The unique photocatalytic mechanism of S-scheme heterojunction can be used to study new and efficient photocatalysts.By carefully selecting semiconductors for S-scheme heterojunction photocatalysts,it is possible to r...The unique photocatalytic mechanism of S-scheme heterojunction can be used to study new and efficient photocatalysts.By carefully selecting semiconductors for S-scheme heterojunction photocatalysts,it is possible to reduce the rate of photogenerated carrier recombination and increase the conversion efficiency of light into energy.Chalcogenides are a group of compounds that include sulfides and selenides(e.g.,CdS,ZnS,Bi_(2)S_(3),MoS_(2),ZnSe,CdSe,and CuSe).Chalcogenides have attracted considerable attention as heterojunction photocatalysts owing to their narrow bandgap,wide light absorption range,and excellent photoreduction properties.This paper presents a thorough analysis of S-scheme heterojunction photocatalysts based on chalcogenides.Following an introduction to the fundamental characteristics and benefits of S-scheme heterojunction photocatalysts,various chalcogenide-based S-scheme heterojunction photocatalyst synthesis techniques are summarized.These photocatalysts are used in numerous significant photocatalytic reactions,in-cluding the reduction of carbon dioxide,synthesis of hydrogen peroxide,conversion of organic matter,generation of hydrogen from water,nitrogen fixation,degradation of organic pollutants,and sterilization.In addition,cutting-edge characterization techniques,including in situ characterization techniques,are discussed to validate the steady and transient states of photocatalysts with an S-scheme heterojunction.Finally,the design and challenges of chalcogenide-based S-scheme heterojunction photocatalysts are explored and recommended in light of state-of-the-art research.展开更多
Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme hetero...Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.展开更多
Weak redox ability and severe charge recombination pose significant obstacles to the advancement of CO_(2) photoreduction.To tackle this challenge and enhance the CO_(2) photoconversion efficiency,fabricating well-mat...Weak redox ability and severe charge recombination pose significant obstacles to the advancement of CO_(2) photoreduction.To tackle this challenge and enhance the CO_(2) photoconversion efficiency,fabricating well-matched S-scheme heterostructure and establishing a robust built-in electric field emerge as pivotal strategies.In pursuit of this goal,a core-shell structured CuInS_(2)@CoS_(2)S-scheme heterojunction was meticulously engineered through a two-step molten salt method.This approach over the CuInS_(2)-based composites produced an internal electric field owing to the disparity be-tween the Fermi levels of CoS_(2) and CuInS_(2) at their interface.Consequently,the electric field facili-tated the directed migration of charges and the proficient separation of photoinduced carriers.The resulting CuInS_(2)@CoS_(2) heterostructure exhibited remarkable CO_(2) photoreduction performance,which was 21.7 and 26.5 times that of pure CuInS_(2) and CoS_(2),respectively.The S-scheme heterojunc-tion photogenerated charge transfer mechanism was validated through a series of rigorous anal-yses,including in situ irradiation X-ray photoelectron spectroscopy,work function calculations,and differential charge density examinations.Furthermore,in situ infrared spectroscopy and density functional theory calculations corroborated the fact that the CuInS_(2)@CoS_(2) heterojunction substan-tially lowered the formation energy of *COOH and *CO.This study demonstrates the application potential of S-scheme heterojunctions fabricated via the molten salt method in the realm of ad-dressing carbon-related environmental issues.展开更多
The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(...The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.展开更多
Inspired by natural photosynthesis,fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues.Herein,NH_(2)-MIL-125(Ti)/Zn_(0.5)Cd_(0.5)S/NiS(NMT...Inspired by natural photosynthesis,fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues.Herein,NH_(2)-MIL-125(Ti)/Zn_(0.5)Cd_(0.5)S/NiS(NMT/ZCS/NiS)S-scheme heterojunction with interfacial coordination bonds is successfully synthesized through in-situ solvothermal strategy.Notably,the optimal NMT/ZCS/NiS S-scheme heterojunction exhibits comparable photocatalytic H_(2)evolution(PHE)rate of about 14876.7μmol h^(−1)g^(−1)with apparent quantum yield of 24.2%at 420 nm,which is significantly higher than that of recently reported MOFs-based photocatalysts.The interfacial coordination bonds(Zn–N,Cd–N,and Ni–N bonds)accelerate the separation and transfer of photogenerated charges,and the NiS as cocatalyst can provide more catalytically active sites,which synergistically improve the photocatalytic performance.Moreover,theoretical calculation results display that the construction of NMT/ZCS/NiS S-scheme heterojunction also optimize the binding energy of active site-adsorbed hydrogen atoms to enable fast adsorption and desorption.Photoassisted Kelvin probe force microscopy,in-situ irradiation X-ray photoelectron spectroscopy,femtosecond transient absorption spectroscopy,and theoretical calculations provide sufficient evidence of the S-scheme charge migration mechanism.This work offers unique viewpoints for simultaneously accelerating the charge dynamics and optimizing the binding strength between the active sites and hydrogen adsorbates over S-scheme heterojunction.展开更多
