establishment of invasive alien species.展开更多
The Faleme River, a West Africa long transboundary stream (625 km) and abundant flow (>1100 million m<sup>3</sup>) is affected by severe erosion because of mining activities that takes place throughout ...The Faleme River, a West Africa long transboundary stream (625 km) and abundant flow (>1100 million m<sup>3</sup>) is affected by severe erosion because of mining activities that takes place throughout the riverbed. To preserve this important watercourse and ensure the sustainability of its services, selecting and implementing appropriates restorations techniques is vital. In this context, the purpose of this paper was to present an overview of the actions and techniques that can be implemented for the restoration/rehabilitation of the Faleme. The methodological approach includes field investigation, water sampling, literature review with cases studies and SWOT analysis of the four methods presented: river dredging, constructed wetlands, floating treatment wetlands and chemical precipitation (coagulation and flocculation). The study confirmed the pollution of the river by suspended solids (TSS > 1100 mg/L) and heavy metals such as iron, zinc, aluminium, and arsenic. For the restoration methods, it was illustrated through description of their mode of operation and through some case studies presented, that all the four methods have proven their effectiveness in treating rivers but have differences in their costs, their sustainability (detrimental to living organisms or causing a second pollution) and social acceptance. They also have weaknesses and issues that must be addressed to ensure success of rehabilitation. For the case of the Faleme river, after analysis, floating treatment wetlands are highly recommended for their low cost, good removal efficiency if the vulnerability of the raft and buoyancy to strong waves and flow is under control.展开更多
Over the course of centuries, river systems have been heavily trained for the purpose of safe discharge of water, sediment and ice, and improves navigation. Traditionally, dikes are used to be reinforced and heightene...Over the course of centuries, river systems have been heavily trained for the purpose of safe discharge of water, sediment and ice, and improves navigation. Traditionally, dikes are used to be reinforced and heightened to protect countries from ever higher flood levels. Other types of solutions than technical engineering solutions, such as measures to increase the flood conveyance capacity(e.g., lowering of groynes and floodplains, setting back dikes) become more popular. These solutions may however increase the river bed dynamics and thus impact negatively navigation, maintenance dredging and flood safety. A variety of numerical models are available to predict the impact of river restoration works on river processes. Often little attention is paid to the assessment of uncertainties. In this paper, we show how we can make uncertainty explicit using a stochastic approach. This approach helps identifying uncertainty sources and assessing their contribution to the overall uncertainty in river processes. The approach gives engineers a better understanding of system behaviour and enables them to intervene with the river system, so as to avoid undesired situations. We illustrate the merits of this stochastic approach for optimising lowland river restoration works in the Rhine in the Netherlands.展开更多
Mining activities may cause serious damages to the river ecological environment in mining areas. It has been realized that challenging is faced for optimal decision-making on the river ecological restoration resulting...Mining activities may cause serious damages to the river ecological environment in mining areas. It has been realized that challenging is faced for optimal decision-making on the river ecological restoration resulting from system complexity, multi-objectives, long term restoration in which multiple stages may be needed to take, and difficulty in detailed process quan- tification. By analyzing and fully reflecting the differences between the central zone and surrounding zones of the restored river passing through the mining area, the comprehensive evaluation index systems of the central zone and surrounding zones are separately suggested firstly. Then a scenario-based optimization decision-making model for river ecological restoration in min- ing areas was established with taking advantages of spatial divisions and following procedure of first going through optimiza- tion by sub-region level, then optimizing by integration. Then, a framework for scenario-based optimal decision-making on water-deficient river ecological restoration in mining areas is proposed in which a multi-objective and multi-stage spatial division optimization method is considered to improve decision-making efficiency and enhance its practicability. It is indicated that this optimization framework is reasonable and practical, which is expected to offer reliable decision support in identifying the effective solutions on optimal management of the water-deficient river ecological restoration in mining areas. At the same time, it has implications in general land reclamation and ecological restoration in the mining areas.展开更多
