Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a cr...Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a critical and challenging task in real application. To enhance the robustness of diagnosis and achieve a more thorough evaluation of diagnostic performance, a robust diagnostic procedure based on electrochemical impedance spectroscopy (EIS) and a new method for evaluation of the diagnosis robustness was proposed and investigated in this work. To improve the diagnosis robustness: (1) the degradation mechanism of different faults in the high temperature PEM fuel cell was first analyzed via the distribution of relaxation time of EIS to determine the equivalent circuit model (ECM) with better interpretability, simplicity and accuracy;(2) the feature extraction was implemented on the identified parameters of the ECM and extra attention was paid to distinguishing between the long-term normal degradation and other faults;(3) a Siamese Network was adopted to get features with higher robustness in a new embedding. The diagnosis was conducted using 6 classic classification algorithms—support vector machine (SVM), K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), and Naive Bayes employing a dataset comprising a total of 1935 collected EIS. To evaluate the robustness of trained models: (1) different levels of errors were added to the features for performance evaluation;(2) a robustness coefficient (Roubust_C) was defined for a quantified and explicit evaluation of the diagnosis robustness. The diagnostic models employing the proposed feature extraction method can not only achieve the higher performance of around 100% but also higher robustness for diagnosis models. Despite the initial performance being similar, the KNN demonstrated a superior robustness after feature selection and re-embedding by triplet-loss method, which suggests the necessity of robustness evaluation for the machine learning models and the effectiveness of the defined robustness coefficient. This work hopes to give new insights to the robust diagnosis of high temperature PEM fuel cells and more comprehensive performance evaluation of the data-driven method for diagnostic application.展开更多
Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robus...Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robustness of the algorithms.In practical applications,the container can suffer from damage caused by noise,cropping,and other attacks during transmission,resulting in challenging or even impossible complete recovery of the secret image.An image hiding algorithm based on dynamic region attention in the multi-scale wavelet domain is proposed to address this issue and enhance the robustness of hiding algorithms.In this proposed algorithm,a secret image of size 256×256 is first decomposed using an eight-level Haar wavelet transform.The wavelet transform generates one coefficient in the approximation component and twenty-four detail bands,which are then embedded into the carrier image via a hiding network.During the recovery process,the container image is divided into four non-overlapping parts,each employed to reconstruct a low-resolution secret image.These lowresolution secret images are combined using densemodules to obtain a high-quality secret image.The experimental results showed that even under destructive attacks on the container image,the proposed algorithm is successful in recovering a high-quality secret image,indicating that the algorithm exhibits a high degree of robustness against various attacks.The proposed algorithm effectively addresses the robustness issue by incorporating both spatial and channel attention mechanisms in the multi-scale wavelet domain,making it suitable for practical applications.In conclusion,the image hiding algorithm introduced in this study offers significant improvements in robustness compared to existing algorithms.Its ability to recover high-quality secret images even in the presence of destructive attacksmakes it an attractive option for various applications.Further research and experimentation can explore the algorithm’s performance under different scenarios and expand its potential applications.展开更多
With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and int...With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and intelligence.However,tree ensemble models commonly used in smart grids are vulnerable to adversarial attacks,making it urgent to enhance their robustness.To address this,we propose a robustness enhancement method that incorporates physical constraints into the node-splitting decisions of tree ensembles.Our algorithm improves robustness by developing a dataset of adversarial examples that comply with physical laws,ensuring training data accurately reflects possible attack scenarios while adhering to physical rules.In our experiments,the proposed method increased robustness against adversarial attacks by 100%when applied to real grid data under physical constraints.These results highlight the advantages of our method in maintaining efficient and secure operation of smart grids under adversarial conditions.展开更多
The Social Internet of Things(SIoT)integrates the Internet of Things(IoT)and social networks,taking into account the social attributes of objects and diversifying the relationship between humans and objects,which over...The Social Internet of Things(SIoT)integrates the Internet of Things(IoT)and social networks,taking into account the social attributes of objects and diversifying the relationship between humans and objects,which overcomes the limitations of the IoT’s focus on associations between objects.Artificial Intelligence(AI)technology is rapidly evolving.It is critical to build trustworthy and transparent systems,especially with system security issues coming to the surface.This paper emphasizes the social attributes of objects and uses hypergraphs to model the diverse entities and relationships in SIoT,aiming to build an SIoT hypergraph generation model to explore the complex interactions between entities in the context of intelligent SIoT.Current hypergraph generation models impose too many constraints and fail to capture more details of real hypernetworks.In contrast,this paper proposes a hypergraph generation model that evolves dynamically over time,where only the number of nodes is fixed.It combines node wandering with a forest fire model and uses two different methods to control the size of the hyperedges.As new nodes are added,the model can promptly reflect changes in entities and relationships within SIoT.Experimental results exhibit that our model can effectively replicate the topological structure of real-world hypernetworks.We also evaluate the vulnerability of the hypergraph under different attack strategies,which provides theoretical support for building a more robust intelligent SIoT hypergraph model and lays the foundation for building safer and more reliable systems in the future.展开更多