Hydrogen peroxide(H_(2)O_(2))has gained widespread attention as a versatile oxidant and a mild disin-fectant.Here,an electrostatic self-assembly method is applied to couple ZnSe quantum dots(QDs)with a flower-like cov...Hydrogen peroxide(H_(2)O_(2))has gained widespread attention as a versatile oxidant and a mild disin-fectant.Here,an electrostatic self-assembly method is applied to couple ZnSe quantum dots(QDs)with a flower-like covalent organic framework(COF)to form a step-scheme(S-scheme)photocata-lyst for H_(2)O_(2)production.The as-prepared S-scheme photocatalyst exhibits a broad light absorption range with an edge at 810 nm owing to the synergistic effect between the ZnSe QDs and COF.The S-scheme charge-carrier transfer mechanism is validated by performing Fermi level calculations and in-situ X-ray photoelectron and femtosecond transient absorption spectroscopies.Photolumi-nescence,time-resolved photoluminescence,photocurrent response,electrochemical impedance spectroscopy,and electron paramagnetic resonance results show that the S-scheme heterojunction not only promotes charge carrier separation but also boosts the redox ability,resulting in enhanced photocatalytic performance.Remarkably,a 10%-ZnSe QD/COF has excellent photocatalytic H_(2)O_(2)-production activity,and the optimal S-scheme composite with ethanol as the hole scavenger yields a H_(2)O_(2)-production rate of 1895 mol g^(-1)h^(-1).This study presents an example of a high-performance organic/inorganic S-scheme photocatalyst for H_(2)O_(2)production.展开更多
TiO_(2)is a promising photocatalyst with limited use in practical applications owing to its wide bandgap,narrow light response range,and rapid recombination of photoexcited carriers.To address these limitations,a nove...TiO_(2)is a promising photocatalyst with limited use in practical applications owing to its wide bandgap,narrow light response range,and rapid recombination of photoexcited carriers.To address these limitations,a novel 1D/2D TiO_(2)/ZnIn_(2)S_(4)heterostructure was designed according to the principles of the S-scheme heterojunction.The TiO_(2)/ZnIn_(2)S_(4)(TZISx)hybrids prepared via a hydrothermal method afforded significant improvement in photocatalytic hydrogen evolution(PHE)in comparison to pristine TiO_(2)and ZnIn_(2)S_(4).In particular,the optimal TZIS2 sample(mass ratio of ZnIn_(2)S_(4)to TiO_(2)was 0.4)exhibited the highest PHE activity(6.03 mmol/h/g),which was approximately 3.7 and 2.0 times higher than those of pristine TiO_(2)and ZnIn_(2)S_(4),respectively.This improvement in the PHE of the TZIS2 sample could be attributed to the formation of an intimate heterojunction interface,high-efficiency separation of charge carriers,abundant reactive sites,and enhanced light absorption capacity.Notably,theoretical and experimental results demonstrated that the S-scheme mechanism of interfacial electron transfer in the TZISx composites facilitated the transfer and separation of photoexcited charge carriers,resulting in more isolated photoexcited electrons for the PHE reaction.展开更多
Enlightened by natural photosynthesis,developing efficient S-scheme heterojunction photocatalysts for deleterious pollutant removal is of prime importance to restore environment.Herein,novel TaON/Bi_(2)WO_(6) S-scheme...Enlightened by natural photosynthesis,developing efficient S-scheme heterojunction photocatalysts for deleterious pollutant removal is of prime importance to restore environment.Herein,novel TaON/Bi_(2)WO_(6) S-scheme heterojunction nanofibers were designed and developed by in-situ growing Bi_(2)WO_(6) nanosheets with oxygen vacancies(OVs)on TaON nanofibers.Thanks to the efficiently spatial charge disassociation and preserved great redox power by the unique S-scheme mechanism and OVs,as well as firmly interfacial contact by the core-shell 1D/2D fibrous hetero-structure via the in-situ growth,the optimized TaON/Bi_(2)WO_(6) heterojunction unveils exceptional visible-light photocatalytic property for abatement of tetracycline(TC),levofloxacin(LEV),and Cr(Ⅵ),respectively by 2.8-fold,1.0-fold,and 1.9-fold enhancement compared to the bare Bi_(2)WO_(6),while maintaining satisfactory stability.Furthermore,the systematic photoreaction tests indicate Ta-ON/Bi_(2)WO_(6) has the high practicality in the elimination of pollutants in aquatic environment.The degradation pathway of tetracycline and intermediate eco-toxicity were determined based on HPLC–MS combined with QSAR calculation,and a possible photocatalytic mechanism was elucidated.This work provides a guideline for designing high-performance TaON-based S-scheme photocatalysts with defects for environment protection.展开更多
