A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics ...A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics reasons for different spatiotemporal structures of rogue waves are analyzed using the extreme value theory of the two-variables function. The diversity of spatiotemporal structures not only depends on the disturbance parameter u0 </sub>but also has a relationship with the other parameters c<sub>0</sub>, α, β.展开更多
We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic,which is nonlinear wave alternative of the Black-Scholes model.These rogue wave solutions may be used to describe t...We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic,which is nonlinear wave alternative of the Black-Scholes model.These rogue wave solutions may be used to describe thepossible physical mechanisms for rogue wave phenomenon in financial markets and related fields.展开更多
The nonlinear Schrodinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particu...The nonlinear Schrodinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particular in high dimensions,lots of methods are proposed to effectively obtain different kinds of solutions,such as neural networks among others.Recently,a method where some underlying physical laws are embeded into a conventional neural network is proposed to uncover the equation’s dynamical behaviors from spatiotemporal data directly.Compared with traditional neural networks,this method can obtain remarkably accurate solution with extraordinarily less data.Meanwhile,this method also provides a better physical explanation and generalization.In this paper,based on the above method,we present an improved deep learning method to recover the soliton solutions,breather solution,and rogue wave solutions of the nonlinear Schrodinger equation.In particular,the dynamical behaviors and error analysis about the one-order and two-order rogue waves of nonlinear integrable equations are revealed by the deep neural network with physical constraints for the first time.Moreover,the effects of different numbers of initial points sampled,collocation points sampled,network layers,neurons per hidden layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable way under the same initial and boundary conditions.Numerical experiments show that the dynamical behaviors of soliton solutions,breather solution,and rogue wave solutions of the integrable nonlinear Schrodinger equation can be well reconstructed by utilizing this physically-constrained deep learning method.展开更多
Fault detection and diagnosis(FDD) facilitates reliable operation of systems. Various approaches have been proposed for FDD like Analytical redundancy(AR), Principal component analysis(PCA), Discrete event system(DES)...Fault detection and diagnosis(FDD) facilitates reliable operation of systems. Various approaches have been proposed for FDD like Analytical redundancy(AR), Principal component analysis(PCA), Discrete event system(DES) model etc., in the literature. Performance of FDD schemes greatly depends on accuracy of the sensors which measure the system parameters.Due to various reasons like faults, communication errors etc.,sensors may occasionally miss or report erroneous values of some system parameters to FDD engine, resulting in measurement inconsistency of these parameters. Schemes like AR, PCA etc.,have mechanisms to handle measurement inconsistency, however,they are computationally heavy. DES based FDD techniques are widely used because of computational simplicity, but they cannot handle measurement inconsistency efficiently. Existing DES based schemes do not use Measurement inconsistent(MI)parameters for FDD. These parameters are not permanently unmeasurable or erroneous, so ignoring them may lead to weak diagnosis. To address this issue, we propose a Measurement inconsistent discrete event system(MIDES) framework, which uses MI parameters for FDD at the instances they are measured by the sensors. Otherwise, when they are unmeasurable or erroneously reported, the MIDES invokes an estimator diagnoser that predicts the state(s) the system is expected to be in, using the subsequent parameters measured by the other sensors. The efficacy of the proposed method is illustrated using a pumpvalve system. In addition, an MIDES based intrusion detection system has been developed for detection of rogue dynamic host configuration protocol(DHCP) server attack by mapping the attack to a fault in the DES framework.展开更多
