We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in...We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.展开更多
SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish ...SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish reaction kinetics,low electronic conductivity,and large volume changes during charge and discharge hinder the practical applications of SnO_(2)-based electrodes for SIBs and PIBs.Engineering rational structures with fast charge/ion transfer and robust stability is important to overcoming these challenges.Herein,S-doped SnO_(2)(S-SnO_(2))quantum dots(QDs)(≈3 nm)encapsulated in an N,S codoped carbon fiber networks(S-SnO_(2)-CFN)are rationally fabricated using a sequential freeze-drying,calcination,and S-doping strategy.Experimental analysis and density functional theory calculations reveal that the integration of S-SnO_(2) QDs with N,S codoped carbon fiber network remarkably decreases the adsorption energies of Na/K atoms in the interlayer of SnO_(2)-CFN,and the S doping can increase the conductivity of SnO_(2),thereby enhancing the ion transfer kinetics.The synergistic interaction between S-SnO_(2) QDs and N,S codoped carbon fiber network results in a composite with fast Na+/K+storage and extraordinary long-term cyclability.Specifically,the S-SnO_(2)-CFN delivers high rate capacities of 141.0 mAh g^(−1) at 20 A g^(−1) in SIBs and 102.8 mAh g^(−1) at 10 A g^(−1) in PIBs.Impressively,it delivers ultra-stable sodium storage up to 10,000 cycles at 5 A g^(−1) and potassium storage up to 5000 cycles at 2 A g^(−1).This study provides insights into constructing metal oxide-based carbon fiber network structures for high-performance electrochemical energy storage and conversion devices.展开更多
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r...Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.展开更多
Two-dimensional(2D)transition metal dichalcogenides(TMD)are atomically thin semiconductors with promising optoelectronic applications across the visible spectrum.However,their intrinsically weak light absorption and t...Two-dimensional(2D)transition metal dichalcogenides(TMD)are atomically thin semiconductors with promising optoelectronic applications across the visible spectrum.However,their intrinsically weak light absorption and the low photoluminescence quantum yield(PLQY)restrict their performance and potential use,especially in ultraviolet(UV)wavelength light ranges.Quantum dots(QD)derived from 2D materials(2D/QD)provide efficient light absorption and emission of which energy can be tuned for desirable light wavelength.In this study,we greatly enhanced the photon absorption and PLQY of monolayer(1L)tungsten disulfide(WS_(2))in the UV range via hybridization with 2D/QD,particularly titanium nitride MXene QD(Ti_(2)N MQD)and graphitic carbon nitride QD(GCNQD).With the hybridization of MQD or GCNQD,1LWS_(2)showed a maximum PL enhancement by 15 times with 300 nm wavelength excitation,while no noticeable enhancement was observed when the excitation photon energy was less than the bandgap of the QD,indicating that UV absorption by the QD played a crucial role in enhancing the light emission of 1L-WS_(2)in our 0D/2D hybrid system.Our findings present a convenient method for enhancing the photo-response of 1L-WS_(2)to UV light and offer exciting possibilities for harvesting UV energy using 1L-TMD.展开更多
The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum ...The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.展开更多
MXenes,a new family of two-dimensional(2D)materials with excellent electronic conductivity and hydrophilicity,have shown distinctive advantages as a highly conductive matrix material for lithium-ion battery anodes.Her...MXenes,a new family of two-dimensional(2D)materials with excellent electronic conductivity and hydrophilicity,have shown distinctive advantages as a highly conductive matrix material for lithium-ion battery anodes.Herein,a facile electrostatic self-assembly of SnO2 quantum dots(QDs)on Ti3C2Tx MXene sheets is proposed.The as-prepared SnO2/MXene hybrids have a unique 0D-2D structure,in which the 0D SnO2 QDs(~4.7 nm)are uniformly distributed over 2D Ti3C2Tx MXene sheets with controllable loading