Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the ...The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.展开更多
The upper reaches of the Minjiang River are in the eastern margin of the Tibetan Plateau,where active faults are well developed and earthquakes frequently occur.Anomalous climate change and the extremely complex geome...The upper reaches of the Minjiang River are in the eastern margin of the Tibetan Plateau,where active faults are well developed and earthquakes frequently occur.Anomalous climate change and the extremely complex geomechanical properties of rock and soil have resulted in a number of geohazards.Based on the analysis of remote sensing interpretations,geological field surveys,geophysical prospecting and geological dating results,this paper discusses the developmental characteristics of the Gamisi ancient landslide in Songpan County,Sichuan Province,and investigates its geological age and formation mechanism.This study finds that the Gamisi ancient landslide is in the periglacial region of the Minshan Mountain and formed approximately 25 ka BP.The landslide initiation zone has a collapse and slide zone of approximately 22.65×106–31.7×106 m3 and shows a maximum sliding distance of approximately 1.42 km,with an elevation difference of approximately 310 m between the back wall of the landslide and the leading edge of the accumulation area.The landslide movement was characterized by a high speed and long runout.During the sliding process,the landslide body eroded and dammed the ancient Minjiang River valley.The ancient river channel was buried 30-60 m below the surface of the landslide accumulation area.Geophysical prospecting and drilling observations revealed that the ancient riverbed was approximately 80-100 m thick.After the dam broke,the Minjiang River was migrated to the current channel at the leading edge of the landslide.The Gamisi ancient landslide was greatly affected by the regional crustal uplift,topography,geomorphology and paleoclimatic change.The combined action of periglacial karstification and climate change caused the limestone at the rear edge of the landslide fractured,thus providing a lithological foundation for landslide occurrence.Intense tectonic activity along the Minjiang Fault,which runs through the middle and trailing parts of the Gamisi ancient landslide,may have been the main factor inducing landsliding.Studying the Gamisi ancient landslide is of great significance for investigating the regional response to paleoclimatic change and geomorphologic evolution of the Minjiang Fault since the late Pleistocene and for disaster prevention and mitigation.展开更多
Micro milling is a flexible and economical method to fabricate micro components with three-dimensional geometry features over a wide range of engineering materials. But the surface roughness and micro topography alway...Micro milling is a flexible and economical method to fabricate micro components with three-dimensional geometry features over a wide range of engineering materials. But the surface roughness and micro topography always limit the performance of the machined micro components. This paper presents a surface generation simulation in micro end milling considering both axial and radial tool runout. Firstly, a surface generation model is established based on the geometry of micro milling cutter. Secondly, the influence of the runout in axial and radial directions on the surface generation are investigated and the surface roughness prediction is realized. It is found that the axial runout has a significant influence on the surface topography generation. Furthermore, the influence of axial runout on the surface micro topography was studied quantitatively, and a critical axial runout is given for variable feed per tooth to generate specific surface topography. Finally, the proposed model is validated by means of experiments and a good correlation is obtained. The proposed surface generation model o ers a basis for designing and optimizing surface parameters of functional machined surfaces.展开更多
A large number of debris flows occurred in the Wenchuan earthquake zone after the 12 May 2008 earthquake.The risks posed by these debris flows were rather high.An appropriate model is required to predict the possible ...A large number of debris flows occurred in the Wenchuan earthquake zone after the 12 May 2008 earthquake.The risks posed by these debris flows were rather high.An appropriate model is required to predict the possible runout distance and impacted area.This paper describes a study on the runout characteristics of the debris flows that occurred in the Wenchuan earthquake zone over the past four years.A total of 120 debris flows are analyzed.Separate multivariate regression models are established for the runout distances of hill-slope debris flows and channelized debris flows.The control variables include type of debris flow,debris flow volume,and elevation difference.Comparison of the debris flows occurring before and after the earthquake shows that the runout distance increased after the earthquake due to sufficient material supply and increased mobility of the source materials.In addition,the runout distances of annual debris flow events in 2008,2010 and 2011 are analyzed and compared.There is a tendency that the runout distance decreases over time due to the decreasing source material volume and possible changes of debris flow type.Comparison between the debris flows in the earthquake zone and the debris flows in Swiss Alps,Canada,Austria,and Japan shows that the former have a smaller mobility.展开更多