Many studies have been conducted on environmental flow(e-flow)assessment and supply,but e-flow shortages remain common in many urban rivers.In addition to known reasons such as ever-increasing competition among water ...Many studies have been conducted on environmental flow(e-flow)assessment and supply,but e-flow shortages remain common in many urban rivers.In addition to known reasons such as ever-increasing competition among water users and inadequate execution of designed e-flow supply plans,we propose that designing weir heights without explicitly considering e-flows is another major cause of this problem.In this paper,we suggest that the measures for satisfying e-flows be extended from the water supply stage to the river channel design stage.We establish a new weir height determination framework that would more effectively satisfy the required e-flows.The new framework differs from previous frameworks,in which flood control and water retention are the major concerns and the flow during floods is set as the inflow.In the new framework,e-flow provision and flow velocity maintenance are added concerns and the actual flows for e-flow supply are set as the inflow.As a case study of the new framework’s effectiveness,we applied it to the Shiwuli River,a typical channelized urban river in Hefei,China.The old framework specified too-high weir height to meet the e-flow requirements,whereas the new framework offered more reasonable heights that improved e-flow provision.展开更多
Assessing environmental flows (e-flows) for urban rivers is important for water resources planning and river protection, Many e-flow assessment methods have been established based on species' habitat pro- vision re...Assessing environmental flows (e-flows) for urban rivers is important for water resources planning and river protection, Many e-flow assessment methods have been established based on species' habitat pro- vision requirements and pollutant dilution requirements, To avoid flood risk, however, many urban rivers have been transformed into straight, trapezoidal-profiled concrete channels, leading to the disappearance of valuable species, With the construction of water pollution-control projects, pollutant inputs into rivers have been effectively controlled in some urban rivers, For these rivers, the e-flows determined by tradi- tional methods will be very small, and will consequently lead to a low priority being given to river pro- tection in future water resources allocation and management, To more effectively assess the e-flows of channelized urban rivers, we propose three e-flow degrees, according to longitudinal hydrological con- nectivity (high, medium, and low), in addition to the pollutant dilution water requirement determined by the mass-balance equation, In the high connectivity scenario, the intent is for the e-flows to maintain flow velocity, which can ensure the self-purification of rivers and reduce algal blooms; in the medium connectivity scenario, the intent is for the e-flows to permanently maintain the longitudinal hydrological connectivity of rivers that are isolated into several ponds by means of weirs, in order to ensure the exchange of material, energy, and information in rivers; and in the low connectivity scenario, the intent is for the e-flows to intermittently connect isolated ponds every few days (which is designed to further reduce e-flows), The proposed methods have been used in Shiwuli River, China, to demonstrate their effectiveness, The new methods can offer more precise and realistic e-flow results and can effectively direct the construction and management of e-flow supply projects,展开更多
Large wood in rivers can lead to accumulations in the river channel, affecting local flow structures, aquatic habitats, and the river’s topography. This plays a crucial role in the ecological restoration of the river...Large wood in rivers can lead to accumulations in the river channel, affecting local flow structures, aquatic habitats, and the river’s topography. This plays a crucial role in the ecological restoration of the river. This paper presents flow field measurements downstream of six types of logjams at different flow velocities using acoustic Doppler velocimetry (ADV) for artificially designed engineered logjams. The results indicate that the presence of logjams reduces the flow velocity and increases the turbulent kinetic energy in the wake region, and as the distance downstream increases, the flow velocity and turbulence intensity in the wake region gradually return to the upstream level. The minimum values of normalized flow velocity under different conditions are located in the region of the bottommost logs. The differences in normalized flow velocity at various flow rates are not significant. Jets are less likely to be generated in logjams with larger and more concentrated projection areas, but the strength of the jet is influenced by the physical structure of the logjam (projection area, gap ratio). The flow distribution behind the logjam is primarily influenced by the proportion of the projected area in different regions. Changes in the vertical physical structure of the logjam have minimal effect on the lateral flow distribution. Flow velocity in the gap area (b0) at the bottom of different logjams is influenced by their physical structure. The larger the overall blockage area of the logjams, the larger the flow velocity in the bottom gap area will be. The flow velocity in the bottom gap area of a densely placed logjam is mainly influenced by the gap ratio. The velocity of flow in the gap area can impact the initiation and deposition of sediment near the logjam. However, the internal structure complexity of the logjam does not significantly affect river energy dissipation and flow attenuation. This study broadens the applicability of certain theoretical models and explores the impact of logjams on river ecology and channel geomorphology. The findings can serve as a theoretical foundation for ecological restoration, timber management, and logjam construction in rivers.展开更多
