在硬件在回路仿真系统中,模型需与数据采集卡之间进行实时数据的采集和交换,Simulink下Real Time Workspace工具箱提供了与硬件之间的实时数据采集和交换,但是工具箱并不支持市面上所有采集板卡的类型,给用户对采集板卡选型带来一定局...在硬件在回路仿真系统中,模型需与数据采集卡之间进行实时数据的采集和交换,Simulink下Real Time Workspace工具箱提供了与硬件之间的实时数据采集和交换,但是工具箱并不支持市面上所有采集板卡的类型,给用户对采集板卡选型带来一定局限性。因此本文使用Simulink中S-Function模块编写不同采集板卡的硬件驱动,证明只要是数据采集工具箱支持的板卡型号,都可以用S-Function进行模块化硬件驱动编写,解决了Simulink中Real Time Workspace工具箱给用户在使用Simulink建模过程中对板卡选型的局限性这一问题。展开更多
This paper discusses an implementation based on CMEX S-functions to model and to check implementation feasibility of two most commonly used Maximum Power Point Tracking (MPPT) algorithms, namely Hill Climbing/Pertu...This paper discusses an implementation based on CMEX S-functions to model and to check implementation feasibility of two most commonly used Maximum Power Point Tracking (MPPT) algorithms, namely Hill Climbing/Perturb & Observe (P&O) and Incremental Conductance. This study can also be generalized to encompass the whole digital techniques family, including artificial intelligence like Neural Network and Fuzzy Logic Control.展开更多
文摘在硬件在回路仿真系统中,模型需与数据采集卡之间进行实时数据的采集和交换,Simulink下Real Time Workspace工具箱提供了与硬件之间的实时数据采集和交换,但是工具箱并不支持市面上所有采集板卡的类型,给用户对采集板卡选型带来一定局限性。因此本文使用Simulink中S-Function模块编写不同采集板卡的硬件驱动,证明只要是数据采集工具箱支持的板卡型号,都可以用S-Function进行模块化硬件驱动编写,解决了Simulink中Real Time Workspace工具箱给用户在使用Simulink建模过程中对板卡选型的局限性这一问题。
文摘This paper discusses an implementation based on CMEX S-functions to model and to check implementation feasibility of two most commonly used Maximum Power Point Tracking (MPPT) algorithms, namely Hill Climbing/Perturb & Observe (P&O) and Incremental Conductance. This study can also be generalized to encompass the whole digital techniques family, including artificial intelligence like Neural Network and Fuzzy Logic Control.