On 13 August 2010, a catastrophic debris flow with a volume of 1.17 million m3 occurred in Xiaojiagou Ravine near Yingxiu town of Wenchuan county in Sichuan Province, China. The main source material was the landslide ...On 13 August 2010, a catastrophic debris flow with a volume of 1.17 million m3 occurred in Xiaojiagou Ravine near Yingxiu town of Wenchuan county in Sichuan Province, China. The main source material was the landslide deposits retained in the ravine during the 2008 Wenchuan earthquake. This paper describes a two-dimensional hybrid numerical method that simulates the entire process of the debris flow from initiation to transportation and finally to deposition. The study area is discretized into a grid of square zones. A two dimensional finite difference method is then applied to simulate the rainfall-runoff and debris flow runout processes. The analysis is divided into three steps; namely, rainfall-runoff simulation, mixing water and solid materials, and debris flow runout simulation. The rainfall-runoff simulation is firstly conducted to obtain the cumulative runoff near the location of main source material and at the outlet of the first branch. The water and solid materials are then mixed to create an inflow hydrograph for the debris flow runout simulation. The occurrence time and volume of the debris flow can be estimated in this step. Finally the runout process of the debris flow is simulated. When the yield stress is high, it controls the deposition zone. When the yield stress is medium or low, both yield stress and viscosity influence the deposition zone. The flow velocity is largely influenced by the viscosity. The estimated yield stress by the equation, ty = pghsinO, and the estimated viscosity by the equation established by Bisantino et al. (2010) provide good estimates of the area of the debris flow fan and the distribution of deposition depth.展开更多
Study on the grain size distribution characteristics and the frictional strength behavior of the slide deposits are helpful to disclose the landslide runout process and understand the mechanism of a long runout landsl...Study on the grain size distribution characteristics and the frictional strength behavior of the slide deposits are helpful to disclose the landslide runout process and understand the mechanism of a long runout landslide. We performed grain size distribution analysis on samples collected from Chenjiaba landslide induced by Wenchuan earthquake. The grain size distribution of samples from the landslide sections quantitatively depicts a gradual coarsening upward grading from shear zone to the top section. Then a multistage-multiphase ring shearing approach was used to determine a comparative shear strength behavior of samples from each landslide section. In this method, a sample was sheared continuously for large displacement and fast rate on different normal stress conditions. The multiphase shear mode with a maximum of 105 mm/min rate has allowed observing the qualitative change and patterns of the frictional resistance behaviors of soils under different normal stresses. The results of coefficient of friction values under multiphase shear mode have shown substantial post peak shear weakening behaviors after large shear displacement that can be narrated with long runout processes. The shear strength test results indicate that the shear zone samples have developed higher friction angle values compared to overlying section samples, on the last phase of shear process, which may be very important to understand the braking mechanism of a long runout landslide.展开更多
The cutting force prediction is essential to optimize the process parameters of machining such as feed rate optimization, etc. Due to the significant influences of the runout effect on cutting force variation in milli...The cutting force prediction is essential to optimize the process parameters of machining such as feed rate optimization, etc. Due to the significant influences of the runout effect on cutting force variation in milling process, it is necessary to incorporate the cutter runout parameters into the prediction model of cutting forces. However, the determination of cutter runout parameters is still a challenge task until now. In this paper, cutting process geometry models, such as uncut chip thickness and pitch angle, are established based on the true trajectory of the cutting edge considering the cutter runout effect. A new algorithm is then presented to compute the cutter runout parameters for flat-end mill utilizing the sampled data of cutting forces and derived process geometry parameters. Further, three-axis and five-axis milling experiments were conducted on a machining centre, and resulting cutting forces were sampled by a three-component dynamometer. After computing the corresponding cutter runout parameters, cutter forces are simulated embracing the cutter runout parameters obtained from the proposed algorithm. The predicted cutting forces show good agreements with the sampled data both in magnitude and shape, which validates the feasibility and effectivity of the proposed new algorithm of determining cutter runout parameters and the new way to accurately predict cutting forces. The proposed method for computing the cutter runout parameters provides the significant references for the cutting force prediction in the cutting process.展开更多
The controlled runout table cooling is essential in determining the final mechanical properties and flatness of steel strip.The heat of a hot steel strip is mainly extracted by cooling water during runout.In order to ...The controlled runout table cooling is essential in determining the final mechanical properties and flatness of steel strip.The heat of a hot steel strip is mainly extracted by cooling water during runout.In order to study the heat transfer by water jet impingement boiling during runout,apilot facility was constructed at the University of British Columbia.On this pilot facility,the water jet impingement tests were carried out under various cooling conditions to investigate the effect of processing parameters,such as cooling water temperature,water jet impingement velocity,initial strip temperature,water flow rate,water nozzle diameter and array of water nozzles,on the heat transfer of heated strip.The results obtained contribute to the optimization of cooling water during runout.展开更多