amount.The SnO2 QDs serve as a high capacity provider and the“spacer”to prevent the MXene sheets from restacking;the highly conductive Ti3C2Tx MXene can not only provide efficient pathways for fast transport of electrons and Li ions,but also buffer the volume change of SnO2 during lithiation/delithiation by confining SnO2 QDs between the MXene nanosheets.Therefore,the 0D-2D SnO2 QDs/MXene hybrids deliver superior lithium storage properties with high capacity(887.4 mAh g?1 at 50 mA g?1),stable cycle performance(659.8 mAh g?1 at 100 mA g?1 after 100 cycles with a capacity retention of 91%)and excellent rate performance(364 mAh g?1 at 3 A g?1),making it a promising anode material for lithium-ion batteries.展开更多
H2 is an important energy carrier for replacing fossil fuel in the future due to its high energy density and environmental friendliness.As a sustainable H2-generation method,photocatalytic H2 production by water split...H2 is an important energy carrier for replacing fossil fuel in the future due to its high energy density and environmental friendliness.As a sustainable H2-generation method,photocatalytic H2 production by water splitting has attracted much interest.Here,oil-soluble ZnxCd1-xS quantum dot(ZCS QD)with a uniform particle size distribution were prepared by a hot-injection method.However,no photocatalytic H2-production activity was observed for the oil-soluble ZCS QD due to its hydrophobicity.Thus,the oil-soluble ZCS QD was converted into a water-soluble ZCS QD by a ligand-exchange method.The water-soluble ZCS QD exhibited excellent photocatalytic H2-production performance in the presence of glycerin and Ni^2+,with an apparent quantum efficiency of 15.9%under irradiation of 420 nm light.Further,the photocatalytic H2-generation activity of the ZCS QD was~10.7 times higher than that of the ZnxCd1-xS relative samples prepared by the conventional co-precipitation method.This work will inspire the design and fabrication of other semiconductor QD photocatalysts because QD exhibits excellent separation efficiency for photogenerated electron-hole pairs due to its small crystallite size.展开更多
Photocatalytic water splitting is a promising method for hydrogen production.Numerous efficient photocatalysts have been synthesized and utilized.However,photocatalysts without a noble metal as the co-catalyst have be...Photocatalytic water splitting is a promising method for hydrogen production.Numerous efficient photocatalysts have been synthesized and utilized.However,photocatalysts without a noble metal as the co-catalyst have been rarely reported.Herein,a CoP co-catalyst-modified graphitic-C3N4(g-C3N4/CoP)is investigated for photocatalytic water splitting to produce H2.The g-C3N4/CoP composite is synthesized in two steps.The first step is related to thermal decomposition,and the second step involves an electroless plating technique.The photocatalytic activity for hydrogen evolution reactions of g-C3N4 is distinctly increased by loading the appropriate amount of CoP quantum dots(QDs).Among the as-synthesized samples,the optimized one(g-C3N4/CoP-4%)shows exceptional photocatalytic activity as compared with pristine g-C3N4,generating H2 at a rate of 936μmol g^-1 h^-1,even higher than that of g-C3N4 with 4 wt%Pt(665μmol g^-1 h^-1).The UV-visible and optical absorption behavior confirms that g-C3N4 has an absorption edge at 451 nm,but after being composited with CoP,g-C3N4/CoP-4%has an absorption edge at 497 nm.Furthermore,photoluminescence and photocurrent measurements confirm that loading CoP QDs to pristine g-C3N4 not only enhances the charge separation,but also improves the transfer of photogenerated e--h+pairs,thus improving the photocatalytic performance of the catalyst to generate H2.This work demonstrates a feasible strategy for the synthesis of highly efficient metal phosphide-loaded g-C3N4 for hydrogen generation.展开更多
