This paper aims at reporting the results of a number of drag pick cutting tests on selected igneous rock samples to compare the experimentally determined maximum cutting force (FC) values with theoreti- cally estima...This paper aims at reporting the results of a number of drag pick cutting tests on selected igneous rock samples to compare the experimentally determined maximum cutting force (FC) values with theoreti- cally estimated ones. First, a review on theoretical rock cutting models proposed for both chisel and conical picks was presented in detail. Experimental study consists of both chisel and conical pick cutting tests in unrelieved (single-pick) cutting mode with varying cutting depths. FC' values were determined from experimental results, and theoretical models were utilized to compute FC for all cutting conditions. Computed and experimentally determined F( data were then compared for a referenced cutting depth. It is shown that the theoretical models might overestimate or underestimate FC' and cannot give reliable results. Finally, explanations for these mismatches were presented.展开更多
Conical picks are by far the most widely used drag type cutting tools employed on partial face rock excavation machines.The cutting force and specific energy are two important design parameters for the conical pick pe...Conical picks are by far the most widely used drag type cutting tools employed on partial face rock excavation machines.The cutting force and specific energy are two important design parameters for the conical pick performance,and the rock cutting testing is considered as the promising tool for determining these parameters.In the absence of an instrumented cutting rig,researchers generally rely on empirical predictive plots.For this,this paper suggests predictive plots for estimating the cutting force and specific energy,in consideration of the cutting depth to define the cuttability with conical picks.In this context,rock cutting tests were carried out on six volcanic rock samples with varying cutting depths using the unrelieved and relieved cutting modes.The cutting force and specific energy were correlated with the uniaxial compressive strength,Brazilian tensile strength,elasticity modulus,and plasticity index.Predictive plots were proposed for different cutting depths in the unrelieved and relieved cutting modes and exponential relationships were obtained among the cuttability parameters,and mechanical and elastoplastic properties of rocks.展开更多
文摘This paper aims at reporting the results of a number of drag pick cutting tests on selected igneous rock samples to compare the experimentally determined maximum cutting force (FC) values with theoreti- cally estimated ones. First, a review on theoretical rock cutting models proposed for both chisel and conical picks was presented in detail. Experimental study consists of both chisel and conical pick cutting tests in unrelieved (single-pick) cutting mode with varying cutting depths. FC' values were determined from experimental results, and theoretical models were utilized to compute FC for all cutting conditions. Computed and experimentally determined F( data were then compared for a referenced cutting depth. It is shown that the theoretical models might overestimate or underestimate FC' and cannot give reliable results. Finally, explanations for these mismatches were presented.
文摘Conical picks are by far the most widely used drag type cutting tools employed on partial face rock excavation machines.The cutting force and specific energy are two important design parameters for the conical pick performance,and the rock cutting testing is considered as the promising tool for determining these parameters.In the absence of an instrumented cutting rig,researchers generally rely on empirical predictive plots.For this,this paper suggests predictive plots for estimating the cutting force and specific energy,in consideration of the cutting depth to define the cuttability with conical picks.In this context,rock cutting tests were carried out on six volcanic rock samples with varying cutting depths using the unrelieved and relieved cutting modes.The cutting force and specific energy were correlated with the uniaxial compressive strength,Brazilian tensile strength,elasticity modulus,and plasticity index.Predictive plots were proposed for different cutting depths in the unrelieved and relieved cutting modes and exponential relationships were obtained among the cuttability parameters,and mechanical and elastoplastic properties of rocks.