Background: The robustness is a measurement of an analytical chemical method and its ability to contain unaffected by little with deliberate variation of analytical chemical method parameters. The analytical chemical ...Background: The robustness is a measurement of an analytical chemical method and its ability to contain unaffected by little with deliberate variation of analytical chemical method parameters. The analytical chemical method variation parameters are based on pH variability of buffer solution of mobile phase, organic ratio composition changes, stationary phase (column) manufacture, brand name and lot number variation;flow rate variation and temperature variation of chromatographic system. The analytical chemical method for assay of Atropine Sulfate conducted for robustness evaluation. The typical variation considered for mobile phase organic ratio change, change of pH, change of temperature, change of flow rate, change of column etc. Purpose: The aim of this study is to develop a cost effective, short run time and robust analytical chemical method for the assay quantification of Atropine in Pharmaceutical Ophthalmic Solution. This will help to make analytical decisions quickly for research and development scientists as well as will help with quality control product release for patient consumption. This analytical method will help to meet the market demand through quick quality control test of Atropine Ophthalmic Solution and it is very easy for maintaining (GDP) good documentation practices within the shortest period of time. Method: HPLC method has been selected for developing superior method to Compendial method. Both the compendial HPLC method and developed HPLC method was run into the same HPLC system to prove the superiority of developed method. Sensitivity, precision, reproducibility, accuracy parameters were considered for superiority of method. Mobile phase ratio change, pH of buffer solution, change of stationary phase temperature, change of flow rate and change of column were taken into consideration for robustness study of the developed method. Results: The limit of quantitation (LOQ) of developed method was much low than the compendial method. The % RSD for the six sample assay of developed method was 0.4% where the % RSD of the compendial method was 1.2%. The reproducibility between two analysts was 100.4% for developed method on the contrary the compendial method was 98.4%.展开更多
Unlike conventional topological edge states confined at a domain wall between two topologically distinct media,the recently proposed large-area topological waveguide states in three-layer heterostructures,which consis...Unlike conventional topological edge states confined at a domain wall between two topologically distinct media,the recently proposed large-area topological waveguide states in three-layer heterostructures,which consist of a domain featuring Dirac points sandwiched between two domains of different topologies,have introduced the mode width degree of freedom for more flexible manipulation of electromagnetic waves.Until now,the experimental realizations of photonic large-area topological waveguide states have been exclusively based on quantum Hall and quantum valley-Hall systems.We propose a new way to create large-area topological waveguide states based on the photonic quantum spin-Hall system and observe their unique feature of pseudo-spin-momentum-locking unidirectional propagation for the first time in experiments.Moreover,due to the new effect provided by the mode width degree of freedom,the propagation of these large-area quantum spin-Hall waveguide states exhibits unusually strong robustness against defects,e.g.,large voids with size reaching several unit cells,which has not been reported previously.Finally,practical applications,such as topological channel intersection and topological energy concentrator,are further demonstrated based on these novel states.Our work not only completes the last member of such states in the photonic quantum Hall,quantum valley-Hall,and quantum spin-Hall family,but also provides further opportunities for high-capacity energy transport with tunable mode width and exceptional robustness in integrated photonic devices and on-chip communications.展开更多
Artificial Intelligence(AI)technology has been extensively researched in various fields,including the field of malware detection.AI models must be trustworthy to introduce AI systems into critical decisionmaking and r...Artificial Intelligence(AI)technology has been extensively researched in various fields,including the field of malware detection.AI models must be trustworthy to introduce AI systems into critical decisionmaking and resource protection roles.The problem of robustness to adversarial attacks is a significant barrier to trustworthy AI.Although various adversarial attack and defense methods are actively being studied,there is a lack of research on robustness evaluation metrics that serve as standards for determining whether AI models are safe and reliable against adversarial attacks.An AI model’s robustness level cannot be evaluated by traditional evaluation indicators such as accuracy and recall.Additional evaluation indicators are necessary to evaluate the robustness of AI models against adversarial attacks.In this paper,a Sophisticated Adversarial Robustness Score(SARS)is proposed for AI model robustness evaluation.SARS uses various factors in addition to the ratio of perturbated features and the size of perturbation to evaluate robustness accurately in the evaluation process.This evaluation indicator reflects aspects that are difficult to evaluate using traditional evaluation indicators.Moreover,the level of robustness can be evaluated by considering the difficulty of generating adversarial samples through adversarial attacks.This paper proposed using SARS,calculated based on adversarial attacks,to identify data groups with robustness vulnerability and improve robustness through adversarial training.Through SARS,it is possible to evaluate the level of robustness,which can help developers identify areas for improvement.To validate the proposed method,experiments were conducted using a malware dataset.Through adversarial training,it was confirmed that SARS increased by 70.59%,and the recall reduction rate improved by 64.96%.Through SARS,it is possible to evaluate whether an AI model is vulnerable to adversarial attacks and to identify vulnerable data types.In addition,it is expected that improved models can be achieved by improving resistance to adversarial attacks via methods such as adversarial training.展开更多