Herein,we report a novel ternary material comprised of Ag nanoparticles and carbon quantum dots(CDs),which are co-loaded using 2D Bi4Ti3O12(BIT)sheets.In this system,Ag can be applied as excited electron-hole pairs in...Herein,we report a novel ternary material comprised of Ag nanoparticles and carbon quantum dots(CDs),which are co-loaded using 2D Bi4Ti3O12(BIT)sheets.In this system,Ag can be applied as excited electron-hole pairs in the Bi4Ti3O12 by transferring the plasmonic energy from the metal to the semiconductor.The surface plasmon resonance of Ag can promote the electron transfer properties of the CDs,thereby improving the separation efficiency of the electron-hole pairs.Meanwhile,the CDs can act as an electron buffer to decrease the recombination rate of the electron hole.Moreover,CDs are prepared using a biomaterial,which can provide a chemical group to enhance the electron transfer and connection.The synergistic effects of CDs,Ag,and BIT enable the design of a photocatalytic application with a remarkably improved efficiency and operational stability.展开更多
Development of efficient heterostructured photocatalysts that respond to visible light remains a considerable challenge.We herein show the synthesis of ZnIn2S4/carbon quantum dot hybrid photocatalysts with flowerlike ...Development of efficient heterostructured photocatalysts that respond to visible light remains a considerable challenge.We herein show the synthesis of ZnIn2S4/carbon quantum dot hybrid photocatalysts with flowerlike microspheres via a facile solvothermal method.The ZnIn2S4/carbon quantum dot flowerlike microspheres display enhanced photocatalytic and photoelectrochemical activity compared with that of pure ZnIn2S4.With a content of only 0.5 wt%carbon quantum dots,93%of Cr(VI)is reduced under visible‐light irradiation at 40 min.As a co‐catalyst,the carbon quantum dots improve the light absorption and lengthen the lifetime of charge carriers,consequently enhancing the photocatalytic and photoelectrochemical activity.展开更多
Mix-dimensional van der Waals heterostructures(vdWHs)have inspired worldwide interests and efforts in the field of ad-vanced electronics and optoelectronics.The fundamental understanding of interfacial charge transfer...Mix-dimensional van der Waals heterostructures(vdWHs)have inspired worldwide interests and efforts in the field of ad-vanced electronics and optoelectronics.The fundamental understanding of interfacial charge transfer is of vital import-ance for guiding the design of functional optoelectronic applications.In this work,type-Ⅱ0D-2D CdSe/ZnS quantum dots/MoS_(2)vdWHs are designed to study the light-triggered interfacial charge behaviors and enhanced optoelectronic performances.From spectral measurements in both steady and transient states,the phenomena of suppressed photolu-minescence(PL)emissions,shifted Raman signals and changed PL lifetimes provide strong evidences of efficient charge transfer at the 0D-2D interface.A series of spectral evolutions of heterostructures with various QDs overlapping concentrations at different laser powers are analyzed in details,which clarifies the dynamic competition between exciton and trion during an efficient doping of 3.9×10^(13)cm^(−2).The enhanced photoresponses(1.57×10^(4)A·W^(-1))and detectivities(2.86×10^(11)Jones)in 0D/2D phototransistors further demonstrate that the light-induced charge transfer is still a feasible way to optimize the performance of optoelectronic devices.These results are expected to inspire the basic understand-ing of interfacial physics at 0D/2D interfaces,and shed the light on promoting the development of mixed-dimensional op-toelectronic devices in the near future.展开更多
In this paper by Sobolev imbedding theorem and characterization theorem of generalized operators the existence of P(φ)2 quantum fields as generalized operators is obtained and a rigorous mathematical interpretation o...In this paper by Sobolev imbedding theorem and characterization theorem of generalized operators the existence of P(φ)2 quantum fields as generalized operators is obtained and a rigorous mathematical interpretation of renormalization procedure is given under white noise theory.展开更多
