After one century of nuclear physics, the anomalous Rutherford scattering remains a puzzle: its underlying fundamental laws are still missing. The only presently recognized electromagnetic interaction in a nucleus is ...After one century of nuclear physics, the anomalous Rutherford scattering remains a puzzle: its underlying fundamental laws are still missing. The only presently recognized electromagnetic interaction in a nucleus is the so-called Coulomb electric force, in 1/r, only positive thus repulsive in official nuclear physics, explaining the Rutherford scattering at low kinetic energy of the impacting alpha particles. At high kinetic energy the Rutherford scattering formula doesn’t work, thus called “anomalous scattering”. I have discovered that, to solve the problem, it needs only to replace, at high kinetic energy, the Coulomb repulsive electric potential in 1/r, by the also repulsive magnetic Poisson potential in 1/r<sup>3</sup>. In log-log coordinates, one observes two straight lines of slopes, respectively −2 and −6. They correspond with the −1 and −3 exponents of the only repulsive electric and magnetic interactions, multiplied by 2 due to the cross-sections. Both Rutherford (normal and anomalous) scattering have been calculated electromagnetically. No attractive force needed.展开更多
Rutherford classical scattering theory, as its quantum mechanical analogue, is modified for scattering cross-section and the impact parameter by using quantum mechanical momentum, (de Broglie hypothesis), energy relat...Rutherford classical scattering theory, as its quantum mechanical analogue, is modified for scattering cross-section and the impact parameter by using quantum mechanical momentum, (de Broglie hypothesis), energy relationship for matter oscillator (Einstein’s oscillator) and quantum mechanical wave vectors, and , respectively. It is observed that the quantum mechanical scattering cross-section and the impact parameter depended on inverse square law of quantum action (Planck’s constant). Born approximation is revisited for quantum mechanical scattering. Using Bessel and Neumann asymptotic functions and response of nuclear surface potential barrier, born approximations were modified. The coulombic fields inside the nucleus of the atom are studied for reflection and transmission with corresponding wave vectors, phase shifts and eigenfunctions Bulk quantum mechanical tunneling and reflection scattering, both for ruptured and unruptured nucleus of the atom, are deciphered with corresponding wave vectors, phase shifts and eigenfunction. Similar calculation ware accomplished for quantum surface tunneling and reflection scattering with corresponding wave vectors, phase shifts and eigenfunctions. Such diverse quantum mechanical scattering cross-section with corresponding wave vectors for tunneling and reflection, phase shifts and eigenfunctions will pave a new dimension to understanding the behavior of exchange fields in the nucleus of the atom with insides layers both ruptured and unruptured. Phase shifts, δ<sub>l</sub> for each of the energy profile (partial) will be different and indeed their corresponding wave vectors for exchange energy eigenvalues.展开更多
After one century of nuclear physics, its underlying fundamental laws remain a puzzle. Rutherford scattering is well known to be electric at low kinetic energy. Nobody noticed that the Rutherford scattering formula wo...After one century of nuclear physics, its underlying fundamental laws remain a puzzle. Rutherford scattering is well known to be electric at low kinetic energy. Nobody noticed that the Rutherford scattering formula works also at high kinetic energy, needing only to replace the repulsive electric -2 exponent by the also repulsive magnetic -6 exponent. A proton attracts a not so neutral neutron as amber attracts dust. The nucleons have magnetic moments that interact as magnets, equilibrating statically the electric attraction between a proton and a not so neutral neutron. In this paper, the electromagnetic potential energies of the deuteron 2H and the α particle 4He have been calculated statically, using only electromagnetic fundamental laws and constants. Nuclear scattering and binding energy are both electromagnetic.展开更多
Currently, large-scale equipment is essential for heating plasma. In this study, based on the theoretical investigation of high-current electron beam applications, a new method for heating plasma is proposed. If this ...Currently, large-scale equipment is essential for heating plasma. In this study, based on the theoretical investigation of high-current electron beam applications, a new method for heating plasma is proposed. If this method is successful, fusion power can be generated much more easily and inexpensively than using conventional methods. This study considered the theoretical possibility of generating ultrahigh-temperature plasma by confining plasma particles between the anode (positive potential) and electric fields using Rutherford scattering of particles forming a heavy-mass-positive-ion layer. In order to form this deuteron-positive ion layer, hydrogen gas is encapsulated in a closed container and applied to a negative with an insulator film on the inner surface. Next, the gas is ionized by irradiating a high-current electron.展开更多