As concluded from physical theory and laboratory experiment,it is widely accepted that nonlinearities of sea state play an important role in the formation of rogue waves;however,the sea states and corresponding nonlin...As concluded from physical theory and laboratory experiment,it is widely accepted that nonlinearities of sea state play an important role in the formation of rogue waves;however,the sea states and corresponding nonlinearities of real-world rogue wave events remain poorly understood.Three rogue waves were recorded by a directional buoy located in the East China Sea during Typhoon Trami in August 2013.This study used the WAVEWATCHⅢmodel to simulate the sea state conditions pertaining to when and where those rogue waves were observed,based on which a comprehensive and full-scale analysis was performed.From the perspectives of wind and wave fields,wave system tracking,High-Order Spectral method simulation,and some characteristic sea state parameters,we concluded that the rogue waves occurred in sea states dominated by second-order nonlinearities.Moreover,third-order modulational instabilities were suppressed in these events because of the developed or fully developed sea state determined by the typhoon wave system.The method adopted in this study can provide comprehensive and full-scale analysis of rogue waves in the real world.The case studied in this paper is not considered unique,and rules could be found and confirmed in relation to other typhoon sea states through the application of our proposed method.展开更多
In this paper, a new type (or the second type) of transformation which is used to map the variable coefficient nonlinear Schr6dinger (VCNLS) equation to the usual nonlinear Schrodinger (NLS) equation is given. A...In this paper, a new type (or the second type) of transformation which is used to map the variable coefficient nonlinear Schr6dinger (VCNLS) equation to the usual nonlinear Schrodinger (NLS) equation is given. As a special case, a new kind of nonautonomous NLS equation with a t-dependent potential is introduced. Further, by using the new transformation and making full use of the known soliton and rogue wave solutions of the usual NLS equation, the corresponding kinds of solutions of a special model of the new nonautonomous NLS equation are discussed respectively. Additionally, through using the new transformation, a new expression, i.e., the non-rational formula, of the rogue wave of a special VCNLS equation is given analytically. The main differences between the two types of transformation mentioned above are listed by three items.展开更多
We study a simplified(3+1)-dimensional model equation and construct a lump solution for the special case of z=y using the Hirota bilinear method.Then,a more general form of lump solution is constructed,which contains ...We study a simplified(3+1)-dimensional model equation and construct a lump solution for the special case of z=y using the Hirota bilinear method.Then,a more general form of lump solution is constructed,which contains more arbitrary autocephalous parameters.In addition,a lumpoff solution is also derived based on the general lump solutions and a stripe soliton.Furthermore,we figure out instanton/rogue wave solutions via introducing two stripe solitons.Finally,one can better illustrate these propagation phenomena of these solutions by analyzing images.展开更多
Based on the developed Darboux transformation, we investigate the exact asymmetric solutions of breather and rogue waves in pair-transition-coupled nonlinear Schr?dinger equations. As an example, some types of exact b...Based on the developed Darboux transformation, we investigate the exact asymmetric solutions of breather and rogue waves in pair-transition-coupled nonlinear Schr?dinger equations. As an example, some types of exact breather solutions are given analytically by adjusting the parameters. Moreover, the interesting fundamental problem is to clarify the formation mechanism of asymmetry breather solutions and how the particle number and energy exchange between the background and soliton ultimately form the breather solutions. Our results also show that the formation mechanism from breather to rogue wave arises from the transformation from the periodic total exchange into the temporal local property.展开更多
Analytical solutions in terms of rational-like functions are presented for a (3+1)-dimensional nonlinear Schrodinger equation with time-varying coefficients and a harmonica potential using the similarity transforma...Analytical solutions in terms of rational-like functions are presented for a (3+1)-dimensional nonlinear Schrodinger equation with time-varying coefficients and a harmonica potential using the similarity transformation and a direct ansatz. Several free functions of time t are involved to generate abundant wave structures. Three types of elementary functions are chosen to exhibit the corresponding nonlinear rogue wave propagations.展开更多
In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution ...In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution to the special case for z=x.Furthermore,a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions.By cutting the lump by the induced soliton(s),lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution.展开更多
Rogue nodes broadcasting false information in beacon messages may lead to catastrophic consequences in Vehicular Ad Hoc Networks(VANETs).Previous researchers used cryptography,trust scores,or past vehicle data to dete...Rogue nodes broadcasting false information in beacon messages may lead to catastrophic consequences in Vehicular Ad Hoc Networks(VANETs).Previous researchers used cryptography,trust scores,or past vehicle data to detect rogue nodes;however,these methods suffer from high processing delay,overhead,and False–Positive Rate(FPR).We propose herein Greenshield's traffic model–based fog computing scheme called Fog–based Rogue Node Detection(F–RouND),which dynamically utilizes the On–Board Units(OBUs)of all vehicles in the region for rogue node detection.We aim to reduce the data processing delays and FPR in detecting rogue nodes at high vehicle densities.The performance of the F–RouND framework was evaluated via simulations.Results show that the F–RouND framework ensures 45%lower processing delays,12%lower overhead,and 36%lower FPR at the urban scenario than the existing rogue node detection schemes even when the number of rogue nodes increases by up to 40%in the region.展开更多