Isothermal forging stands as an effective technology for the production of large-scale titanium alloy multi-rib components.However,challenges have persisted,including die underfilling and strain concentration due to t...Isothermal forging stands as an effective technology for the production of large-scale titanium alloy multi-rib components.However,challenges have persisted,including die underfilling and strain concentration due to the complex material flow and heterogeneous deformation within the forging die cavity.While approaches centered on optimized billet designs have mitigated these challenges,uncertainties in process parameters continue to introduce unacceptable variations in forming accuracy and stability.To tackle this issue,this study introduced a multi-objective robust optimization approach for billet design,accounting for the multi-rib eigenstructure and potential uncertainties.The approach includes finite element(FE)modeling for analyzing the die-filling and strain inhomogeneity within the multi-rib eigenstructure.Furthermore,it integrated image acquisition perception and feed back technologies(IAPF)for real-time monitoring of material flow and filling sequences within die rib-grooves,validating the accuracy of the FE modeling.By incorporating dimensional parameters of the billet and uncertainty factors,including friction,draft angle,forming temperature,speed,and deviations in billet and die,quantitative analyses on the rib-groove filling and strain inhomogeneity with fluctuation were conducted.Subsequently,a dual-response surface model was developed for statistical analysis of the cavity filling and strain homogeneity.Finally,the robust optimization was processed using a non-dominated sorting genetic algorithm II(NSGA-II)and validated using the IAPF technologies.The proposed approach enables robust design enhancements for rib-groove filling and strain homogeneity in titanium alloy multi-rib components.展开更多
For the purpose of improving the mechanical performance indices of uncertain structures with interval parameters and ensure their robustness when fluctuating under interval parameters, a constrained interval robust op...For the purpose of improving the mechanical performance indices of uncertain structures with interval parameters and ensure their robustness when fluctuating under interval parameters, a constrained interval robust optimization model is constructed with both the center and halfwidth of the most important mechanical performance index described as objective functions and the other requirements on the mechanical performance indices described as constraint functions. To locate the optimal solution of objective and feasibility robustness, a new concept of interval violation vector and its calculation formulae corresponding to different constraint functions are proposed. The math?ematical formulae for calculating the feasibility and objective robustness indices and the robustness?based preferential guidelines are proposed for directly ranking various design vectors, which is realized by an algorithm integrating Kriging and nested genetic algorithm. The validity of the proposed method and its superiority to present interval optimization approaches are demonstrated by a numerical example. The robust optimization of the upper beam in a high?speed press with interval material properties demonstrated the applicability and effectiveness of the proposed method in engineering.展开更多
The robust magnesium surfaces with multi-functions are highly desirable,and the simple and scalable methods to construct such surfaces are urgently indispensable.Herein,we conducted a one-step spraying method to facil...The robust magnesium surfaces with multi-functions are highly desirable,and the simple and scalable methods to construct such surfaces are urgently indispensable.Herein,we conducted a one-step spraying method to facilely fabricate the robust coating with multi-functions on magnesium alloys.The as-sprayed magnesium alloys surface is superhydrophobic with a static water contact angle(WCA)of 157.0°and a roll-off angle of 6.0°.Such surface has excellent mechanical,chemical and thermal stabilities,even undergoing various physical and chemical damages,including sand impact(10 gmin^(-1),≥20 min),water impact(2 impacts s^(-1),≥180 min),abrasion(1.00 kPa,≥25 cycles),peeling(≥2.15 kPa),high temperature(200°C,≥24 h),strong acidic/salty/basic media(p H=113)and organic-solvent immersion(ethanol and n-hexane,≥24 h),demonstrating brilliant robustness.Notably,the surface displays multi-functions of corrosion protection,anti-fouling and heat insulation,which will undoubtedly promote the much wider applications of magnesium alloys.展开更多
We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and geneti...We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.展开更多
This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is design...This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is designed to estimate the chance of a random fuzzy event and the optimistic value to a random fuzzy variable. In CQHBA, each bee carries a group of quantum bits representing a solution. Chaos optimization searches space around the selected best-so-far food source. In the marriage process, random interferential discrete quantum crossover is done between selected drones and the queen. Gaussian quantum mutation is used to keep the diversity of whole population. New methods of computing quantum rotation angles are designed based on grads. A proof of con- vergence for CQHBA is developed and a theoretical analysis of the computational overhead for the algorithm is presented. Numerical examples are presented to demonstrate its superiority in robustness and stability, efficiency of computational complexity, success rate, and accuracy of solution quality. CQHBA is manifested to be highly robust under various conditions and capable of handling most random fuzzy programmings with any parameter settings, variable initializations, system tolerance and confidence level, perturbations, and noises.展开更多
As the controllability of complex networks has attracted much attention recently, how to design and optimize the robustness of network controllability has become a common and urgent problem in the engineering field. I...As the controllability of complex networks has attracted much attention recently, how to design and optimize the robustness of network controllability has become a common and urgent problem in the engineering field. In this work, we propose a method that modifies any given network with strict structural perturbation to effectively enhance its robustness against malicious attacks, called dynamic optimization of controllability. Unlike other structural perturbations, the strict perturbation only swaps the links and keeps the in- and out-degree unchanged. A series of extensive experiments show that the robustness of controllability and connectivity can be improved dramatically. Furthermore, the effectiveness of our method is explained from the views of underlying structure. The analysis results indicate that the optimization algorithm makes networks more homogenous and assortative.展开更多