A catastrophic landslide occurred at Hongao dumpsite in Guangming New District of Shenzhen, South China, on December 20, 2015. An estimated total volume of 2.73×106 m3 of construction spoils was mobilized during ...A catastrophic landslide occurred at Hongao dumpsite in Guangming New District of Shenzhen, South China, on December 20, 2015. An estimated total volume of 2.73×106 m3 of construction spoils was mobilized during this event. The landslide traveled a long distance on a low-relief terrain. The affected area was approximately 1100 m in length and 630 m in width. This landslide made 33 buildings destroyed, 73 people died and 4 people lost. Due to the special dumping history and other factors, soil in this landfill is of high initial water content. To identify the major factors that attribute to the long runout character, a two-phase flow model of Iverson and George was used to simulate the dynamics of this landslide. The influence of initial hydraulic permeability, initial dilatancy, and earth pressure coefficient was examined through numerical simulations. We found that pore pressure has the most significant effect on the dynamic characteristics of Shenzhen landslides. Average pore pressure ratio ofthe whole basal surface was used to evaluate the degree of liquefaction for the sliding material. The evolution and influence factors of this ratio were analyzed based on the computational results. An exponential function was proposed to fit the evolution curve of the average pore pressure ratio, which can be used as a reasonable and simplified evaluation of the pore pressure. This fitting function can be utilized to improve the single-phase flow model.展开更多
Rainfall induced landslides are a common threat to the communities living on dangerous hillslopes in Chittagong Metropolitan Area, Bangladesh. Extreme population pressure, indiscriminate hill cutting, increased precip...Rainfall induced landslides are a common threat to the communities living on dangerous hillslopes in Chittagong Metropolitan Area, Bangladesh. Extreme population pressure, indiscriminate hill cutting, increased precipitation events due to global warming and associated unplanned urbanization in the hills are exaggerating landslide events. The aim of this article is to prepare a scientifically accurate landslide susceptibility map by combining landslide initiation and runout maps. Land cover, slope, soil permeability, surface geology, precipitation, aspect, and distance to hill cut, road cut, drainage and stream network factor maps were selected by conditional independence test. The locations of 56 landslides were collected by field surveying. A weight of evidence(Wo E) method was applied to calculate the positive(presence of landslides) and negative(absence of landslides) factor weights. A combination of analytical hierarchical process(AHP) and fuzzymembership standardization(weighs from 0 to 1) was applied for performing a spatial multi-criteria evaluation. Expert opinion guided the decision rule for AHP. The Flow-R tool that allows modeling landslide runout from the initiation sources was applied. The flow direction was calculated using the modified Holmgren's algorithm. The AHP landslide initiation and runout susceptibility maps were used to prepare a combined landslide susceptibility map. The relative operating characteristic curve was used for model validation purpose. The accuracy of Wo E, AHP, and combined susceptibility map was calculated 96%, 97%, and 98%, respectively.展开更多
Brake drag is the main factor affecting the transmission efficiency and vehicle fuel consumption. This paper focused on analyzing the impact of assembled disc lateral runout on brake drag. First the impact mechanism o...Brake drag is the main factor affecting the transmission efficiency and vehicle fuel consumption. This paper focused on analyzing the impact of assembled disc lateral runout on brake drag. First the impact mechanism of lateral disc runout on drag was analyzed theoretically. Then the brake drag torque under different assembled disc lateral runout was tested to figure out the relationship between them. And then, the influence factors on disc lateral runout were analyzed and the disc lateral runout was optimized. Finally, the vehicle resistance of the original car and the prototype with optimized brake were compared. The result shows that the vehicle resistance after optimized is reduced by 3%.展开更多
The widely distributed sediments following an earthquake presents a continuous threat to local residential areas and infrastructure. These materials become more easily mobilized due to reduced rainfall thresholds. Bef...The widely distributed sediments following an earthquake presents a continuous threat to local residential areas and infrastructure. These materials become more easily mobilized due to reduced rainfall thresholds. Before establishing an effective management plan for debris flow hazards, it is crucial to determine the potential reach of these sediments. In this study, a deep learning-based method-Dual Attention Network(DAN)-was developed to predict the runout distance of potential debris flows after the 2022 Luding Earthquake, taking into account the topography and precipitation conditions. Given that the availability of reliable precipitation data remains a challenge, attributable to the scarcity of rain gauge stations and the relatively coarse resolution of satellite-based observations, our approach involved three key steps. First, we employed the DAN model to refine the Global Precipitation Measurement(GPM) data, enhancing its spatial and temporal resolution. This refinement was achieved by leveraging the correlation between precipitation and regional environment factors(REVs) at a seasonal scale. Second, the downscaled GPM underwent calibration using observations