The nonlinear Schrodinger (NLS) equation and Boussinesq equation are two very important integrable equations. They have widely physical applications. In this paper, we investigate a nonlinear system, which is the tw...The nonlinear Schrodinger (NLS) equation and Boussinesq equation are two very important integrable equations. They have widely physical applications. In this paper, we investigate a nonlinear system, which is the two-component NLS equation coupled to the Boussinesq equation. We obtain the bright-bright, bright-dark, and dark-dark soliton solutions to the nonlinear system. We discuss the collision between two solitons. We observe that the collision of bright-bright soliton is inelastic and two solitons oscillating periodically can happen in the two parallel-traveling bright-bright or bright-dark soliton solution. The general breather and rogue wave solutions are also given. Our results show again that there are more abundant dynamical properties for multi-component nonlinear systems.展开更多
The (2+1)-dimension nonlocal nonlinear Schrödinger (NLS) equation with the self-induced parity-time symmetric potential is introduced, which provides spatially two-dimensional analogues of the nonlocal NLS equati...The (2+1)-dimension nonlocal nonlinear Schrödinger (NLS) equation with the self-induced parity-time symmetric potential is introduced, which provides spatially two-dimensional analogues of the nonlocal NLS equation introduced by Ablowitz et al. [Phys. Rev. Lett. 110 (2013) 064105]. General periodic solutions are derived by the bilinear method. These periodic solutions behave as growing and decaying periodic line waves arising from the constant background and decaying back to the constant background again. By taking long wave limits of the obtained periodic solutions, rogue waves are obtained. It is also shown that these line rogue waves arise from the constant background with a line profile and disappear into the constant background again in the plane.展开更多
We derive an N-fold Darboux transformation for the nonlinear Schrdinger equation coupled to a multiple selfinduced transparency system, which is applicable to optical fiber communications in the erbium-doped medium.Th...We derive an N-fold Darboux transformation for the nonlinear Schrdinger equation coupled to a multiple selfinduced transparency system, which is applicable to optical fiber communications in the erbium-doped medium.The N-soliton, N-breather and N th-order rogue wave solutions in the compact determinant representations are derived using the Darboux transformation and limit technique. Dynamics of such solutions from the first-to second-order ones are shown.展开更多
In the paper, the homoclinic (hateroclinic) breather limit method (HBLM) is applied to seek rogue wave solution of the Benjamin Ono equation. We find that the rational breather wave solution is just a rogue wave solut...In the paper, the homoclinic (hateroclinic) breather limit method (HBLM) is applied to seek rogue wave solution of the Benjamin Ono equation. We find that the rational breather wave solution is just a rogue wave solution. This result shows that rogue wave can come from the extreme behavior of the breather solitary wave for (1+1)-dimensional nonlinear wave fields.展开更多
It is proved that rogue waves can be found in Korteweg de-Vries(KdV) systems if real nonintegrable effects, higher order nonlinearity and nonlinear diffusion are considered. Rogue waves can also be formed without mo...It is proved that rogue waves can be found in Korteweg de-Vries(KdV) systems if real nonintegrable effects, higher order nonlinearity and nonlinear diffusion are considered. Rogue waves can also be formed without modulation instability which is considered as the main formation mechanism of the rogue waves.展开更多
In this paper, we give the Lax pair and construct the Darboux transformation of the Kundu-DNLS equation. Furthermore, the rogue wave solutions of the Kundu-DNLS equation are derived by using the Taylor expansion of th...In this paper, we give the Lax pair and construct the Darboux transformation of the Kundu-DNLS equation. Furthermore, the rogue wave solutions of the Kundu-DNLS equation are derived by using the Taylor expansion of the breather solution. What's more, the triangular and the circular patterns of the third rouge solution are displayed.展开更多
文摘A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics reasons for different spatiotemporal structures of rogue waves are analyzed using the extreme value theory of the two-variables function. The diversity of spatiotemporal structures not only depends on the disturbance parameter u0 </sub>but also has a relationship with the other parameters c<sub>0</sub>, α, β.