This paper deeply analyzes the closed-loop nature ofGPCin the fram ework ofinter- nalm odelcontrol(IMC) theory. A new sort ofrelation lies in the feedback structure so that robustreason can be satisfactorily explain...This paper deeply analyzes the closed-loop nature ofGPCin the fram ework ofinter- nalm odelcontrol(IMC) theory. A new sort ofrelation lies in the feedback structure so that robustreason can be satisfactorily explained. The resultissignificantbecause the previous con- clusions are only applied to open-loop stable plant(orm odel).展开更多
The robustness of infrastructure networks has attracted great attention in recent years. Scholars have studied the robustness of complex networks against cascading failures from different aspects. In this paper, a new...The robustness of infrastructure networks has attracted great attention in recent years. Scholars have studied the robustness of complex networks against cascading failures from different aspects. In this paper, a new capacity allocation strategy is proposed to reduce cascading failures and improve network robustness without changing the network structure.Compared with the typical strategy proposed in Motter–Lai(ML) model, the new strategy can reduce the scale of cascading failure. The new strategy applied in scale-free network is more efficient. In addition, to reasonably evaluate the two strategies, we introduce contribution rate of unit capacity to network robustness as evaluation index. Results show that our new strategy works well, and it is more advantageous in the rational utilization of capacity in scale-free networks.Furthermore, we were surprised to find that the efficient utilization of capacity costs declined as costs rose above a certain threshold, which indicates that it is not wise to restrain cascading failures by increasing capacity costs indefinitely.展开更多
Previous work puts forward a random edge rewiring method which is capable of improving the network robustness noticeably, while it lacks further discussions about how to improve the robustness faster. In this study, t...Previous work puts forward a random edge rewiring method which is capable of improving the network robustness noticeably, while it lacks further discussions about how to improve the robustness faster. In this study, the detailed analysis of the structures of improved networks show that regenerating the edges between high-degree nodes can enhance the robustness against a targeted attack. Therefore, we propose a novel rewiring strategy based on regenerating more edges between high-degree nodes, called smart rewiring, which could speed up the increase of the robustness index effectively. The smart rewiring method also explains why positive degree-degree correlation could enhance network robustness.展开更多
For a class of discrete-time systems with unmodeled dynamics and bounded disturbance, the design and analysis of robust indirect model reference adaptive control (MRAC) with normalized adaptive law are investigated....For a class of discrete-time systems with unmodeled dynamics and bounded disturbance, the design and analysis of robust indirect model reference adaptive control (MRAC) with normalized adaptive law are investigated. The main work includes three parts. Firstly, it is shown that the constructed parameter estimation algorithm not only possesses the same properties as those of traditional estimation algorithms, but also avoids the possibility of division by zero. Secondly, by establishing a relationship between the plant parameter estimate and the controller parameter estimate, some similar properties of the latter are also established. Thirdly, by using the relationship between the normalizing signal and all the signals of the closed-loop system, and some important mathematical tools on discrete-time systems, as in the continuous-time case, a systematic stability and robustness analysis approach to the discrete indirect robust MRAC scheme is developed rigorously.展开更多
A post-design robustness assessment for the longitudinal flight control system of an oceanographic unmanned aerial vehicle (UAV) is presented in this paper. Two novel systematic approaches of generating the linear f...A post-design robustness assessment for the longitudinal flight control system of an oceanographic unmanned aerial vehicle (UAV) is presented in this paper. Two novel systematic approaches of generating the linear fractional transformation (LFT) model directly from nonlinear equations are proposed for this particular robustness analysis problem. The closed-loop system combined with each controller is used to determine combinations of aerodynamic parameters that result in worst-case performance. Classical simultaneous gain and phase margin stability metrics currently used in the aerospace industry are introduced for the certification of robustness of this uncertain multivariable system. The results show that the control system remains stable and achieves desired performance for all possible parameter variations over a specified range in both frequency domain and time domain.展开更多
The system portfolio selection is a fundamental frontier issue in the development planning and demonstration of weapon equipment.The scientific and reasonable development of the weapon system portfolio is of great sig...The system portfolio selection is a fundamental frontier issue in the development planning and demonstration of weapon equipment.The scientific and reasonable development of the weapon system portfolio is of great significance for optimizing the design of equipment architecture,realizing effective resource allocation,and increasing the campaign effectiveness of integrated joint operations.From the perspective of system-ofsystems,this paper proposes a unified framework called structure-oriented weapon system portfolio selection(SWSPS)to solve the weapon system portfolio selection problem based on structural invulnerability.First,the types of equipment and the relationship between the equipment are sorted out based on the operation loop theory,and a heterogeneous combat network model of the weapon equipment system is established by abstracting the equipment and their relationships into different types of nodes and edges respectively.Then,based on the combat network model,the operation loop comprehensive evaluation index(OLCEI)is introduced to quantitatively describe the structural robustness of the combat network.Next,a weapon system combination selection model is established with the goal of maximizing the operation loop comprehensive evaluation index within the constraints of capability requirements and budget limitations.Finally,our proposed SWSPS is demonstrated through a case study of an armored infantry battalion.The results show that our proposed SWSPS can achieve excellent performance in solving the weapon system portfolio selection problem,which yields many meaningful insights and guidance to the future equipment development planning.展开更多
基金supported by the Chinese Scholarship Council(Nos.202208320055 and 202108320111)the support from the energy department of Aalborg University was acknowledged.