The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we desi...The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we designed and constructed a 2D/2D/2D layered heterojunction photocatalyst with cascaded 2D coupling interfaces.Experiments using electron spin resonance spectroscopy,ultraviolet photoelectron spectroscopy,and in-situ irradiation X-ray photoelectron spectroscopy were conducted to confirm the 2D layered CdS/WO_(3) step-scheme(S-scheme)heterojunctions and CdS/MX ohmic junctions.Impressively,it was found that the strong interfacial electric fields in the S-scheme heterojunction photocatalysts could effectively promote spatially directional charge separation and transport between CdS and WO_(3) nanosheets.In addition,2D Ti_(3)C_(2) MXene nanosheets with a smaller work function and excellent metal conductivity when used as a co-catalyst could build ohmic junctions with Cd S nanosheets,thus providing a greater number of electron transfer pathways and hydrogen evolution sites.Results showed that the highest visible-light hydrogen evolution rate of the optimized MX-Cd S/WO_(3) layered multi-heterostructures could reach as high as 27.5 mmol/g/h,which was 11.0 times higher than that of pure CdS nanosheets.Notably,the apparent quantum efficiency reached 12.0% at 450 nm.It is hoped that this study offers a reliable approach for developing multifunctional photocatalysts by integrating S-scheme and ohmic-junction built-in electric fields and rationally designing a 2D/2D interface for efficient light-to-hydrogen fuel production.展开更多
Bismuth selenide(Bi_(2)Se_(3))is an attractive visible-light-responsive semiconductor that can absorb a full range of visible and near-infrared light.However,its poor redox capacity and rapid carrier recombination lim...Bismuth selenide(Bi_(2)Se_(3))is an attractive visible-light-responsive semiconductor that can absorb a full range of visible and near-infrared light.However,its poor redox capacity and rapid carrier recombination limit its application in photocatalytic oxidation.In this study,we adopted Bi_(2)Se_(3)as the couple part of graphitic carbon nitride(g-C_(3)N_(4))to construct a Bi_(2)Se_(3)/g-C_(3)N_(4)composite photocatalyst.Through in situ fabrication,the self-developed Bi2O3/g-C_(3)N_(4)precursor was transformed into a Bi_(2)Se_(3)/g-C_(3)N_(4)heterojunction.The as-prepared Bi_(2)Se_(3)/g-C_(3)N_(4)composite exhibited much higher visible-light-driven photocatalytic activity than pristine Bi_(2)Se_(3)and g-C_(3)N_(4)in the removal of phenol.The enhanced photocatalytic activity was ascribed to the S-scheme configuration of Bi_(2)Se_(3)/g-C_(3)N_(4);this was confirmed by the energy-level shift,photoluminescence analysis,computational structure study,and reactive-radical testing.In the S-scheme heterojunction,photo-excited electrons in the conduction band of g-C_(3)N_(4)migrate to the valence band of Bi_(2)Se_(3)and combine with the excited holes therein.By consuming less reactive carriers,the S-scheme heterojunction can not only effectively promote charge separation,but also preserve more reactive photo-generated carriers.This property enhances the photocatalytic activity.展开更多
In this work,a novel plasmon-assisted UV-vis-NIR-driven W_(18)O_(49)/Cd_(0.5)Zn_(0.5)S heterostructure photocatalyst was obtained by a facile ultrasonic-assisted electrostatic self-assembly strategy.The hybrid exhibit...In this work,a novel plasmon-assisted UV-vis-NIR-driven W_(18)O_(49)/Cd_(0.5)Zn_(0.5)S heterostructure photocatalyst was obtained by a facile ultrasonic-assisted electrostatic self-assembly strategy.The hybrid exhibits extraordinary H2 evolution activity of 147.7 mmol·g^(-1)·h^(-1) at room temperature due to the efficient charge separation and expanded light absorption.Our investigation shows that the unique Step-scheme(S-scheme)charge transfer and the‘hot electron’injection are both responsible for the extraordinary H2 evolution process,depending on the wavelength of the incident light.Moreover,by accelerating the surface reaction kinetics,the activity can be further elevated to 306.1 mmol·g^(-1)·h^(-1),accompanied by a high apparent quantum yield of 45.3% at 365±7.5 nm.This work provides us a potential strategy for the highly efficient conversion of the solar energy by elaborately combining a nonstoichiometric ratio plasmonic material with an appropriate active photocatalyst.展开更多
The fabrication of S-scheme heterojunctions has received considerable attention as an effective approach to promote the separation and migration of photoexcited electron/hole pairs and retain strong redox abilities.He...The fabrication of S-scheme heterojunctions has received considerable attention as an effective approach to promote the separation and migration of photoexcited electron/hole pairs and retain strong redox abilities.Herein,an imine-based porous covalent organic framework(COF-LZU1)is integrated with controllably fabricated Cd S hollow cubes,resulting in the formation of an S-scheme heterojunction.When the COF content reaches 1.5 wt%,the COF/Cd S heterostructure(1.5%COF/Cd S)achieves the highest hydrogen generation rate of 8670μmol·h^(-1)·g^(-1),which is approximately 2.1 times higher than that of pure Cd S.The apparent quantum efficiency(AQE)of 1.5%COF/Cd S is approximately 8.9%at 420 nm.Further systematic analysis shows that the intimate contact interface and suitable energy band structures between Cd S and COF can induce the formation of an internal electric field at the heterojunction interface,which can effectively drive the spatial separation of photoexcited charge carriers and simultaneously maintain a strong redox ability,thus enhancing the photocatalytic H_(2) evolution performance.展开更多