基金Supported by National Natural Science Foundation of China under Grant No.60821002/F02
文摘We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic,which is nonlinear wave alternative of the Black-Scholes model.These rogue wave solutions may be used to describe thepossible physical mechanisms for rogue wave phenomenon in financial markets and related fields.
基金supported by the National Natural Science Foundation of China (Grant No. 11675054)the Fund from Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things (Grant No. ZF1213)the Project of Science and Technology Commission of Shanghai Municipality (Grant No. 18dz2271000)。
文摘The nonlinear Schrodinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particular in high dimensions,lots of methods are proposed to effectively obtain different kinds of solutions,such as neural networks among others.Recently,a method where some underlying physical laws are embeded into a conventional neural network is proposed to uncover the equation’s dynamical behaviors from spatiotemporal data directly.Compared with traditional neural networks,this method can obtain remarkably accurate solution with extraordinarily less data.Meanwhile,this method also provides a better physical explanation and generalization.In this paper,based on the above method,we present an improved deep learning method to recover the soliton solutions,breather solution,and rogue wave solutions of the nonlinear Schrodinger equation.In particular,the dynamical behaviors and error analysis about the one-order and two-order rogue waves of nonlinear integrable equations are revealed by the deep neural network with physical constraints for the first time.Moreover,the effects of different numbers of initial points sampled,collocation points sampled,network layers,neurons per hidden layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable way under the same initial and boundary conditions.Numerical experiments show that the dynamical behaviors of soliton solutions,breather solution,and rogue wave solutions of the integrable nonlinear Schrodinger equation can be well reconstructed by utilizing this physically-constrained deep learning method.
基金supported by TATA Consultancy Services(TCS),India through TCS Research Fellowship Program
文摘Fault detection and diagnosis(FDD) facilitates reliable operation of systems. Various approaches have been proposed for FDD like Analytical redundancy(AR), Principal component analysis(PCA), Discrete event system(DES) model etc., in the literature. Performance of FDD schemes greatly depends on accuracy of the sensors which measure the system parameters.Due to various reasons like faults, communication errors etc.,sensors may occasionally miss or report erroneous values of some system parameters to FDD engine, resulting in measurement inconsistency of these parameters. Schemes like AR, PCA etc.,have mechanisms to handle measurement inconsistency, however,they are computationally heavy. DES based FDD techniques are widely used because of computational simplicity, but they cannot handle measurement inconsistency efficiently. Existing DES based schemes do not use Measurement inconsistent(MI)parameters for FDD. These parameters are not permanently unmeasurable or erroneous, so ignoring them may lead to weak diagnosis. To address this issue, we propose a Measurement inconsistent discrete event system(MIDES) framework, which uses MI parameters for FDD at the instances they are measured by the sensors. Otherwise, when they are unmeasurable or erroneously reported, the MIDES invokes an estimator diagnoser that predicts the state(s) the system is expected to be in, using the subsequent parameters measured by the other sensors. The efficacy of the proposed method is illustrated using a pumpvalve system. In addition, an MIDES based intrusion detection system has been developed for detection of rogue dynamic host configuration protocol(DHCP) server attack by mapping the attack to a fault in the DES framework.