文摘Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a critical and challenging task in real application. To enhance the robustness of diagnosis and achieve a more thorough evaluation of diagnostic performance, a robust diagnostic procedure based on electrochemical impedance spectroscopy (EIS) and a new method for evaluation of the diagnosis robustness was proposed and investigated in this work. To improve the diagnosis robustness: (1) the degradation mechanism of different faults in the high temperature PEM fuel cell was first analyzed via the distribution of relaxation time of EIS to determine the equivalent circuit model (ECM) with better interpretability, simplicity and accuracy;(2) the feature extraction was implemented on the identified parameters of the ECM and extra attention was paid to distinguishing between the long-term normal degradation and other faults;(3) a Siamese Network was adopted to get features with higher robustness in a new embedding. The diagnosis was conducted using 6 classic classification algorithms—support vector machine (SVM), K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), and Naive Bayes employing a dataset comprising a total of 1935 collected EIS. To evaluate the robustness of trained models: (1) different levels of errors were added to the features for performance evaluation;(2) a robustness coefficient (Roubust_C) was defined for a quantified and explicit evaluation of the diagnosis robustness. The diagnostic models employing the proposed feature extraction method can not only achieve the higher performance of around 100% but also higher robustness for diagnosis models. Despite the initial performance being similar, the KNN demonstrated a superior robustness after feature selection and re-embedding by triplet-loss method, which suggests the necessity of robustness evaluation for the machine learning models and the effectiveness of the defined robustness coefficient. This work hopes to give new insights to the robust diagnosis of high temperature PEM fuel cells and more comprehensive performance evaluation of the data-driven method for diagnostic application.
基金partly supported by the National Natural Science Foundation of China(Jianhua Wu,Grant No.62041106).
文摘Hidden capacity,concealment,security,and robustness are essential indicators of hiding algorithms.Currently,hiding algorithms tend to focus on algorithmic capacity,concealment,and security but often overlook the robustness of the algorithms.In practical applications,the container can suffer from damage caused by noise,cropping,and other attacks during transmission,resulting in challenging or even impossible complete recovery of the secret image.An image hiding algorithm based on dynamic region attention in the multi-scale wavelet domain is proposed to address this issue and enhance the robustness of hiding algorithms.In this proposed algorithm,a secret image of size 256×256 is first decomposed using an eight-level Haar wavelet transform.The wavelet transform generates one coefficient in the approximation component and twenty-four detail bands,which are then embedded into the carrier image via a hiding network.During the recovery process,the container image is divided into four non-overlapping parts,each employed to reconstruct a low-resolution secret image.These lowresolution secret images are combined using densemodules to obtain a high-quality secret image.The experimental results showed that even under destructive attacks on the container image,the proposed algorithm is successful in recovering a high-quality secret image,indicating that the algorithm exhibits a high degree of robustness against various attacks.The proposed algorithm effectively addresses the robustness issue by incorporating both spatial and channel attention mechanisms in the multi-scale wavelet domain,making it suitable for practical applications.In conclusion,the image hiding algorithm introduced in this study offers significant improvements in robustness compared to existing algorithms.Its ability to recover high-quality secret images even in the presence of destructive attacksmakes it an attractive option for various applications.Further research and experimentation can explore the algorithm’s performance under different scenarios and expand its potential applications.
基金This work was supported by Natural Science Foundation of China(Nos.62303126,62362008,62066006,authors Zhenyong Zhang and Bin Hu,https://www.nsfc.gov.cn/,accessed on 25 July 2024)Guizhou Provincial Science and Technology Projects(No.ZK[2022]149,author Zhenyong Zhang,https://kjt.guizhou.gov.cn/,accessed on 25 July 2024)+1 种基金Guizhou Provincial Research Project(Youth)forUniversities(No.[2022]104,author Zhenyong Zhang,https://jyt.guizhou.gov.cn/,accessed on 25 July 2024)GZU Cultivation Project of NSFC(No.[2020]80,author Zhenyong Zhang,https://www.gzu.edu.cn/,accessed on 25 July 2024).
文摘With the widespread use of machine learning(ML)technology,the operational efficiency and responsiveness of power grids have been significantly enhanced,allowing smart grids to achieve high levels of automation and intelligence.However,tree ensemble models commonly used in smart grids are vulnerable to adversarial attacks,making it urgent to enhance their robustness.To address this,we propose a robustness enhancement method that incorporates physical constraints into the node-splitting decisions of tree ensembles.Our algorithm improves robustness by developing a dataset of adversarial examples that comply with physical laws,ensuring training data accurately reflects possible attack scenarios while adhering to physical rules.In our experiments,the proposed method increased robustness against adversarial attacks by 100%when applied to real grid data under physical constraints.These results highlight the advantages of our method in maintaining efficient and secure operation of smart grids under adversarial conditions.
文摘The Social Internet of Things(SIoT)integrates the Internet of Things(IoT)and social networks,taking into account the social attributes of objects and diversifying the relationship between humans and objects,which overcomes the limitations of the IoT’s focus on associations between objects.Artificial Intelligence(AI)technology is rapidly evolving.It is critical to build trustworthy and transparent systems,especially with system security issues coming to the surface.This paper emphasizes the social attributes of objects and uses hypergraphs to model the diverse entities and relationships in SIoT,aiming to build an SIoT hypergraph generation model to explore the complex interactions between entities in the context of intelligent SIoT.Current hypergraph generation models impose too many constraints and fail to capture more details of real hypernetworks.In contrast,this paper proposes a hypergraph generation model that evolves dynamically over time,where only the number of nodes is fixed.It combines node wandering with a forest fire model and uses two different methods to control the size of the hyperedges.As new nodes are added,the model can promptly reflect changes in entities and relationships within SIoT.Experimental results exhibit that our model can effectively replicate the topological structure of real-world hypernetworks.We also evaluate the vulnerability of the hypergraph under different attack strategies,which provides theoretical support for building a more robust intelligent SIoT hypergraph model and lays the foundation for building safer and more reliable systems in the future.