Graphdiyne(GDY,g-C_(n)H_(2n-2)),a novel two-dimensional carbon hybrid material,has attracted significant attention owing to its unique and excellent properties.As a new type of carbon material,GDY has a layered struct...Graphdiyne(GDY,g-C_(n)H_(2n-2)),a novel two-dimensional carbon hybrid material,has attracted significant attention owing to its unique and excellent properties.As a new type of carbon material,GDY has a layered structure and can be used in the field of photocatalytic water splitting.Therefore,herein,new progress in the preparation of graphene using Cu I powder as a catalytic material and the combination of a facile hydrothermal method to prepare a new composite material,Co_(9)S_(8)-GDY-Cu I,is reported.The hydrogen production activity of Co9S8-GDY-Cu I in the sensitization system reached 1411.82μmol g^(-1) h^(-1),which is 10.29 times that of pure GDY.A series of characterization techniques were used to provide evidence for the successful preparation of the material and its superior photocatalytic activity.Raman spectroscopy showed that the material contains acetylenic bonds,and the X-ray photoelectron spectroscopy carbon fitting peaks indicated the presence of C-C(sp^(2))and C-C(sp),further demonstrating that GDY was successfully prepared.A possible reaction mechanism was proposed by making use of UV-visible diffuse reflectance and Mott-Schottky analyses.The results showed that a double S-scheme heterojunction was constructed between the samples,which effectively accelerated the separation and transfer of electrons.In addition,the introduction of Co9S8 nanoparticles greatly improved the visible light absorption capacity of Co_(9)S_(8)-GDY-Cu I.Photoluminescence spectroscopy and related electrochemical characterization further proved that recombination of the electron-hole pairs in the composite material was effectively suppressed.展开更多
An S-scheme heterojunction photocatalyst is capable of boosting photogenerated carrier separation and transfer,thus maintaining high photooxidation and photoredox ability.Herein,a 0D Ag_(3)PO_(4) nanoparticles(NPs)/1D...An S-scheme heterojunction photocatalyst is capable of boosting photogenerated carrier separation and transfer,thus maintaining high photooxidation and photoredox ability.Herein,a 0D Ag_(3)PO_(4) nanoparticles(NPs)/1D TiO_(2) nanofibers(NFs)S-scheme heterojunction with intimate interfacial contact was designed via the the hydro-thermal method.Benefiting from the abundant hydroxyl groups and size confinement effect of TiO_(2) NFs,the average diameter of the Ag_(3)PO_(4) nanoparticles decreased from 100 to 22 nm,which favored the construction of a 0D/1D geometry heterojunction.The multifunctional Ag_(3)PO_(4)/TiO_(2) sample exhibited excellent photocatalytic activity and stability in photocatalytic oxygen production(726μmol/g/h)and photocatalytic degradation of various organic contaminants such as rhodamine B(100%),phenol(60%)and tetracycline hydrochloride(100%).The significant improvements in the photocatalytic performance and stability can be attributed to the intimate interfacial contacts and rich active sites of 0D/1D geometry,fast charge carrier migration,and outstanding photoredox properties induced by the S-scheme charge-transfer route.This work offers a promising strategy for constructing 0D/1D S-scheme heterojunction photocatalysts for improved photocatalytic performance.展开更多
Construction of multi-channels of photo-carrier migration in photocatalysts is favor to boost conversion efficiency of solar energy by promoting the charge separation and transfer.Herein,a ternary ZnIn_(2)S_(4)/g-C_(3...Construction of multi-channels of photo-carrier migration in photocatalysts is favor to boost conversion efficiency of solar energy by promoting the charge separation and transfer.Herein,a ternary ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene hybrid composed of S-scheme junction integrated Schottky-junction was fabricated using a simple hydrothermal approach.All the components(g-C_(3)N_(4),ZnIn_(2)S_(4) and Ti_(3)C_(2) MXene)demonstrated two-dimensional(2D)nanosheets structure,leading to the formation of a 2D/2D/2D sandwich-like structure with intimate large interface for carrier migration.Furthermore,the photogenerated carriers on the g-C_(3)N_(4) possessed dual transfer channels,including one route in S-scheme transfer mode between the g-C_(3)N_(4) and ZnIn_(2)S_(4) and the other route in Schottky-junction between g-C_(3)N_(4) and Ti_(3)C_(2) MXene.Consequently,a highly efficient carrier separation and transport was realized in the ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene heterojunction.This ternary sample exhibited wide light response from 200 to 1400 nm and excellent photocatalytic H_(2) evolution of 2452.1μmol∙g^(–1)∙h^(–1),which was 200,3,1.5 and 1.6 times of g-C_(3)N_(4),ZnIn_(2)S_(4),ZnIn_(2)S_(4)/Ti_(3)C_(2) MXene and g-C_(3)N_(4)/ZnIn_(2)S_(4) binary composites.This work offers a paradigm for the rational construction of multi-electron pathways to regulate the charge separation and migration via the introduction of dual-junctions in catalytic system.展开更多
Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental,medical,and...Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental,medical,and energy applications.Recently,the construction of a step-scheme heterostructure system(hereafter called the S-scheme)has received widespread attention in the photocatalytic field due to its ability to achieve efficient photogenerated carrier separation and obtain strong photo-redox ability.Herein,a novel S-scheme heterojunction system consisting of 2D O-doped g-C_(3)N_(4)(OCN)nanosheets and 3D N-doped Nb_(2)O_(5)/C(N-NBO/C)nanoflowers is constructed via ultrasonication and vigorous agitation technique followed by heat treatment for the photocatalytic degradation of Rhodamine B(RhB).Detailed characterization and decomposition behaviour of RhB showed that the fabricated material shows excellent photocatalytic efficiency and stability towards RhB photodegradation under visible-light illumination.The enhanced performance could be attributed to the following factors:fast charge transfer,highly-efficient charge separation,extended lifetime of photoinduced charge carriers,and the high redox capability of the photoinduced charges in the S-scheme system.Various trapping experiment conditions and electron paramagnetic resonance provide clear evidence of the S-scheme photogenerated charge transfer path,meanwhile,the RhB mineralization degradation pathway was also investigated using LC-MS.This study presents an approach to constructing Nb_(2)O_(5)-based S-scheme heterojunctions for photocatalytic applications.展开更多