Smartcombination of manifold carbonaceous materials with admirable functionalities(like full of pores/functional groups,high specific surface area) is still a mainstream/preferential way to address knotty issues of po...Smartcombination of manifold carbonaceous materials with admirable functionalities(like full of pores/functional groups,high specific surface area) is still a mainstream/preferential way to address knotty issues of polysulfides dissolution/shuttling and poor electrical conductivity for S-based cathodes.However,extensive use of conductive carbon fillers in cell designs/technology would induce electrolytic overconsumption and thereby shelve high-energy-density promise of Li-S cells.To cut down carbon usage,we propose the incorporation of multi-functionalized NiFe2O4 quantum dots(QDs) as affordable additive substitutes.The total carbon content can be greatly curtailed from 26%(in traditional S/C cathodes) to a low/commercial mass ratio(~5%).Particularly,note that NiFe2O4 QDs additives own superb chemisorption interactions with soluble Li2Sn molecules and proper catalytic features facilitating polysulfide phase conversions and can also strengthen charge-transfer capability/redox kinetics of overall cathode systems.Benefiting from these intrinsic properties,such hybrid cathodes demonstrate prominent rate behaviors(decent capacity retention with ~526 mAh g^-1 even at 5 A g^-1) and stable cyclic performance in LiNO3-free electrolytes(only ~0.08% capacity decay per cycle in 500 cycles at 0.2 A g^-1).This work may arouse tremendous research interest in seeking other alternative QDs and offer an economical/more applicable methodology to construct low-carbon-content electrodes for practical usage.展开更多
Tin sulfide quantum dots(SnS_2 QDs) are n-type wide band gap semiconductor. They exhibit a high optical absorption coefficient and strong photoconductive property in the ultraviolet and visible regions. Therefore, the...Tin sulfide quantum dots(SnS_2 QDs) are n-type wide band gap semiconductor. They exhibit a high optical absorption coefficient and strong photoconductive property in the ultraviolet and visible regions. Therefore, they have been found to have many potential applications, such as gas sensors, resistors, photodetectors, photocatalysts, and solar cells. However, the existing preparation methods for SnS_2 QDs are complicated and require a high temperature and high pressure environments; hence they are unsuitable for large-scale industrial production. An effective method for the preparation of monodispersed SnS_2 QDs at normal temperature and pressure will be discussed in this paper. The method is facile, green,and low-cost. In this work, the structure, morphology, optical, electrical, and photoelectric properties of SnS_2 QDs are studied. The synthesized SnS_2 QDs are homogeneous in size and exhibit good photoelectric performance. A photoelectric detector based on the SnS_2 QDs is fabricated and its J–V and C–V characteristics are also studied. The detector responds under λ = 365 nm light irradiation and reverse bias voltage. Its detectivity approximately stabilizes at 1011 Jones at room temperature. These results show the possible use of SnS_2 QDs in photodetectors.展开更多
Graphite‐like carbon nitride(g‐C3N4)‐based compounds have attracted considerable attention because of their excellent photocatalytic performance.In this work,a novel direct Z‐scheme system constructed from two‐di...Graphite‐like carbon nitride(g‐C3N4)‐based compounds have attracted considerable attention because of their excellent photocatalytic performance.In this work,a novel direct Z‐scheme system constructed from two‐dimensional(2D)g‐C3N4nanoplates and zero‐dimensional(0D)MoS2quantum dots(QDs)was prepared through the combination of a hydrothermal process and microemulsion preparation.The morphologies,structures,and optical properties of the as‐prepared photocatalysts were characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,atomic force microscopy,transmission electron microscopy,and UV‐vis diffuse reflectance spectroscopy.In addition,the photocatalytic performances of the prepared2D/0D hybrid composites were evaluated based on the photodegradation of rhodamine B under visible‐light irradiation.The results demonstrated that the introduction of MoS2QDs to g‐C3N4greatly enhanced the photocatalytic efficiency.For the optimum7%MoS2QD/g‐C3N4photocatalyst,the degradation rate constant was8.8times greater than that of pure g‐C3N4under visible‐light irradiation.Photocurrent and electrochemical impedance spectroscopy