文摘Background: The robustness is a measurement of an analytical chemical method and its ability to contain unaffected by little with deliberate variation of analytical chemical method parameters. The analytical chemical method variation parameters are based on pH variability of buffer solution of mobile phase, organic ratio composition changes, stationary phase (column) manufacture, brand name and lot number variation;flow rate variation and temperature variation of chromatographic system. The analytical chemical method for assay of Atropine Sulfate conducted for robustness evaluation. The typical variation considered for mobile phase organic ratio change, change of pH, change of temperature, change of flow rate, change of column etc. Purpose: The aim of this study is to develop a cost effective, short run time and robust analytical chemical method for the assay quantification of Atropine in Pharmaceutical Ophthalmic Solution. This will help to make analytical decisions quickly for research and development scientists as well as will help with quality control product release for patient consumption. This analytical method will help to meet the market demand through quick quality control test of Atropine Ophthalmic Solution and it is very easy for maintaining (GDP) good documentation practices within the shortest period of time. Method: HPLC method has been selected for developing superior method to Compendial method. Both the compendial HPLC method and developed HPLC method was run into the same HPLC system to prove the superiority of developed method. Sensitivity, precision, reproducibility, accuracy parameters were considered for superiority of method. Mobile phase ratio change, pH of buffer solution, change of stationary phase temperature, change of flow rate and change of column were taken into consideration for robustness study of the developed method. Results: The limit of quantitation (LOQ) of developed method was much low than the compendial method. The % RSD for the six sample assay of developed method was 0.4% where the % RSD of the compendial method was 1.2%. The reproducibility between two analysts was 100.4% for developed method on the contrary the compendial method was 98.4%.
基金supported by the National Natural Science Foundation of China (Grant Nos.U2230114 and 12004425)the Natural Science Foundation of Jiangsu Province (Grant No.BK20200630)the National Key Research and Development Program of China (Grant No.2022YFA1203500).
文摘Unlike conventional topological edge states confined at a domain wall between two topologically distinct media,the recently proposed large-area topological waveguide states in three-layer heterostructures,which consist of a domain featuring Dirac points sandwiched between two domains of different topologies,have introduced the mode width degree of freedom for more flexible manipulation of electromagnetic waves.Until now,the experimental realizations of photonic large-area topological waveguide states have been exclusively based on quantum Hall and quantum valley-Hall systems.We propose a new way to create large-area topological waveguide states based on the photonic quantum spin-Hall system and observe their unique feature of pseudo-spin-momentum-locking unidirectional propagation for the first time in experiments.Moreover,due to the new effect provided by the mode width degree of freedom,the propagation of these large-area quantum spin-Hall waveguide states exhibits unusually strong robustness against defects,e.g.,large voids with size reaching several unit cells,which has not been reported previously.Finally,practical applications,such as topological channel intersection and topological energy concentrator,are further demonstrated based on these novel states.Our work not only completes the last member of such states in the photonic quantum Hall,quantum valley-Hall,and quantum spin-Hall family,but also provides further opportunities for high-capacity energy transport with tunable mode width and exceptional robustness in integrated photonic devices and on-chip communications.
基金supported by an Institute of Information and Communications Technology Planning and Evaluation (IITP)grant funded by the Korean Government (MSIT) (No.2022-0-00089,Development of Clustering and Analysis Technology to Identify Cyber-Attack Groups Based on Life-Cycle)and MISP (Ministry of Science,ICT&Future Planning),Korea,under the National Program for Excellence in SW (2019-0-01834)supervised by the IITP (Institute of Information&Communications Technology Planning&Evaluation) (2019-0-01834).
文摘Artificial Intelligence(AI)technology has been extensively researched in various fields,including the field of malware detection.AI models must be trustworthy to introduce AI systems into critical decisionmaking and resource protection roles.The problem of robustness to adversarial attacks is a significant barrier to trustworthy AI.Although various adversarial attack and defense methods are actively being studied,there is a lack of research on robustness evaluation metrics that serve as standards for determining whether AI models are safe and reliable against adversarial attacks.An AI model’s robustness level cannot be evaluated by traditional evaluation indicators such as accuracy and recall.Additional evaluation indicators are necessary to evaluate the robustness of AI models against adversarial attacks.In this paper,a Sophisticated Adversarial Robustness Score(SARS)is proposed for AI model robustness evaluation.SARS uses various factors in addition to the ratio of perturbated features and the size of perturbation to evaluate robustness accurately in the evaluation process.This evaluation indicator reflects aspects that are difficult to evaluate using traditional evaluation indicators.Moreover,the level of robustness can be evaluated by considering the difficulty of generating adversarial samples through adversarial attacks.This paper proposed using SARS,calculated based on adversarial attacks,to identify data groups with robustness vulnerability and improve robustness through adversarial training.Through SARS,it is possible to evaluate the level of robustness,which can help developers identify areas for improvement.To validate the proposed method,experiments were conducted using a malware dataset.Through adversarial training,it was confirmed that SARS increased by 70.59%,and the recall reduction rate improved by 64.96%.Through SARS,it is possible to evaluate whether an AI model is vulnerable to adversarial attacks and to identify vulnerable data types.In addition,it is expected that improved models can be achieved by improving resistance to adversarial attacks via methods such as adversarial training.
基金Supported by National Natural Science Foundation of China(Grant No.52005241)Jiangxi Provincial Natural Science Foundation(Grant Nos.20232BAB204050,20224BAB204045)China Scholarship Council(Grant No.202208360107).