from rain gauge stations. Third,mean absolute error(MAE), mean square error(MSE), and root mean square error(RMSE) were employed to evaluate the performance of both the downscaling and calibration processes. Then the calibrated precipitation, catchment area, channel length, average channel gradient, and sediment volume were selected to develop a prediction model based on debris flows following the Wenchuan Earthquake. This model was applied to estimate the runout distance of potential debris flows after the Luding Earthquake. The results show that:(1) The calibrated GPM achieves an average MAE of 1.56 mm, surpassing the MAEs of original GPM(4.25 mm) and downscaled GPM(3.83 mm);(2) The developed prediction model reduces the prediction error by 40 m in comparison to an empirical equation;(3) The potential runout distance of debris flows after the Luding Earthquake reaches 0.77 km when intraday rainfall is 100 mm, while the minimum distance value is only 0.06 km.Overall, the developed model offers a scientific support for decision makers in taking reasonable measurements for loss reduction caused by post-seismic debris flows.展开更多
The cutter runout effect has significant influence on the shape of cutter swept surface and the machining surface quality. Hence,it is necessary to integrate the cutter runout effect in cutter swept surface modeling,g...The cutter runout effect has significant influence on the shape of cutter swept surface and the machining surface quality. Hence,it is necessary to integrate the cutter runout effect in cutter swept surface modeling,geometric error prediction and tool path optimization for five-axis flank machining. In this paper,an envelope surface model considering cutter runout effect is first established,and geometric errors induced by runout effect are derived based on the relative motion analysis between the cutter and part in machining. In the model,the cutter runout is defined by four parameters,including inclination angle,location angle,offset value and the length of cutter axis. Then the runout parameters are integrated into the rotation surface of each cutting edge that is used to form the final cutter envelope surface for the five-axis machining process. Thus,the final resulting geometric errors of the machined surface induced by cutter runout can be obtained through computing the deviations from the nominal cutter swept surface. To reduce these errors,an iterative least square method is used to optimize the tool paths for five-axis flank machining. Finally,a validation example is given for a specific ruled surface. Results show the effectiveness and feasibility of the analytical model of geometric errors induced by cutter runout,and also show that the geometric errors can be reduced significantly using the proposed tool path planning method.展开更多
As one of the most important methods for machining process with high accuracy,ultra-precision grinding is widely used in fields such as aerospace,automotive and mold,etc.Simultaneously,it is common that wheel and spin...As one of the most important methods for machining process with high accuracy,ultra-precision grinding is widely used in fields such as aerospace,automotive and mold,etc.Simultaneously,it is common that wheel and spindle axis do not coincide with each other due to wheel settings,machining errors and so on.This could result in the generation of wheel runout,which may reduce the machining surface's quality.In this paper,combining this phenomenon,an analytic algorithm method for the multi-axis grinding process is introduced according to the envelope theory.After that,the accuracy of this method is verified.Two experiments are carried out on a 5-axis machining center.The artificial runout is set up and calculated utilizing the least square method.Finally,using the presented method,two examples with and without runout are introduced to illustrate the validation of the proposed model.The error due to the runout effect is also analyzed.展开更多
Most of the present knowledge on submarine landslides relies upon back-analysis of post-failure deposits identified using geophysical techniques.In this paper,the runout of slides on rigid bases is explored using the ...Most of the present knowledge on submarine landslides relies upon back-analysis of post-failure deposits identified using geophysical techniques.In this paper,the runout of slides on rigid bases is explored using the material point method(MPM)with focus on the geotechnical aspects of the morphologies.In MPM,the sliding material and bases are discretised into a number of Lagrangian particles,and a background Eulerian mesh is employed to update the state of the particles.The morphologies of the slide can be reproduced by tracking the Lagrangian particles in the dynamic processes.A real case history of a submarine slide is back-analyzed with the MPM and also a depth-averaged method.Runout of the slides from steep slopes to moderate bases are reproduced.Then different combinations of soil and basal parameters are assumed to trigger runout mechanisms of elongation,block sliding and spreading.The runout distances predicted by the MPM match well with those from large deformation finite element analysis for the elongation and block sliding patterns.Horst and grabens are shaped in a spreading pattern.However,the current MPM simulations for materials with high sensitivities are relatively mesh sensitive.展开更多
A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 m...A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.展开更多
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
基金supported by the National Natural Science Foundation of China (Grant Nos.41272297,41401195)the Applied Basic Research Fund of the Science and Technology Department of Sichuan Province (2014JY0121)the Key Research Fund of the Education Department of Sichuan Province (14ZA0095)
文摘The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.