Large in-stream wood (LW) is a critical component of riparian systems that increases heterogeneity of flow regimes and provides high quality habitat for salmonids and other fishes. We present four sampling-based ...Large in-stream wood (LW) is a critical component of riparian systems that increases heterogeneity of flow regimes and provides high quality habitat for salmonids and other fishes. We present four sampling-based methods to estimate two-dimensional LW for a 61-hectare river restoration project on the South Fork McKenzie River near Rainbow, OR (USA). We manually delineated LW area, from unoccupied aircraft systems (UAS) multispectral imagery for 40 randomly selected 51.46 m<sup>2</sup> hexagonal plots. Seven auxiliary variables were extracted from the imagery and imagery derivatives to be incorporated in four estimators by summarizing spectral statistics for each plot including Random forest (RF) classification of segmented imagery (Cohen’s kappa = 0.75, balanced accuracy = 0.86). The four estimators were: difference estimator, simple linear regression estimator with one auxiliary variable, general regression estimator with seven auxiliary variables, and simple random sample without replacement. We assessed variance of the estimators and found that the simple random sample without replacement produced the largest estimate for LW area and widest confidence interval (17,283 m<sup>2</sup>, 95% CI 10,613 - 23,952 m<sup>2</sup>) while the generalized regression approach resulted in the smallest estimate and narrowest confidence interval (16,593 m<sup>2</sup>, 95% CI 13,054 - 20,133 m<sup>2</sup>). These methods facilitate efficient estimates of critical habitat components, that are especially suited to efforts that seek to quantify large amounts of these components through time. When combined with traditional sampling methods, classified imagery acquired via UAS promises to enhance the temporal resolution of the data products associated with restoration efforts while minimizing the necessity for potentially hazardous field work.展开更多
We assessed nutrient characteristics, distributions and fractions within the disturbed and undisturbed sediments at four sampling sites within the mainstream of Haihe River. The river sediments contained mostly sand ...We assessed nutrient characteristics, distributions and fractions within the disturbed and undisturbed sediments at four sampling sites within the mainstream of Haihe River. The river sediments contained mostly sand ( 60%). The fraction of clay was 3%. Total nitrogen (TN) and total phosphorus (TP) concentrations ranged from 729 to 1922 mg/kg and from 692 to 1388 mg/kg, respectively. Nutrient concentrations within the sediments usually decreased with increasing depth. The TN and TP concentrations within the fine sand were higher than for that within silt. Sediment phosphorus fractions were between 2.99% and 3.37% Ex-P (exchangeable phosphorus), 7.89% and 13.71% Fe/Al-P (Fe, Al oxides bound phosphorus), 61.32% and 70.14% Ca-P (calcium-bound phosphorus), and 17.03% and 22.04% Org-P (organic phosphorus). Nitrogen and phosphorus release from sediment could lead to the presence of 21.02 mg N/L and 3.10 mg P/L within the water column. A river restoration project should address the sediment nutrient stock.展开更多
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2011CB409903)the National Natural Science Foundation of China (Grant No. 50739002)
文摘The mega debris flow occurred on August 13 th 2010 in Qingping town,China(hereafter called '8.13' Debris Flow) have done great damage to the local habitants as well as to the re-construction projects in the quake-hit areas,and the channel-fill deposit problem caused by the debris flow was the most destructive.Moreover,it is of high possibility that an even severe deposit problem would reappear and result in worse consequences.In order to maximize risk reduction of this problem,relevant departments of the government established a series of emergency river restoration schemes,for which the numerical analysis is an important procedure to evaluate and determine the optimized one.This study presents a numerical analysis by applying a twodimensional debris flow model combined with a relevant water-sediment model to simulate the deposit during the progress of the debris flow,and to calculate and analyze the river flow field under both the present condition and different restoration conditions.The results show that the debris flow model,which takes the confluence of the Wenjia Gully to the main river into account,could simulate the deposit process quite well.In the reproduced debris flow from the simulation of the '8.13' Debris Flow,the original river flow path has switched to a relatively lower place just along the right bank with a high speed of near 7m.s-1 after being blocked by the deposit,which is highly hazardous.To prevent this hazard,a recommended scheme is derived through inter-comparison of different restoration conditions.It shows that the recommended scheme is able to reduce the water level and as well to regulate the flow path.Based on the given conditions of the mainstream and the tributary confluence for the simulated '8.13' Debris Flow,when encountering a debris flow with deposit volume less than 0.5 million m3,the river channel can endure a 20-year return flood;however,when the deposit volume increases to 2 million m3,the flood capacity of the river will be greatly impacted and the scheme becomes invalid.The recommended scheme supported by the present study has been applied to the emergency river restoration after this mega-debris flow.