文摘Isothermal forging stands as an effective technology for the production of large-scale titanium alloy multi-rib components.However,challenges have persisted,including die underfilling and strain concentration due to the complex material flow and heterogeneous deformation within the forging die cavity.While approaches centered on optimized billet designs have mitigated these challenges,uncertainties in process parameters continue to introduce unacceptable variations in forming accuracy and stability.To tackle this issue,this study introduced a multi-objective robust optimization approach for billet design,accounting for the multi-rib eigenstructure and potential uncertainties.The approach includes finite element(FE)modeling for analyzing the die-filling and strain inhomogeneity within the multi-rib eigenstructure.Furthermore,it integrated image acquisition perception and feed back technologies(IAPF)for real-time monitoring of material flow and filling sequences within die rib-grooves,validating the accuracy of the FE modeling.By incorporating dimensional parameters of the billet and uncertainty factors,including friction,draft angle,forming temperature,speed,and deviations in billet and die,quantitative analyses on the rib-groove filling and strain inhomogeneity with fluctuation were conducted.Subsequently,a dual-response surface model was developed for statistical analysis of the cavity filling and strain homogeneity.Finally,the robust optimization was processed using a non-dominated sorting genetic algorithm II(NSGA-II)and validated using the IAPF technologies.The proposed approach enables robust design enhancements for rib-groove filling and strain homogeneity in titanium alloy multi-rib components.
基金Supported by National Natural Science Foundation of China(Grant Nos.51775491,51475417,U1608256,51405433)
文摘For the purpose of improving the mechanical performance indices of uncertain structures with interval parameters and ensure their robustness when fluctuating under interval parameters, a constrained interval robust optimization model is constructed with both the center and halfwidth of the most important mechanical performance index described as objective functions and the other requirements on the mechanical performance indices described as constraint functions. To locate the optimal solution of objective and feasibility robustness, a new concept of interval violation vector and its calculation formulae corresponding to different constraint functions are proposed. The math?ematical formulae for calculating the feasibility and objective robustness indices and the robustness?based preferential guidelines are proposed for directly ranking various design vectors, which is realized by an algorithm integrating Kriging and nested genetic algorithm. The validity of the proposed method and its superiority to present interval optimization approaches are demonstrated by a numerical example. The robust optimization of the upper beam in a high?speed press with interval material properties demonstrated the applicability and effectiveness of the proposed method in engineering.
基金supported by the National Natural Science Foundation of China(21773019,21972012)the Graduate Research and Innovation Foundation of Chongqing(CYB18044)the sharing fund of Chongqing University s Large-scale Equipment
文摘The robust magnesium surfaces with multi-functions are highly desirable,and the simple and scalable methods to construct such surfaces are urgently indispensable.Herein,we conducted a one-step spraying method to facilely fabricate the robust coating with multi-functions on magnesium alloys.The as-sprayed magnesium alloys surface is superhydrophobic with a static water contact angle(WCA)of 157.0°and a roll-off angle of 6.0°.Such surface has excellent mechanical,chemical and thermal stabilities,even undergoing various physical and chemical damages,including sand impact(10 gmin^(-1),≥20 min),water impact(2 impacts s^(-1),≥180 min),abrasion(1.00 kPa,≥25 cycles),peeling(≥2.15 kPa),high temperature(200°C,≥24 h),strong acidic/salty/basic media(p H=113)and organic-solvent immersion(ethanol and n-hexane,≥24 h),demonstrating brilliant robustness.Notably,the surface displays multi-functions of corrosion protection,anti-fouling and heat insulation,which will undoubtedly promote the much wider applications of magnesium alloys.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB1104500the Natural Science Foundation of Beijing under Grant No 7182091,the National Natural Science Foundation of China under Grant No 21627813the Fundamental Research Funds for the Central Universities under Grant No PYBZ1801
文摘We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.
基金supported by National High Technology Research and Development Program of China (863 Program) (No. 2007AA041603)National Natural Science Foundation of China (No. 60475035)+2 种基金Key Technologies Research and Development Program Foundation of Hunan Province of China (No. 2007FJ1806)Science and Technology Research Plan of National University of Defense Technology (No. CX07-03-01)Top Class Graduate Student Innovation Sustentation Fund of National University of Defense Technology (No. B070302.)
文摘This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is designed to estimate the chance of a random fuzzy event and the optimistic value to a random fuzzy variable. In CQHBA, each bee carries a group of quantum bits representing a solution. Chaos optimization searches space around the selected best-so-far food source. In the marriage process, random interferential discrete quantum crossover is done between selected drones and the queen. Gaussian quantum mutation is used to keep the diversity of whole population. New methods of computing quantum rotation angles are designed based on grads. A proof of con- vergence for CQHBA is developed and a theoretical analysis of the computational overhead for the algorithm is presented. Numerical examples are presented to demonstrate its superiority in robustness and stability, efficiency of computational complexity, success rate, and accuracy of solution quality. CQHBA is manifested to be highly robust under various conditions and capable of handling most random fuzzy programmings with any parameter settings, variable initializations, system tolerance and confidence level, perturbations, and noises.