文摘After one century of nuclear physics, the anomalous Rutherford scattering remains a puzzle: its underlying fundamental laws are still missing. The only presently recognized electromagnetic interaction in a nucleus is the so-called Coulomb electric force, in 1/r, only positive thus repulsive in official nuclear physics, explaining the Rutherford scattering at low kinetic energy of the impacting alpha particles. At high kinetic energy the Rutherford scattering formula doesn’t work, thus called “anomalous scattering”. I have discovered that, to solve the problem, it needs only to replace, at high kinetic energy, the Coulomb repulsive electric potential in 1/r, by the also repulsive magnetic Poisson potential in 1/r<sup>3</sup>. In log-log coordinates, one observes two straight lines of slopes, respectively −2 and −6. They correspond with the −1 and −3 exponents of the only repulsive electric and magnetic interactions, multiplied by 2 due to the cross-sections. Both Rutherford (normal and anomalous) scattering have been calculated electromagnetically. No attractive force needed.
文摘Rutherford classical scattering theory, as its quantum mechanical analogue, is modified for scattering cross-section and the impact parameter by using quantum mechanical momentum, (de Broglie hypothesis), energy relationship for matter oscillator (Einstein’s oscillator) and quantum mechanical wave vectors, and , respectively. It is observed that the quantum mechanical scattering cross-section and the impact parameter depended on inverse square law of quantum action (Planck’s constant). Born approximation is revisited for quantum mechanical scattering. Using Bessel and Neumann asymptotic functions and response of nuclear surface potential barrier, born approximations were modified. The coulombic fields inside the nucleus of the atom are studied for reflection and transmission with corresponding wave vectors, phase shifts and eigenfunctions Bulk quantum mechanical tunneling and reflection scattering, both for ruptured and unruptured nucleus of the atom, are deciphered with corresponding wave vectors, phase shifts and eigenfunction. Similar calculation ware accomplished for quantum surface tunneling and reflection scattering with corresponding wave vectors, phase shifts and eigenfunctions. Such diverse quantum mechanical scattering cross-section with corresponding wave vectors for tunneling and reflection, phase shifts and eigenfunctions will pave a new dimension to understanding the behavior of exchange fields in the nucleus of the atom with insides layers both ruptured and unruptured. Phase shifts, δ<sub>l</sub> for each of the energy profile (partial) will be different and indeed their corresponding wave vectors for exchange energy eigenvalues.
文摘After one century of nuclear physics, its underlying fundamental laws remain a puzzle. Rutherford scattering is well known to be electric at low kinetic energy. Nobody noticed that the Rutherford scattering formula works also at high kinetic energy, needing only to replace the repulsive electric -2 exponent by the also repulsive magnetic -6 exponent. A proton attracts a not so neutral neutron as amber attracts dust. The nucleons have magnetic moments that interact as magnets, equilibrating statically the electric attraction between a proton and a not so neutral neutron. In this paper, the electromagnetic potential energies of the deuteron 2H and the α particle 4He have been calculated statically, using only electromagnetic fundamental laws and constants. Nuclear scattering and binding energy are both electromagnetic.
文摘Currently, large-scale equipment is essential for heating plasma. In this study, based on the theoretical investigation of high-current electron beam applications, a new method for heating plasma is proposed. If this method is successful, fusion power can be generated much more easily and inexpensively than using conventional methods. This study considered the theoretical possibility of generating ultrahigh-temperature plasma by confining plasma particles between the anode (positive potential) and electric fields using Rutherford scattering of particles forming a heavy-mass-positive-ion layer. In order to form this deuteron-positive ion layer, hydrogen gas is encapsulated in a closed container and applied to a negative with an insulator film on the inner surface. Next, the gas is ionized by irradiating a high-current electron.