results further demonstrated that the MoS2QD/g‐C3N4composites exhibited higher photocurrent density and lower chargetransfer resistance than those of the pure g‐C3N4or MoS2QDs.Active species trapping,terephthalic acid photoluminescence,and nitro blue tetrazolium transformation experiments were performed to investigate the evolution of reactive oxygen species,including hydroxyl radicals and superoxide radicals.The possible enhanced photocatalytic mechanism was attributed to a direct Z‐scheme system,which not only can increase the separation efficiency of photogenerated electron‐hole pairs but also possesses excellent oxidation and reduction ability for high photocatalytic performances.This work provides an effective synthesis approach and insight to help develop other C3N4‐based direct Z‐scheme photocatalytic systems for environmental purification and energy conversion.展开更多
The quantum properties of O(2,2) string cosmology with a dilaton potential are studied in this paper. The cosmological solutions are obtained on three-dlmensional space-time. Moreover, the quantum probability of tra...The quantum properties of O(2,2) string cosmology with a dilaton potential are studied in this paper. The cosmological solutions are obtained on three-dlmensional space-time. Moreover, the quantum probability of transition between two duality universe is calculated through a Wheeler-De Witt approach.展开更多
Depositing a cocatalyst has proven to be an important strategy for improving the photoelectrochemical(PEC)water-splitting efficiency of photoanodes.In this study,Ni(OH)2 quantum dots(Ni(OH)2 QDs)were deposited in situ...Depositing a cocatalyst has proven to be an important strategy for improving the photoelectrochemical(PEC)water-splitting efficiency of photoanodes.In this study,Ni(OH)2 quantum dots(Ni(OH)2 QDs)were deposited in situ onto anα-Fe_(2)O_(3)photoanode via a chelation-mediated hydrolysis method.The photocurrent density of the Ni(OH)2 QDs/α-Fe_(2)O_(3)photoanode reached 1.93 mA·cm^(−2)at 1.23 V vs.RHE,which is 3.5 times that ofα-Fe_(2)O_(3),and an onset potential with a negative shift of ca.100 mV was achieved.More importantly,the Ni(OH)2 QDs exhibited excellent stability in maintaining PEC water oxidation at a high current density,which is attributed to the ultra-small crystalline size,allowing for the rapid acceptance of holes fromα-Fe_(2)O_(3)to Ni(OH)_(2)QDs,formation of active sites for water oxidation,and hole transfer from the active sites to water molecules.Further(photo)electrochemical analysis suggests that Ni(OH)_(2)QDs not only provide maximal active sites for water oxidation but also suppress charge recombination by passivating the surface states ofα-Fe_(2)O_(3),thereby significantly enhancing the water oxidation kinetics over theα-Fe_(2)O_(3)surface.展开更多
A novel visible light‐responsive homogeneous catalyst based on Bi2WO6 quantum dots(QDs‐BWO)/Bi2WO6 nanosheets(N‐BWO)was successfully fabricated through a simple hydrothermal method.A variety of techniques were empl...A novel visible light‐responsive homogeneous catalyst based on Bi2WO6 quantum dots(QDs‐BWO)/Bi2WO6 nanosheets(N‐BWO)was successfully fabricated through a simple hydrothermal method.A variety of techniques were employed to investigate the morphology,structure,and electronic properties of the samples.The photocatalytic performance of the QDs/N‐BWO materials was investigated by monitoring the degradation of 4‐chlorophenol and rhodamine B under visible light irradiation.The as‐fabricated QDs/N‐BWO materials showed higher photocatalytic activity than both QDs‐BWO and N‐BWO.The results reveal that the incorporation of the QDs improved the separation efficiency of electron‐hole pairs,leading to enhanced photocatalytic activity.Moreover,the results of quenching experiments show that·O2– species played a major role in the degradation process.This work provides an important reference for the fabrication of homogeneous catalysts with high performance in the degradation of different types of pollutants.展开更多