基金supported by the National Natural Science Foundation of China(Grant No.60902094)the Military Science Foundation of China(Grant No.2010JY0072-046)
文摘As the controllability of complex networks has attracted much attention recently, how to design and optimize the robustness of network controllability has become a common and urgent problem in the engineering field. In this work, we propose a method that modifies any given network with strict structural perturbation to effectively enhance its robustness against malicious attacks, called dynamic optimization of controllability. Unlike other structural perturbations, the strict perturbation only swaps the links and keeps the in- and out-degree unchanged. A series of extensive experiments show that the robustness of controllability and connectivity can be improved dramatically. Furthermore, the effectiveness of our method is explained from the views of underlying structure. The analysis results indicate that the optimization algorithm makes networks more homogenous and assortative.
文摘This paper deeply analyzes the closed-loop nature ofGPCin the fram ework ofinter- nalm odelcontrol(IMC) theory. A new sort ofrelation lies in the feedback structure so that robustreason can be satisfactorily explained. The resultissignificantbecause the previous con- clusions are only applied to open-loop stable plant(orm odel).
文摘The robustness of infrastructure networks has attracted great attention in recent years. Scholars have studied the robustness of complex networks against cascading failures from different aspects. In this paper, a new capacity allocation strategy is proposed to reduce cascading failures and improve network robustness without changing the network structure.Compared with the typical strategy proposed in Motter–Lai(ML) model, the new strategy can reduce the scale of cascading failure. The new strategy applied in scale-free network is more efficient. In addition, to reasonably evaluate the two strategies, we introduce contribution rate of unit capacity to network robustness as evaluation index. Results show that our new strategy works well, and it is more advantageous in the rational utilization of capacity in scale-free networks.Furthermore, we were surprised to find that the efficient utilization of capacity costs declined as costs rose above a certain threshold, which indicates that it is not wise to restrain cascading failures by increasing capacity costs indefinitely.
基金Supported by the Open Cooperation Research in National University of Defense Technology(NUDT)under Grant No 2014021the Graduate Innovation Fund of NUDT under Grant No B150501
文摘Previous work puts forward a random edge rewiring method which is capable of improving the network robustness noticeably, while it lacks further discussions about how to improve the robustness faster. In this study, the detailed analysis of the structures of improved networks show that regenerating the edges between high-degree nodes can enhance the robustness against a targeted attack. Therefore, we propose a novel rewiring strategy based on regenerating more edges between high-degree nodes, called smart rewiring, which could speed up the increase of the robustness index effectively. The smart rewiring method also explains why positive degree-degree correlation could enhance network robustness.
基金supported by National Natural Science Foundation of China (No. 60774010, 10971256, 60974028)Natural Science Foundation of Jiangsu Province (No. BK2009083)+2 种基金Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(No. 07KJB510114)Shandong Provincial Natural Science Foundation of China (No. ZR2009GM008)Natural Science Foundation of Jining University (No. 2009KJLX02)
文摘For a class of discrete-time systems with unmodeled dynamics and bounded disturbance, the design and analysis of robust indirect model reference adaptive control (MRAC) with normalized adaptive law are investigated. The main work includes three parts. Firstly, it is shown that the constructed parameter estimation algorithm not only possesses the same properties as those of traditional estimation algorithms, but also avoids the possibility of division by zero. Secondly, by establishing a relationship between the plant parameter estimate and the controller parameter estimate, some similar properties of the latter are also established. Thirdly, by using the relationship between the normalizing signal and all the signals of the closed-loop system, and some important mathematical tools on discrete-time systems, as in the continuous-time case, a systematic stability and robustness analysis approach to the discrete indirect robust MRAC scheme is developed rigorously.
基金Supported by the Engineering and Physical Sciences Research Council (EPSRC), UK (EP/F037570/1)
文摘A post-design robustness assessment for the longitudinal flight control system of an oceanographic unmanned aerial vehicle (UAV) is presented in this paper. Two novel systematic approaches of generating the linear fractional transformation (LFT) model directly from nonlinear equations are proposed for this particular robustness analysis problem. The closed-loop system combined with each controller is used to determine combinations of aerodynamic parameters that result in worst-case performance. Classical simultaneous gain and phase margin stability metrics currently used in the aerospace industry are introduced for the certification of robustness of this uncertain multivariable system. The results show that the control system remains stable and achieves desired performance for all possible parameter variations over a specified range in both frequency domain and time domain.
基金This work was supported by the National Natural Science Foundation of China(71690233,71971213,71571185)Scientific Research Foundation of National University of Defense Technology(ZK19-16).
文摘The system portfolio selection is a fundamental frontier issue in the development planning and demonstration of weapon equipment.The scientific and reasonable development of the weapon system portfolio is of great significance for optimizing the design of equipment architecture,realizing effective resource allocation,and increasing the campaign effectiveness of integrated joint operations.From the perspective of system-ofsystems,this paper proposes a unified framework called structure-oriented weapon system portfolio selection(SWSPS)to solve the weapon system portfolio selection problem based on structural invulnerability.First,the types of equipment and the relationship between the equipment are sorted out based on the operation loop theory,and a heterogeneous combat network model of the weapon equipment system is established by abstracting the equipment and their relationships into different types of nodes and edges respectively.Then,based on the combat network model,the operation loop comprehensive evaluation index(OLCEI)is introduced to quantitatively describe the structural robustness of the combat network.Next,a weapon system combination selection model is established with the goal of maximizing the operation loop comprehensive evaluation index within the constraints of capability requirements and budget limitations.Finally,our proposed SWSPS is demonstrated through a case study of an armored infantry battalion.The results show that our proposed SWSPS can achieve excellent performance in solving the weapon system portfolio selection problem,which yields many meaningful insights and guidance to the future equipment development planning.