基金supported by National Natural Science Foundation of China (Grant No.40901291)Innovation Program of Shanghai Municipal Education Commission (Grant No. 13YZ053)National Social Science Key Project Foundation of China (Grant No. 11&ZD003)
文摘Public willingness to pay (WTP) for urban rivers res- toration was investigated in Shanghai, Nanjing and Hangzhou in China with a sample of 1,285. The factors influencing positive WTP against zero WTP are analyzed using a binary logit model. The results indicate that income, Huff (residential registration) status, household size, home property ownership, riverfront access, and attitudes toward current water quality arc statistically signifi- cant in the likelihood of positive WTR It is also found that respon- dents without local Huff are less willingness to pay positively in pooled sample and Shanghai sample. In the group holding property right of house but without local Huff is less willingness to pay positively in Hangzhou. Respondents in Nanjing are more will- ingness to pay positively than those in Hangzhou. Most common arguments against to pay for the restoration are "government's duty", "low income", "non-local-Huji" and "lack of trust in the government in how it spends money". The results are generally consistent with the hypothesis and specific situations in China. The findings make some contributions to the non-market valua- tion studies as well as provide useful information for public policy making in China.
文摘River restoration activities are challenging for the native vegetation and the colonization process. The development of invasive alien plant species (IAS) as well as the development of the pioneer vegetation cover and seed bank were observed in one year prior to construction of a new river bed and within the first two years after construction, along the downstream section of the river Traisen in Austria. One year after completion of the new river channel, the occurrence of IAS above ground decreased while the occurrence of target species increased. Furthermore, no seeds of IAS were detected in the new river bed as a result of proper management of soil movement. Despite the positive impact on the abundance of IAS, the restoration project of the river Traisen shows that the fact that such a restoration activity is a disturbance event must be taken into consideration already during the planning process. Supporting the competitiveness of native plant species is an important tool for reducing the danger of establishment of invasive alien species.
文摘The Faleme River, a West Africa long transboundary stream (625 km) and abundant flow (>1100 million m<sup>3</sup>) is affected by severe erosion because of mining activities that takes place throughout the riverbed. To preserve this important watercourse and ensure the sustainability of its services, selecting and implementing appropriates restorations techniques is vital. In this context, the purpose of this paper was to present an overview of the actions and techniques that can be implemented for the restoration/rehabilitation of the Faleme. The methodological approach includes field investigation, water sampling, literature review with cases studies and SWOT analysis of the four methods presented: river dredging, constructed wetlands, floating treatment wetlands and chemical precipitation (coagulation and flocculation). The study confirmed the pollution of the river by suspended solids (TSS > 1100 mg/L) and heavy metals such as iron, zinc, aluminium, and arsenic. For the restoration methods, it was illustrated through description of their mode of operation and through some case studies presented, that all the four methods have proven their effectiveness in treating rivers but have differences in their costs, their sustainability (detrimental to living organisms or causing a second pollution) and social acceptance. They also have weaknesses and issues that must be addressed to ensure success of rehabilitation. For the case of the Faleme river, after analysis, floating treatment wetlands are highly recommended for their low cost, good removal efficiency if the vulnerability of the raft and buoyancy to strong waves and flow is under control.
基金The work presented herein was mainly carried out in the framework of the project ’Stochastic modelling of low-land river morphologyfunded under number DCB 5302’ by the Netherlands Foundation for Technical Sciences (STW)+2 种基金the Dutch Ministry of Infrastructure and the Environment for the permission to use the Rhine model and the historical discharge recordsMr. H. Havinga of the Ministry of Infrastructure and the EnvironmentDr. A. Paarlberg of HKV Consultants for their valuable inputs into this project
文摘Over the course of centuries, river systems have been heavily trained for the purpose of safe discharge of water, sediment and ice, and improves navigation. Traditionally, dikes are used to be reinforced and heightened to protect countries from ever higher flood levels. Other types of solutions than technical engineering solutions, such as measures to increase the flood conveyance capacity(e.g., lowering of groynes and floodplains, setting back dikes) become more popular. These solutions may however increase the river bed dynamics and thus impact negatively navigation, maintenance dredging and flood safety. A variety of numerical models are available to predict the impact of river restoration works on river processes. Often little attention is paid to the assessment of uncertainties. In this paper, we show how we can make uncertainty explicit using a stochastic approach. This approach helps identifying uncertainty sources and assessing their contribution to the overall uncertainty in river processes. The approach gives engineers a better understanding of system behaviour and enables them to intervene with the river system, so as to avoid undesired situations. We illustrate the merits of this stochastic approach for optimising lowland river restoration works in the Rhine in the Netherlands.