基金supported by the National Natural Science Foundation of China(41731287,41877279)China Geological Survey Project(DD20160271)
文摘The upper reaches of the Minjiang River are in the eastern margin of the Tibetan Plateau,where active faults are well developed and earthquakes frequently occur.Anomalous climate change and the extremely complex geomechanical properties of rock and soil have resulted in a number of geohazards.Based on the analysis of remote sensing interpretations,geological field surveys,geophysical prospecting and geological dating results,this paper discusses the developmental characteristics of the Gamisi ancient landslide in Songpan County,Sichuan Province,and investigates its geological age and formation mechanism.This study finds that the Gamisi ancient landslide is in the periglacial region of the Minshan Mountain and formed approximately 25 ka BP.The landslide initiation zone has a collapse and slide zone of approximately 22.65×106–31.7×106 m3 and shows a maximum sliding distance of approximately 1.42 km,with an elevation difference of approximately 310 m between the back wall of the landslide and the leading edge of the accumulation area.The landslide movement was characterized by a high speed and long runout.During the sliding process,the landslide body eroded and dammed the ancient Minjiang River valley.The ancient river channel was buried 30-60 m below the surface of the landslide accumulation area.Geophysical prospecting and drilling observations revealed that the ancient riverbed was approximately 80-100 m thick.After the dam broke,the Minjiang River was migrated to the current channel at the leading edge of the landslide.The Gamisi ancient landslide was greatly affected by the regional crustal uplift,topography,geomorphology and paleoclimatic change.The combined action of periglacial karstification and climate change caused the limestone at the rear edge of the landslide fractured,thus providing a lithological foundation for landslide occurrence.Intense tectonic activity along the Minjiang Fault,which runs through the middle and trailing parts of the Gamisi ancient landslide,may have been the main factor inducing landsliding.Studying the Gamisi ancient landslide is of great significance for investigating the regional response to paleoclimatic change and geomorphologic evolution of the Minjiang Fault since the late Pleistocene and for disaster prevention and mitigation.
基金Supported by Engineering and Physical Sciences Research Council(Grant No.EP/M020657/1)National Natural Science Foundation of China(Grant No.51505107)Project of Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2017029)
文摘Micro milling is a flexible and economical method to fabricate micro components with three-dimensional geometry features over a wide range of engineering materials. But the surface roughness and micro topography always limit the performance of the machined micro components. This paper presents a surface generation simulation in micro end milling considering both axial and radial tool runout. Firstly, a surface generation model is established based on the geometry of micro milling cutter. Secondly, the influence of the runout in axial and radial directions on the surface generation are investigated and the surface roughness prediction is realized. It is found that the axial runout has a significant influence on the surface topography generation. Furthermore, the influence of axial runout on the surface micro topography was studied quantitatively, and a critical axial runout is given for variable feed per tooth to generate specific surface topography. Finally, the proposed model is validated by means of experiments and a good correlation is obtained. The proposed surface generation model o ers a basis for designing and optimizing surface parameters of functional machined surfaces.
基金the support from Sichuan Provincial Department of Transportation and Communicationsthe National Basic Research Program of China (Grant No.2011CB013506)the Research Grants Council of the Hong Kong SAR (Grant No.622210)
文摘A large number of debris flows occurred in the Wenchuan earthquake zone after the 12 May 2008 earthquake.The risks posed by these debris flows were rather high.An appropriate model is required to predict the possible runout distance and impacted area.This paper describes a study on the runout characteristics of the debris flows that occurred in the Wenchuan earthquake zone over the past four years.A total of 120 debris flows are analyzed.Separate multivariate regression models are established for the runout distances of hill-slope debris flows and channelized debris flows.The control variables include type of debris flow,debris flow volume,and elevation difference.Comparison of the debris flows occurring before and after the earthquake shows that the runout distance increased after the earthquake due to sufficient material supply and increased mobility of the source materials.In addition,the runout distances of annual debris flow events in 2008,2010 and 2011 are analyzed and compared.There is a tendency that the runout distance decreases over time due to the decreasing source material volume and possible changes of debris flow type.Comparison between the debris flows in the earthquake zone and the debris flows in Swiss Alps,Canada,Austria,and Japan shows that the former have a smaller mobility.