文摘The unique photocatalytic mechanism of S-scheme heterojunction can be used to study new and efficient photocatalysts.By carefully selecting semiconductors for S-scheme heterojunction photocatalysts,it is possible to reduce the rate of photogenerated carrier recombination and increase the conversion efficiency of light into energy.Chalcogenides are a group of compounds that include sulfides and selenides(e.g.,CdS,ZnS,Bi_(2)S_(3),MoS_(2),ZnSe,CdSe,and CuSe).Chalcogenides have attracted considerable attention as heterojunction photocatalysts owing to their narrow bandgap,wide light absorption range,and excellent photoreduction properties.This paper presents a thorough analysis of S-scheme heterojunction photocatalysts based on chalcogenides.Following an introduction to the fundamental characteristics and benefits of S-scheme heterojunction photocatalysts,various chalcogenide-based S-scheme heterojunction photocatalyst synthesis techniques are summarized.These photocatalysts are used in numerous significant photocatalytic reactions,in-cluding the reduction of carbon dioxide,synthesis of hydrogen peroxide,conversion of organic matter,generation of hydrogen from water,nitrogen fixation,degradation of organic pollutants,and sterilization.In addition,cutting-edge characterization techniques,including in situ characterization techniques,are discussed to validate the steady and transient states of photocatalysts with an S-scheme heterojunction.Finally,the design and challenges of chalcogenide-based S-scheme heterojunction photocatalysts are explored and recommended in light of state-of-the-art research.
文摘Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.
文摘Weak redox ability and severe charge recombination pose significant obstacles to the advancement of CO_(2) photoreduction.To tackle this challenge and enhance the CO_(2) photoconversion efficiency,fabricating well-matched S-scheme heterostructure and establishing a robust built-in electric field emerge as pivotal strategies.In pursuit of this goal,a core-shell structured CuInS_(2)@CoS_(2)S-scheme heterojunction was meticulously engineered through a two-step molten salt method.This approach over the CuInS_(2)-based composites produced an internal electric field owing to the disparity be-tween the Fermi levels of CoS_(2) and CuInS_(2) at their interface.Consequently,the electric field facili-tated the directed migration of charges and the proficient separation of photoinduced carriers.The resulting CuInS_(2)@CoS_(2) heterostructure exhibited remarkable CO_(2) photoreduction performance,which was 21.7 and 26.5 times that of pure CuInS_(2) and CoS_(2),respectively.The S-scheme heterojunc-tion photogenerated charge transfer mechanism was validated through a series of rigorous anal-yses,including in situ irradiation X-ray photoelectron spectroscopy,work function calculations,and differential charge density examinations.Furthermore,in situ infrared spectroscopy and density functional theory calculations corroborated the fact that the CuInS_(2)@CoS_(2) heterojunction substan-tially lowered the formation energy of *COOH and *CO.This study demonstrates the application potential of S-scheme heterojunctions fabricated via the molten salt method in the realm of ad-dressing carbon-related environmental issues.
文摘The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.
文摘Inspired by natural photosynthesis,fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues.Herein,NH_(2)-MIL-125(Ti)/Zn_(0.5)Cd_(0.5)S/NiS(NMT/ZCS/NiS)S-scheme heterojunction with interfacial coordination bonds is successfully synthesized through in-situ solvothermal strategy.Notably,the optimal NMT/ZCS/NiS S-scheme heterojunction exhibits comparable photocatalytic H_(2)evolution(PHE)rate of about 14876.7μmol h^(−1)g^(−1)with apparent quantum yield of 24.2%at 420 nm,which is significantly higher than that of recently reported MOFs-based photocatalysts.The interfacial coordination bonds(Zn–N,Cd–N,and Ni–N bonds)accelerate the separation and transfer of photogenerated charges,and the NiS as cocatalyst can provide more catalytically active sites,which synergistically improve the photocatalytic performance.Moreover,theoretical calculation results display that the construction of NMT/ZCS/NiS S-scheme heterojunction also optimize the binding energy of active site-adsorbed hydrogen atoms to enable fast adsorption and desorption.Photoassisted Kelvin probe force microscopy,in-situ irradiation X-ray photoelectron spectroscopy,femtosecond transient absorption spectroscopy,and theoretical calculations provide sufficient evidence of the S-scheme charge migration mechanism.This work offers unique viewpoints for simultaneously accelerating the charge dynamics and optimizing the binding strength between the active sites and hydrogen adsorbates over S-scheme heterojunction.