基金Supported by the National Key Research and Development Program of China(Nos.2016YFC1402004,2016YFC1401805)
文摘As concluded from physical theory and laboratory experiment,it is widely accepted that nonlinearities of sea state play an important role in the formation of rogue waves;however,the sea states and corresponding nonlinearities of real-world rogue wave events remain poorly understood.Three rogue waves were recorded by a directional buoy located in the East China Sea during Typhoon Trami in August 2013.This study used the WAVEWATCHⅢmodel to simulate the sea state conditions pertaining to when and where those rogue waves were observed,based on which a comprehensive and full-scale analysis was performed.From the perspectives of wind and wave fields,wave system tracking,High-Order Spectral method simulation,and some characteristic sea state parameters,we concluded that the rogue waves occurred in sea states dominated by second-order nonlinearities.Moreover,third-order modulational instabilities were suppressed in these events because of the developed or fully developed sea state determined by the typhoon wave system.The method adopted in this study can provide comprehensive and full-scale analysis of rogue waves in the real world.The case studied in this paper is not considered unique,and rules could be found and confirmed in relation to other typhoon sea states through the application of our proposed method.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10971109 and 10971211supported by Program for New Century Excellent Talents in University under Grant No.NCET-08-0515
文摘In this paper, a new type (or the second type) of transformation which is used to map the variable coefficient nonlinear Schr6dinger (VCNLS) equation to the usual nonlinear Schrodinger (NLS) equation is given. As a special case, a new kind of nonautonomous NLS equation with a t-dependent potential is introduced. Further, by using the new transformation and making full use of the known soliton and rogue wave solutions of the usual NLS equation, the corresponding kinds of solutions of a special model of the new nonautonomous NLS equation are discussed respectively. Additionally, through using the new transformation, a new expression, i.e., the non-rational formula, of the rogue wave of a special VCNLS equation is given analytically. The main differences between the two types of transformation mentioned above are listed by three items.
基金Project supported by the National Natural Science Foundation of China(Grant No.11971475)。
文摘We study a simplified(3+1)-dimensional model equation and construct a lump solution for the special case of z=y using the Hirota bilinear method.Then,a more general form of lump solution is constructed,which contains more arbitrary autocephalous parameters.In addition,a lumpoff solution is also derived based on the general lump solutions and a stripe soliton.Furthermore,we figure out instanton/rogue wave solutions via introducing two stripe solitons.Finally,one can better illustrate these propagation phenomena of these solutions by analyzing images.
基金Project supported by the National Natural Science Foundation of China(Grant No.61774001)the Natural Science Foundation of Hunan Province,China(Grant No.2017JJ2045)
文摘Based on the developed Darboux transformation, we investigate the exact asymmetric solutions of breather and rogue waves in pair-transition-coupled nonlinear Schr?dinger equations. As an example, some types of exact breather solutions are given analytically by adjusting the parameters. Moreover, the interesting fundamental problem is to clarify the formation mechanism of asymmetry breather solutions and how the particle number and energy exchange between the background and soliton ultimately form the breather solutions. Our results also show that the formation mechanism from breather to rogue wave arises from the transformation from the periodic total exchange into the temporal local property.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10772110) and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y606049, Y6090681, and Y6100257).
文摘Analytical solutions in terms of rational-like functions are presented for a (3+1)-dimensional nonlinear Schrodinger equation with time-varying coefficients and a harmonica potential using the similarity transformation and a direct ansatz. Several free functions of time t are involved to generate abundant wave structures. Three types of elementary functions are chosen to exhibit the corresponding nonlinear rogue wave propagations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675084 and 11435005)the Fund from the Educational Commission of Zhejiang Province,China(Grant No.Y201737177)+1 种基金Ningbo Natural Science Foundation(Grant No.2015A610159)the K C Wong Magna Fund in Ningbo University
文摘In this manuscript,a reduced(3+1)-dimensional nonlinear evolution equation is studied.We first construct the bilinear formalism of the equation by using the binary Bell polynomials theory,then explore a lump solution to the special case for z=x.Furthermore,a more general form of lump solution of the equation is found which possesses seven arbitrary parameters and four constraint conditions.By cutting the lump by the induced soliton(s),lumpoff and instanton/rogue wave solutions are also constructed by the more general form of lump solution.