基金support from Sichuan Provincial Department of Transportation and Communications,the National Basic Research Program of China (Grant No.2011CB013506)the Research Grants Council of the Hong Kong SAR (Grant No.622210)
文摘On 13 August 2010, a catastrophic debris flow with a volume of 1.17 million m3 occurred in Xiaojiagou Ravine near Yingxiu town of Wenchuan county in Sichuan Province, China. The main source material was the landslide deposits retained in the ravine during the 2008 Wenchuan earthquake. This paper describes a two-dimensional hybrid numerical method that simulates the entire process of the debris flow from initiation to transportation and finally to deposition. The study area is discretized into a grid of square zones. A two dimensional finite difference method is then applied to simulate the rainfall-runoff and debris flow runout processes. The analysis is divided into three steps; namely, rainfall-runoff simulation, mixing water and solid materials, and debris flow runout simulation. The rainfall-runoff simulation is firstly conducted to obtain the cumulative runoff near the location of main source material and at the outlet of the first branch. The water and solid materials are then mixed to create an inflow hydrograph for the debris flow runout simulation. The occurrence time and volume of the debris flow can be estimated in this step. Finally the runout process of the debris flow is simulated. When the yield stress is high, it controls the deposition zone. When the yield stress is medium or low, both yield stress and viscosity influence the deposition zone. The flow velocity is largely influenced by the viscosity. The estimated yield stress by the equation, ty = pghsinO, and the estimated viscosity by the equation established by Bisantino et al. (2010) provide good estimates of the area of the debris flow fan and the distribution of deposition depth.
基金supported by funds from the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDA23090402the National Science Foundation of China under the Grants Nos. 41672307, 41790442 and 41702345CAS-TWAS presidential fellowship program for funding his Doctoral study (Ph.D)
文摘Study on the grain size distribution characteristics and the frictional strength behavior of the slide deposits are helpful to disclose the landslide runout process and understand the mechanism of a long runout landslide. We performed grain size distribution analysis on samples collected from Chenjiaba landslide induced by Wenchuan earthquake. The grain size distribution of samples from the landslide sections quantitatively depicts a gradual coarsening upward grading from shear zone to the top section. Then a multistage-multiphase ring shearing approach was used to determine a comparative shear strength behavior of samples from each landslide section. In this method, a sample was sheared continuously for large displacement and fast rate on different normal stress conditions. The multiphase shear mode with a maximum of 105 mm/min rate has allowed observing the qualitative change and patterns of the frictional resistance behaviors of soils under different normal stresses. The results of coefficient of friction values under multiphase shear mode have shown substantial post peak shear weakening behaviors after large shear displacement that can be narrated with long runout processes. The shear strength test results indicate that the shear zone samples have developed higher friction angle values compared to overlying section samples, on the last phase of shear process, which may be very important to understand the braking mechanism of a long runout landslide.
基金supported by National Natural Science Foundation of China (Grant No. 51075054)National Basic Research Program of China (973 Program, Grant No. 2005CB724100)Program for New Century Excellent Talents in University of China (Grant No. NCET-08-081)
文摘The cutting force prediction is essential to optimize the process parameters of machining such as feed rate optimization, etc. Due to the significant influences of the runout effect on cutting force variation in milling process, it is necessary to incorporate the cutter runout parameters into the prediction model of cutting forces. However, the determination of cutter runout parameters is still a challenge task until now. In this paper, cutting process geometry models, such as uncut chip thickness and pitch angle, are established based on the true trajectory of the cutting edge considering the cutter runout effect. A new algorithm is then presented to compute the cutter runout parameters for flat-end mill utilizing the sampled data of cutting forces and derived process geometry parameters. Further, three-axis and five-axis milling experiments were conducted on a machining centre, and resulting cutting forces were sampled by a three-component dynamometer. After computing the corresponding cutter runout parameters, cutter forces are simulated embracing the cutter runout parameters obtained from the proposed algorithm. The predicted cutting forces show good agreements with the sampled data both in magnitude and shape, which validates the feasibility and effectivity of the proposed new algorithm of determining cutter runout parameters and the new way to accurately predict cutting forces. The proposed method for computing the cutter runout parameters provides the significant references for the cutting force prediction in the cutting process.
文摘The controlled runout table cooling is essential in determining the final mechanical properties and flatness of steel strip.The heat of a hot steel strip is mainly extracted by cooling water during runout.In order to study the heat transfer by water jet impingement boiling during runout,apilot facility was constructed at the University of British Columbia.On this pilot facility,the water jet impingement tests were carried out under various cooling conditions to investigate the effect of processing parameters,such as cooling water temperature,water jet impingement velocity,initial strip temperature,water flow rate,water nozzle diameter and array of water nozzles,on the heat transfer of heated strip.The results obtained contribute to the optimization of cooling water during runout.