文摘Hydrogen peroxide(H_(2)O_(2))has gained widespread attention as a versatile oxidant and a mild disin-fectant.Here,an electrostatic self-assembly method is applied to couple ZnSe quantum dots(QDs)with a flower-like covalent organic framework(COF)to form a step-scheme(S-scheme)photocata-lyst for H_(2)O_(2)production.The as-prepared S-scheme photocatalyst exhibits a broad light absorption range with an edge at 810 nm owing to the synergistic effect between the ZnSe QDs and COF.The S-scheme charge-carrier transfer mechanism is validated by performing Fermi level calculations and in-situ X-ray photoelectron and femtosecond transient absorption spectroscopies.Photolumi-nescence,time-resolved photoluminescence,photocurrent response,electrochemical impedance spectroscopy,and electron paramagnetic resonance results show that the S-scheme heterojunction not only promotes charge carrier separation but also boosts the redox ability,resulting in enhanced photocatalytic performance.Remarkably,a 10%-ZnSe QD/COF has excellent photocatalytic H_(2)O_(2)-production activity,and the optimal S-scheme composite with ethanol as the hole scavenger yields a H_(2)O_(2)-production rate of 1895 mol g^(-1)h^(-1).This study presents an example of a high-performance organic/inorganic S-scheme photocatalyst for H_(2)O_(2)production.
文摘TiO_(2)is a promising photocatalyst with limited use in practical applications owing to its wide bandgap,narrow light response range,and rapid recombination of photoexcited carriers.To address these limitations,a novel 1D/2D TiO_(2)/ZnIn_(2)S_(4)heterostructure was designed according to the principles of the S-scheme heterojunction.The TiO_(2)/ZnIn_(2)S_(4)(TZISx)hybrids prepared via a hydrothermal method afforded significant improvement in photocatalytic hydrogen evolution(PHE)in comparison to pristine TiO_(2)and ZnIn_(2)S_(4).In particular,the optimal TZIS2 sample(mass ratio of ZnIn_(2)S_(4)to TiO_(2)was 0.4)exhibited the highest PHE activity(6.03 mmol/h/g),which was approximately 3.7 and 2.0 times higher than those of pristine TiO_(2)and ZnIn_(2)S_(4),respectively.This improvement in the PHE of the TZIS2 sample could be attributed to the formation of an intimate heterojunction interface,high-efficiency separation of charge carriers,abundant reactive sites,and enhanced light absorption capacity.Notably,theoretical and experimental results demonstrated that the S-scheme mechanism of interfacial electron transfer in the TZISx composites facilitated the transfer and separation of photoexcited charge carriers,resulting in more isolated photoexcited electrons for the PHE reaction.
文摘Enlightened by natural photosynthesis,developing efficient S-scheme heterojunction photocatalysts for deleterious pollutant removal is of prime importance to restore environment.Herein,novel TaON/Bi_(2)WO_(6) S-scheme heterojunction nanofibers were designed and developed by in-situ growing Bi_(2)WO_(6) nanosheets with oxygen vacancies(OVs)on TaON nanofibers.Thanks to the efficiently spatial charge disassociation and preserved great redox power by the unique S-scheme mechanism and OVs,as well as firmly interfacial contact by the core-shell 1D/2D fibrous hetero-structure via the in-situ growth,the optimized TaON/Bi_(2)WO_(6) heterojunction unveils exceptional visible-light photocatalytic property for abatement of tetracycline(TC),levofloxacin(LEV),and Cr(Ⅵ),respectively by 2.8-fold,1.0-fold,and 1.9-fold enhancement compared to the bare Bi_(2)WO_(6),while maintaining satisfactory stability.Furthermore,the systematic photoreaction tests indicate Ta-ON/Bi_(2)WO_(6) has the high practicality in the elimination of pollutants in aquatic environment.The degradation pathway of tetracycline and intermediate eco-toxicity were determined based on HPLC–MS combined with QSAR calculation,and a possible photocatalytic mechanism was elucidated.This work provides a guideline for designing high-performance TaON-based S-scheme photocatalysts with defects for environment protection.