文摘Mining activities may cause serious damages to the river ecological environment in mining areas. It has been realized that challenging is faced for optimal decision-making on the river ecological restoration resulting from system complexity, multi-objectives, long term restoration in which multiple stages may be needed to take, and difficulty in detailed process quan- tification. By analyzing and fully reflecting the differences between the central zone and surrounding zones of the restored river passing through the mining area, the comprehensive evaluation index systems of the central zone and surrounding zones are separately suggested firstly. Then a scenario-based optimization decision-making model for river ecological restoration in min- ing areas was established with taking advantages of spatial divisions and following procedure of first going through optimiza- tion by sub-region level, then optimizing by integration. Then, a framework for scenario-based optimal decision-making on water-deficient river ecological restoration in mining areas is proposed in which a multi-objective and multi-stage spatial division optimization method is considered to improve decision-making efficiency and enhance its practicability. It is indicated that this optimization framework is reasonable and practical, which is expected to offer reliable decision support in identifying the effective solutions on optimal management of the water-deficient river ecological restoration in mining areas. At the same time, it has implications in general land reclamation and ecological restoration in the mining areas.
基金We thank the National Key Research and Development Program of China(2017YFC0404504)the Fund for Innovative Research Group of the National Natural Science Foundation of China(51721093)the National Natural Science Foundation of China(71861137001)for their financial support.
文摘Many studies have been conducted on environmental flow(e-flow)assessment and supply,but e-flow shortages remain common in many urban rivers.In addition to known reasons such as ever-increasing competition among water users and inadequate execution of designed e-flow supply plans,we propose that designing weir heights without explicitly considering e-flows is another major cause of this problem.In this paper,we suggest that the measures for satisfying e-flows be extended from the water supply stage to the river channel design stage.We establish a new weir height determination framework that would more effectively satisfy the required e-flows.The new framework differs from previous frameworks,in which flood control and water retention are the major concerns and the flow during floods is set as the inflow.In the new framework,e-flow provision and flow velocity maintenance are added concerns and the actual flows for e-flow supply are set as the inflow.As a case study of the new framework’s effectiveness,we applied it to the Shiwuli River,a typical channelized urban river in Hefei,China.The old framework specified too-high weir height to meet the e-flow requirements,whereas the new framework offered more reasonable heights that improved e-flow provision.
文摘Assessing environmental flows (e-flows) for urban rivers is important for water resources planning and river protection, Many e-flow assessment methods have been established based on species' habitat pro- vision requirements and pollutant dilution requirements, To avoid flood risk, however, many urban rivers have been transformed into straight, trapezoidal-profiled concrete channels, leading to the disappearance of valuable species, With the construction of water pollution-control projects, pollutant inputs into rivers have been effectively controlled in some urban rivers, For these rivers, the e-flows determined by tradi- tional methods will be very small, and will consequently lead to a low priority being given to river pro- tection in future water resources allocation and management, To more effectively assess the e-flows of channelized urban rivers, we propose three e-flow degrees, according to longitudinal hydrological con- nectivity (high, medium, and low), in addition to the pollutant dilution water requirement determined by the mass-balance equation, In the high connectivity scenario, the intent is for the e-flows to maintain flow velocity, which can ensure the self-purification of rivers and reduce algal blooms; in the medium connectivity scenario, the intent is for the e-flows to permanently maintain the longitudinal hydrological connectivity of rivers that are isolated into several ponds by means of weirs, in order to ensure the exchange of material, energy, and information in rivers; and in the low connectivity scenario, the intent is for the e-flows to intermittently connect isolated ponds every few days (which is designed to further reduce e-flows), The proposed methods have been used in Shiwuli River, China, to demonstrate their effectiveness, The new methods can offer more precise and realistic e-flow results and can effectively direct the construction and management of e-flow supply projects,
基金Project supported by the National Natural Science Foundation of China(Grant No.52179056),the Fundamental Research Funds for the Central Universities(Grant No.QNTD202303).