基金supported by the National Key R&D Program of China(Grant Nos.2017YFC1502502,2017YFC1502506)National Nature Science Foundation of China(Grant Nos.41672318,51679229,41372331)+1 种基金135 Strategic Program of the Institute of Mountain Hazards and Environment,CAS(Grant No.SDS-135-1701)supported by Youth Innovation Promotion Association of the Chinese Academy of Sciences(2018405)
文摘A catastrophic landslide occurred at Hongao dumpsite in Guangming New District of Shenzhen, South China, on December 20, 2015. An estimated total volume of 2.73×106 m3 of construction spoils was mobilized during this event. The landslide traveled a long distance on a low-relief terrain. The affected area was approximately 1100 m in length and 630 m in width. This landslide made 33 buildings destroyed, 73 people died and 4 people lost. Due to the special dumping history and other factors, soil in this landfill is of high initial water content. To identify the major factors that attribute to the long runout character, a two-phase flow model of Iverson and George was used to simulate the dynamics of this landslide. The influence of initial hydraulic permeability, initial dilatancy, and earth pressure coefficient was examined through numerical simulations. We found that pore pressure has the most significant effect on the dynamic characteristics of Shenzhen landslides. Average pore pressure ratio ofthe whole basal surface was used to evaluate the degree of liquefaction for the sliding material. The evolution and influence factors of this ratio were analyzed based on the computational results. An exponential function was proposed to fit the evolution curve of the average pore pressure ratio, which can be used as a reasonable and simplified evaluation of the pore pressure. This fitting function can be utilized to improve the single-phase flow model.
基金funded by the Center for Spatial Information Science and Systems at George Mason University, USABayes Ahmed is a Commonwealth Scholar funded by the UK govt
文摘Rainfall induced landslides are a common threat to the communities living on dangerous hillslopes in Chittagong Metropolitan Area, Bangladesh. Extreme population pressure, indiscriminate hill cutting, increased precipitation events due to global warming and associated unplanned urbanization in the hills are exaggerating landslide events. The aim of this article is to prepare a scientifically accurate landslide susceptibility map by combining landslide initiation and runout maps. Land cover, slope, soil permeability, surface geology, precipitation, aspect, and distance to hill cut, road cut, drainage and stream network factor maps were selected by conditional independence test. The locations of 56 landslides were collected by field surveying. A weight of evidence(Wo E) method was applied to calculate the positive(presence of landslides) and negative(absence of landslides) factor weights. A combination of analytical hierarchical process(AHP) and fuzzymembership standardization(weighs from 0 to 1) was applied for performing a spatial multi-criteria evaluation. Expert opinion guided the decision rule for AHP. The Flow-R tool that allows modeling landslide runout from the initiation sources was applied. The flow direction was calculated using the modified Holmgren's algorithm. The AHP landslide initiation and runout susceptibility maps were used to prepare a combined landslide susceptibility map. The relative operating characteristic curve was used for model validation purpose. The accuracy of Wo E, AHP, and combined susceptibility map was calculated 96%, 97%, and 98%, respectively.
文摘Brake drag is the main factor affecting the transmission efficiency and vehicle fuel consumption. This paper focused on analyzing the impact of assembled disc lateral runout on brake drag. First the impact mechanism of lateral disc runout on drag was analyzed theoretically. Then the brake drag torque under different assembled disc lateral runout was tested to figure out the relationship between them. And then, the influence factors on disc lateral runout were analyzed and the disc lateral runout was optimized. Finally, the vehicle resistance of the original car and the prototype with optimized brake were compared. The result shows that the vehicle resistance after optimized is reduced by 3%.
基金supported by the European Union’s Horizon 2020 research and innovation program Marie Skłodowska-Curie Actions Research and Innovation Staf Exchange(RISE)(Grant No.778360)the National Natural Science Foundation of China(Grant No.U22A20603)+1 种基金the Science and Technology Development Fund(Grant No.001/2024/SKL)the State Key Laboratory of Internet of Things for Smart City(University of Macao)(Ref.No.SKL-IoTSC(UM)-2024-2026/ORP/GA09/2023).