文摘The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we designed and constructed a 2D/2D/2D layered heterojunction photocatalyst with cascaded 2D coupling interfaces.Experiments using electron spin resonance spectroscopy,ultraviolet photoelectron spectroscopy,and in-situ irradiation X-ray photoelectron spectroscopy were conducted to confirm the 2D layered CdS/WO_(3) step-scheme(S-scheme)heterojunctions and CdS/MX ohmic junctions.Impressively,it was found that the strong interfacial electric fields in the S-scheme heterojunction photocatalysts could effectively promote spatially directional charge separation and transport between CdS and WO_(3) nanosheets.In addition,2D Ti_(3)C_(2) MXene nanosheets with a smaller work function and excellent metal conductivity when used as a co-catalyst could build ohmic junctions with Cd S nanosheets,thus providing a greater number of electron transfer pathways and hydrogen evolution sites.Results showed that the highest visible-light hydrogen evolution rate of the optimized MX-Cd S/WO_(3) layered multi-heterostructures could reach as high as 27.5 mmol/g/h,which was 11.0 times higher than that of pure CdS nanosheets.Notably,the apparent quantum efficiency reached 12.0% at 450 nm.It is hoped that this study offers a reliable approach for developing multifunctional photocatalysts by integrating S-scheme and ohmic-junction built-in electric fields and rationally designing a 2D/2D interface for efficient light-to-hydrogen fuel production.
文摘Bismuth selenide(Bi_(2)Se_(3))is an attractive visible-light-responsive semiconductor that can absorb a full range of visible and near-infrared light.However,its poor redox capacity and rapid carrier recombination limit its application in photocatalytic oxidation.In this study,we adopted Bi_(2)Se_(3)as the couple part of graphitic carbon nitride(g-C_(3)N_(4))to construct a Bi_(2)Se_(3)/g-C_(3)N_(4)composite photocatalyst.Through in situ fabrication,the self-developed Bi2O3/g-C_(3)N_(4)precursor was transformed into a Bi_(2)Se_(3)/g-C_(3)N_(4)heterojunction.The as-prepared Bi_(2)Se_(3)/g-C_(3)N_(4)composite exhibited much higher visible-light-driven photocatalytic activity than pristine Bi_(2)Se_(3)and g-C_(3)N_(4)in the removal of phenol.The enhanced photocatalytic activity was ascribed to the S-scheme configuration of Bi_(2)Se_(3)/g-C_(3)N_(4);this was confirmed by the energy-level shift,photoluminescence analysis,computational structure study,and reactive-radical testing.In the S-scheme heterojunction,photo-excited electrons in the conduction band of g-C_(3)N_(4)migrate to the valence band of Bi_(2)Se_(3)and combine with the excited holes therein.By consuming less reactive carriers,the S-scheme heterojunction can not only effectively promote charge separation,but also preserve more reactive photo-generated carriers.This property enhances the photocatalytic activity.
文摘In this work,a novel plasmon-assisted UV-vis-NIR-driven W_(18)O_(49)/Cd_(0.5)Zn_(0.5)S heterostructure photocatalyst was obtained by a facile ultrasonic-assisted electrostatic self-assembly strategy.The hybrid exhibits extraordinary H2 evolution activity of 147.7 mmol·g^(-1)·h^(-1) at room temperature due to the efficient charge separation and expanded light absorption.Our investigation shows that the unique Step-scheme(S-scheme)charge transfer and the‘hot electron’injection are both responsible for the extraordinary H2 evolution process,depending on the wavelength of the incident light.Moreover,by accelerating the surface reaction kinetics,the activity can be further elevated to 306.1 mmol·g^(-1)·h^(-1),accompanied by a high apparent quantum yield of 45.3% at 365±7.5 nm.This work provides us a potential strategy for the highly efficient conversion of the solar energy by elaborately combining a nonstoichiometric ratio plasmonic material with an appropriate active photocatalyst.
文摘The fabrication of S-scheme heterojunctions has received considerable attention as an effective approach to promote the separation and migration of photoexcited electron/hole pairs and retain strong redox abilities.Herein,an imine-based porous covalent organic framework(COF-LZU1)is integrated with controllably fabricated Cd S hollow cubes,resulting in the formation of an S-scheme heterojunction.When the COF content reaches 1.5 wt%,the COF/Cd S heterostructure(1.5%COF/Cd S)achieves the highest hydrogen generation rate of 8670μmol·h^(-1)·g^(-1),which is approximately 2.1 times higher than that of pure Cd S.The apparent quantum efficiency(AQE)of 1.5%COF/Cd S is approximately 8.9%at 420 nm.Further systematic analysis shows that the intimate contact interface and suitable energy band structures between Cd S and COF can induce the formation of an internal electric field at the heterojunction interface,which can effectively drive the spatial separation of photoexcited charge carriers and simultaneously maintain a strong redox ability,thus enhancing the photocatalytic H_(2) evolution performance.