文摘Large wood in rivers can lead to accumulations in the river channel, affecting local flow structures, aquatic habitats, and the river’s topography. This plays a crucial role in the ecological restoration of the river. This paper presents flow field measurements downstream of six types of logjams at different flow velocities using acoustic Doppler velocimetry (ADV) for artificially designed engineered logjams. The results indicate that the presence of logjams reduces the flow velocity and increases the turbulent kinetic energy in the wake region, and as the distance downstream increases, the flow velocity and turbulence intensity in the wake region gradually return to the upstream level. The minimum values of normalized flow velocity under different conditions are located in the region of the bottommost logs. The differences in normalized flow velocity at various flow rates are not significant. Jets are less likely to be generated in logjams with larger and more concentrated projection areas, but the strength of the jet is influenced by the physical structure of the logjam (projection area, gap ratio). The flow distribution behind the logjam is primarily influenced by the proportion of the projected area in different regions. Changes in the vertical physical structure of the logjam have minimal effect on the lateral flow distribution. Flow velocity in the gap area (b0) at the bottom of different logjams is influenced by their physical structure. The larger the overall blockage area of the logjams, the larger the flow velocity in the bottom gap area will be. The flow velocity in the bottom gap area of a densely placed logjam is mainly influenced by the gap ratio. The velocity of flow in the gap area can impact the initiation and deposition of sediment near the logjam. However, the internal structure complexity of the logjam does not significantly affect river energy dissipation and flow attenuation. This study broadens the applicability of certain theoretical models and explores the impact of logjams on river ecology and channel geomorphology. The findings can serve as a theoretical foundation for ecological restoration, timber management, and logjam construction in rivers.
文摘Large in-stream wood (LW) is a critical component of riparian systems that increases heterogeneity of flow regimes and provides high quality habitat for salmonids and other fishes. We present four sampling-based methods to estimate two-dimensional LW for a 61-hectare river restoration project on the South Fork McKenzie River near Rainbow, OR (USA). We manually delineated LW area, from unoccupied aircraft systems (UAS) multispectral imagery for 40 randomly selected 51.46 m<sup>2</sup> hexagonal plots. Seven auxiliary variables were extracted from the imagery and imagery derivatives to be incorporated in four estimators by summarizing spectral statistics for each plot including Random forest (RF) classification of segmented imagery (Cohen’s kappa = 0.75, balanced accuracy = 0.86). The four estimators were: difference estimator, simple linear regression estimator with one auxiliary variable, general regression estimator with seven auxiliary variables, and simple random sample without replacement. We assessed variance of the estimators and found that the simple random sample without replacement produced the largest estimate for LW area and widest confidence interval (17,283 m<sup>2</sup>, 95% CI 10,613 - 23,952 m<sup>2</sup>) while the generalized regression approach resulted in the smallest estimate and narrowest confidence interval (16,593 m<sup>2</sup>, 95% CI 13,054 - 20,133 m<sup>2</sup>). These methods facilitate efficient estimates of critical habitat components, that are especially suited to efforts that seek to quantify large amounts of these components through time. When combined with traditional sampling methods, classified imagery acquired via UAS promises to enhance the temporal resolution of the data products associated with restoration efforts while minimizing the necessity for potentially hazardous field work.
基金supported by the National Natural Sci- ence Foundation of China (No. 51079068)the Natural Science Foundation of Tianjin (No. 09ZCGYSF00400, 08FDZDSF03402)+1 种基金the National Key-Projects of Water Pollution Control and Prevention (No. 2008ZX07314-005- 001, 2009ZX07209-001)funded by The Royal Society
文摘We assessed nutrient characteristics, distributions and fractions within the disturbed and undisturbed sediments at four sampling sites within the mainstream of Haihe River. The river sediments contained mostly sand ( 60%). The fraction of clay was 3%. Total nitrogen (TN) and total phosphorus (TP) concentrations ranged from 729 to 1922 mg/kg and from 692 to 1388 mg/kg, respectively. Nutrient concentrations within the sediments usually decreased with increasing depth. The TN and TP concentrations within the fine sand were higher than for that within silt. Sediment phosphorus fractions were between 2.99% and 3.37% Ex-P (exchangeable phosphorus), 7.89% and 13.71% Fe/Al-P (Fe, Al oxides bound phosphorus), 61.32% and 70.14% Ca-P (calcium-bound phosphorus), and 17.03% and 22.04% Org-P (organic phosphorus). Nitrogen and phosphorus release from sediment could lead to the presence of 21.02 mg N/L and 3.10 mg P/L within the water column. A river restoration project should address the sediment nutrient stock.