文摘The widely distributed sediments following an earthquake presents a continuous threat to local residential areas and infrastructure. These materials become more easily mobilized due to reduced rainfall thresholds. Before establishing an effective management plan for debris flow hazards, it is crucial to determine the potential reach of these sediments. In this study, a deep learning-based method-Dual Attention Network(DAN)-was developed to predict the runout distance of potential debris flows after the 2022 Luding Earthquake, taking into account the topography and precipitation conditions. Given that the availability of reliable precipitation data remains a challenge, attributable to the scarcity of rain gauge stations and the relatively coarse resolution of satellite-based observations, our approach involved three key steps. First, we employed the DAN model to refine the Global Precipitation Measurement(GPM) data, enhancing its spatial and temporal resolution. This refinement was achieved by leveraging the correlation between precipitation and regional environment factors(REVs) at a seasonal scale. Second, the downscaled GPM underwent calibration using observations from rain gauge stations. Third,mean absolute error(MAE), mean square error(MSE), and root mean square error(RMSE) were employed to evaluate the performance of both the downscaling and calibration processes. Then the calibrated precipitation, catchment area, channel length, average channel gradient, and sediment volume were selected to develop a prediction model based on debris flows following the Wenchuan Earthquake. This model was applied to estimate the runout distance of potential debris flows after the Luding Earthquake. The results show that:(1) The calibrated GPM achieves an average MAE of 1.56 mm, surpassing the MAEs of original GPM(4.25 mm) and downscaled GPM(3.83 mm);(2) The developed prediction model reduces the prediction error by 40 m in comparison to an empirical equation;(3) The potential runout distance of debris flows after the Luding Earthquake reaches 0.77 km when intraday rainfall is 100 mm, while the minimum distance value is only 0.06 km.Overall, the developed model offers a scientific support for decision makers in taking reasonable measurements for loss reduction caused by post-seismic debris flows.
基金supported by the National Natural Science Foundation of China (Grant No. 51075054)the National Basic Research Program of China ("973" Program) (Grant Nos. 2005CB726100 and 2011CB706800)the Fundamental Research Funds for the Central Universities (Grant No. DUT10ZD205)
文摘The cutter runout effect has significant influence on the shape of cutter swept surface and the machining surface quality. Hence,it is necessary to integrate the cutter runout effect in cutter swept surface modeling,geometric error prediction and tool path optimization for five-axis flank machining. In this paper,an envelope surface model considering cutter runout effect is first established,and geometric errors induced by runout effect are derived based on the relative motion analysis between the cutter and part in machining. In the model,the cutter runout is defined by four parameters,including inclination angle,location angle,offset value and the length of cutter axis. Then the runout parameters are integrated into the rotation surface of each cutting edge that is used to form the final cutter envelope surface for the five-axis machining process. Thus,the final resulting geometric errors of the machined surface induced by cutter runout can be obtained through computing the deviations from the nominal cutter swept surface. To reduce these errors,an iterative least square method is used to optimize the tool paths for five-axis flank machining. Finally,a validation example is given for a specific ruled surface. Results show the effectiveness and feasibility of the analytical model of geometric errors induced by cutter runout,and also show that the geometric errors can be reduced significantly using the proposed tool path planning method.
基金supported by the National Natural Science Foundation of China(No.51605147)National Science Fund for Distinguished Young Scholars of Henan Polytechnic University(J2019-2)Young Backbone Project of Henan Polytechnic University(No.2018XQG-05)。
文摘As one of the most important methods for machining process with high accuracy,ultra-precision grinding is widely used in fields such as aerospace,automotive and mold,etc.Simultaneously,it is common that wheel and spindle axis do not coincide with each other due to wheel settings,machining errors and so on.This could result in the generation of wheel runout,which may reduce the machining surface's quality.In this paper,combining this phenomenon,an analytic algorithm method for the multi-axis grinding process is introduced according to the envelope theory.After that,the accuracy of this method is verified.Two experiments are carried out on a 5-axis machining center.The artificial runout is set up and calculated utilizing the least square method.Finally,using the presented method,two examples with and without runout are introduced to illustrate the validation of the proposed model.The error due to the runout effect is also analyzed.
基金supported by the Australian Research Council through an ARC Discovery grant(DP120102987)supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia and NVIDIA Corporation with the donation of the Tesla K40 GPU for the research
文摘Most of the present knowledge on submarine landslides relies upon back-analysis of post-failure deposits identified using geophysical techniques.In this paper,the runout of slides on rigid bases is explored using the material point method(MPM)with focus on the geotechnical aspects of the morphologies.In MPM,the sliding material and bases are discretised into a number of Lagrangian particles,and a background Eulerian mesh is employed to update the state of the particles.The morphologies of the slide can be reproduced by tracking the Lagrangian particles in the dynamic processes.A real case history of a submarine slide is back-analyzed with the MPM and also a depth-averaged method.Runout of the slides from steep slopes to moderate bases are reproduced.Then different combinations of soil and basal parameters are assumed to trigger runout mechanisms of elongation,block sliding and spreading.The runout distances predicted by the MPM match well with those from large deformation finite element analysis for the elongation and block sliding patterns.Horst and grabens are shaped in a spreading pattern.However,the current MPM simulations for materials with high sensitivities are relatively mesh sensitive.
基金supported by the China Geological Survey Project(Grant No.DD20211314)the Fundamental Research Funds for Chinese Academy of Geological Science(No.JKY202122).
文摘A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.