文摘Rogue nodes broadcasting false information in beacon messages may lead to catastrophic consequences in Vehicular Ad Hoc Networks(VANETs).Previous researchers used cryptography,trust scores,or past vehicle data to detect rogue nodes;however,these methods suffer from high processing delay,overhead,and False–Positive Rate(FPR).We propose herein Greenshield's traffic model–based fog computing scheme called Fog–based Rogue Node Detection(F–RouND),which dynamically utilizes the On–Board Units(OBUs)of all vehicles in the region for rogue node detection.We aim to reduce the data processing delays and FPR in detecting rogue nodes at high vehicle densities.The performance of the F–RouND framework was evaluated via simulations.Results show that the F–RouND framework ensures 45%lower processing delays,12%lower overhead,and 36%lower FPR at the urban scenario than the existing rogue node detection schemes even when the number of rogue nodes increases by up to 40%in the region.
基金supported by the National Natural Science Foundation of China(Grant Nos.11371248,11431008,11271254,11428102,and 11671255)the Fund from the Ministry of Economy and Competitiveness of Spain(Grant Nos.MTM2012-37070 and MTM2016-80276-P(AEI/FEDER,EU))
文摘The nonlinear Schrodinger (NLS) equation and Boussinesq equation are two very important integrable equations. They have widely physical applications. In this paper, we investigate a nonlinear system, which is the two-component NLS equation coupled to the Boussinesq equation. We obtain the bright-bright, bright-dark, and dark-dark soliton solutions to the nonlinear system. We discuss the collision between two solitons. We observe that the collision of bright-bright soliton is inelastic and two solitons oscillating periodically can happen in the two parallel-traveling bright-bright or bright-dark soliton solution. The general breather and rogue wave solutions are also given. Our results show again that there are more abundant dynamical properties for multi-component nonlinear systems.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11271211,11275072 and 11435005the Ningbo Natural Science Foundation under Grant No 2015A610159+1 种基金the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No xkzw11502the K.C.Wong Magna Fund in Ningbo University
文摘The (2+1)-dimension nonlocal nonlinear Schrödinger (NLS) equation with the self-induced parity-time symmetric potential is introduced, which provides spatially two-dimensional analogues of the nonlocal NLS equation introduced by Ablowitz et al. [Phys. Rev. Lett. 110 (2013) 064105]. General periodic solutions are derived by the bilinear method. These periodic solutions behave as growing and decaying periodic line waves arising from the constant background and decaying back to the constant background again. By taking long wave limits of the obtained periodic solutions, rogue waves are obtained. It is also shown that these line rogue waves arise from the constant background with a line profile and disappear into the constant background again in the plane.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11705290 and 11305060the China Postdoctoral Science Foundation under Grant No 2016M602252
文摘We derive an N-fold Darboux transformation for the nonlinear Schrdinger equation coupled to a multiple selfinduced transparency system, which is applicable to optical fiber communications in the erbium-doped medium.The N-soliton, N-breather and N th-order rogue wave solutions in the compact determinant representations are derived using the Darboux transformation and limit technique. Dynamics of such solutions from the first-to second-order ones are shown.
文摘In the paper, the homoclinic (hateroclinic) breather limit method (HBLM) is applied to seek rogue wave solution of the Benjamin Ono equation. We find that the rational breather wave solution is just a rogue wave solution. This result shows that rogue wave can come from the extreme behavior of the breather solitary wave for (1+1)-dimensional nonlinear wave fields.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11675084 and 11435005the K.C.Wong Magna Fund in Ningbo University
文摘It is proved that rogue waves can be found in Korteweg de-Vries(KdV) systems if real nonintegrable effects, higher order nonlinearity and nonlinear diffusion are considered. Rogue waves can also be formed without modulation instability which is considered as the main formation mechanism of the rogue waves.
文摘In this paper, we give the Lax pair and construct the Darboux transformation of the Kundu-DNLS equation. Furthermore, the rogue wave solutions of the Kundu-DNLS equation are derived by using the Taylor expansion of the breather solution. What's more, the triangular and the circular patterns of the third rouge solution are displayed.