文摘Graphdiyne(GDY,g-C_(n)H_(2n-2)),a novel two-dimensional carbon hybrid material,has attracted significant attention owing to its unique and excellent properties.As a new type of carbon material,GDY has a layered structure and can be used in the field of photocatalytic water splitting.Therefore,herein,new progress in the preparation of graphene using Cu I powder as a catalytic material and the combination of a facile hydrothermal method to prepare a new composite material,Co_(9)S_(8)-GDY-Cu I,is reported.The hydrogen production activity of Co9S8-GDY-Cu I in the sensitization system reached 1411.82μmol g^(-1) h^(-1),which is 10.29 times that of pure GDY.A series of characterization techniques were used to provide evidence for the successful preparation of the material and its superior photocatalytic activity.Raman spectroscopy showed that the material contains acetylenic bonds,and the X-ray photoelectron spectroscopy carbon fitting peaks indicated the presence of C-C(sp^(2))and C-C(sp),further demonstrating that GDY was successfully prepared.A possible reaction mechanism was proposed by making use of UV-visible diffuse reflectance and Mott-Schottky analyses.The results showed that a double S-scheme heterojunction was constructed between the samples,which effectively accelerated the separation and transfer of electrons.In addition,the introduction of Co9S8 nanoparticles greatly improved the visible light absorption capacity of Co_(9)S_(8)-GDY-Cu I.Photoluminescence spectroscopy and related electrochemical characterization further proved that recombination of the electron-hole pairs in the composite material was effectively suppressed.
文摘An S-scheme heterojunction photocatalyst is capable of boosting photogenerated carrier separation and transfer,thus maintaining high photooxidation and photoredox ability.Herein,a 0D Ag_(3)PO_(4) nanoparticles(NPs)/1D TiO_(2) nanofibers(NFs)S-scheme heterojunction with intimate interfacial contact was designed via the the hydro-thermal method.Benefiting from the abundant hydroxyl groups and size confinement effect of TiO_(2) NFs,the average diameter of the Ag_(3)PO_(4) nanoparticles decreased from 100 to 22 nm,which favored the construction of a 0D/1D geometry heterojunction.The multifunctional Ag_(3)PO_(4)/TiO_(2) sample exhibited excellent photocatalytic activity and stability in photocatalytic oxygen production(726μmol/g/h)and photocatalytic degradation of various organic contaminants such as rhodamine B(100%),phenol(60%)and tetracycline hydrochloride(100%).The significant improvements in the photocatalytic performance and stability can be attributed to the intimate interfacial contacts and rich active sites of 0D/1D geometry,fast charge carrier migration,and outstanding photoredox properties induced by the S-scheme charge-transfer route.This work offers a promising strategy for constructing 0D/1D S-scheme heterojunction photocatalysts for improved photocatalytic performance.
文摘Construction of multi-channels of photo-carrier migration in photocatalysts is favor to boost conversion efficiency of solar energy by promoting the charge separation and transfer.Herein,a ternary ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene hybrid composed of S-scheme junction integrated Schottky-junction was fabricated using a simple hydrothermal approach.All the components(g-C_(3)N_(4),ZnIn_(2)S_(4) and Ti_(3)C_(2) MXene)demonstrated two-dimensional(2D)nanosheets structure,leading to the formation of a 2D/2D/2D sandwich-like structure with intimate large interface for carrier migration.Furthermore,the photogenerated carriers on the g-C_(3)N_(4) possessed dual transfer channels,including one route in S-scheme transfer mode between the g-C_(3)N_(4) and ZnIn_(2)S_(4) and the other route in Schottky-junction between g-C_(3)N_(4) and Ti_(3)C_(2) MXene.Consequently,a highly efficient carrier separation and transport was realized in the ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene heterojunction.This ternary sample exhibited wide light response from 200 to 1400 nm and excellent photocatalytic H_(2) evolution of 2452.1μmol∙g^(–1)∙h^(–1),which was 200,3,1.5 and 1.6 times of g-C_(3)N_(4),ZnIn_(2)S_(4),ZnIn_(2)S_(4)/Ti_(3)C_(2) MXene and g-C_(3)N_(4)/ZnIn_(2)S_(4) binary composites.This work offers a paradigm for the rational construction of multi-electron pathways to regulate the charge separation and migration via the introduction of dual-junctions in catalytic system.
文摘Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental,medical,and energy applications.Recently,the construction of a step-scheme heterostructure system(hereafter called the S-scheme)has received widespread attention in the photocatalytic field due to its ability to achieve efficient photogenerated carrier separation and obtain strong photo-redox ability.Herein,a novel S-scheme heterojunction system consisting of 2D O-doped g-C_(3)N_(4)(OCN)nanosheets and 3D N-doped Nb_(2)O_(5)/C(N-NBO/C)nanoflowers is constructed via ultrasonication and vigorous agitation technique followed by heat treatment for the photocatalytic degradation of Rhodamine B(RhB).Detailed characterization and decomposition behaviour of RhB showed that the fabricated material shows excellent photocatalytic efficiency and stability towards RhB photodegradation under visible-light illumination.The enhanced performance could be attributed to the following factors:fast charge transfer,highly-efficient charge separation,extended lifetime of photoinduced charge carriers,and the high redox capability of the photoinduced charges in the S-scheme system.Various trapping experiment conditions and electron paramagnetic resonance provide clear evidence of the S-scheme photogenerated charge transfer path,meanwhile,the RhB mineralization degradation pathway was also investigated using LC-MS.This study presents an approach to constructing Nb_(2)O_(5)-based S-scheme heterojunctions for photocatalytic applications.