Mn:ZnSe/ZnS/L-Cys core-shell quantum dots(QDs)sensitized La-doped nano-TiO2 thin film(QDSTF)was prepared.X-ray photoelectron spectroscopy(XPS),nanosecond transient photovoltaic(TPV),and steady state surface photovolta...Mn:ZnSe/ZnS/L-Cys core-shell quantum dots(QDs)sensitized La-doped nano-TiO2 thin film(QDSTF)was prepared.X-ray photoelectron spectroscopy(XPS),nanosecond transient photovoltaic(TPV),and steady state surface photovoltaic(SPV)technologies were used for probing the photoelectron behaviors in the Mn-doped QDSTF.The results revealed that the Mn-doped QDSTF had a p-type TPV characteristic.The bottom of the conduction band of the QDs as a sensitizer was just 0.86 eV above that of the La-doped nano-TiO2 thin film,while the acceptor level of the doped Mn2+ions was located at about 0.39 eV below and near the bottom of the conduction band of the QDs.The intensity of the SPV response of the Mn-doped QDSTF at a specific wavelength was ~2.1 times higher than that of the undoped QDSTF.The region of the SPV response of the Mn-doped QDSTF was extended by 191 nm to almost the whole visible region as compared with the undoped QDSTF one.And the region of the TPV response of the Mn-doped QDSTF was also obviously wider than that of the undoped QDSTF.These PV characteristics of the Mn-doped QDSTF may be due to the prolonged lifetime and extended diffusion length of photogenerated free charge carriers injected into the sensitized La-doped nano-TiO2 thin film.展开更多
Solar-driven photocatalytic CO_(2) reduction to produce valuable chemicals and fuels offers an attractive strategy in alleviating the energy crisis.Pt quantum dots(PtQDs)with TiO_(2) nanowire(TiO_(2)NW)/Ti_(3)C_(2) MX...Solar-driven photocatalytic CO_(2) reduction to produce valuable chemicals and fuels offers an attractive strategy in alleviating the energy crisis.Pt quantum dots(PtQDs)with TiO_(2) nanowire(TiO_(2)NW)/Ti_(3)C_(2) MXene heterostructures(Pt-TiO_(2)NW/Ti_(3)C_(2)) with tight interfacial contacts between the various components were prepared at room temperature via oxidation reactions.The incorporated PtQDs played crucial roles as electron conduction bridges supported by the cocatalyst effect,effectively enhancing the separation efficiencies of photoinduced electron/hole pairs and improving CO_(2) reduction under simulated solar light irradiation.The Pt-TiO_(2)NW/Ti_(3)C_(2) heterostructures exhibited remarkable carbon monoxide(CO)and methane(CH_(4)) production at respective rates of 38.14 and 36.15μmol g^(-1)after 10 h of simulated solar light irradiation,an apparent quantum yield of 1.68%,and 79.2%selectivity for CH4.The photocatalytic activities of the Pt-TiO_(2) NW/Ti_(3)C_(2) heterostructures for CO_(2) reduction were significantly enhanced compared to those of TiO_(2)NW/Ti_(3)C_(2) and the single-component photocatalysts,and they exhibited remarkable stabilities even after five cycles.In addition,the densities of states and electronic characteristics of Ti_(3)C_(2) MXene and Pt-TiO_(2)NW/Ti_(3)C_(2) were studied using density functional theory,and a synergistic mechanism of the improvement in CO_(2) photoreduction is proposed.展开更多
基金the Natural Science Foundation of China(11922415,12274471)Guangdong Basic and Applied Basic Research Foundation(2022A1515011168,2019A1515011718,2019A1515011337)the Key Research and Development Program of Guangdong Province,China(2019B110209003).
文摘We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.
基金National Natural Science Foundation of China,Grant/Award Number:51971065Innovation Program of Shanghai Municipal Education Commission,Grant/Award Number:2019-01-07-00-07-E00028。
文摘SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish reaction kinetics,low electronic conductivity,and large volume changes during charge and discharge hinder the practical applications of SnO_(2)-based electrodes for SIBs and PIBs.Engineering rational structures with fast charge/ion transfer and robust stability is important to overcoming these challenges.Herein,S-doped SnO_(2)(S-SnO_(2))quantum dots(QDs)(≈3 nm)encapsulated in an N,S codoped carbon fiber networks(S-SnO_(2)-CFN)are rationally fabricated using a sequential freeze-drying,calcination,and S-doping strategy.Experimental analysis and density functional theory calculations reveal that the integration of S-SnO_(2) QDs with N,S codoped carbon fiber network remarkably decreases the adsorption energies of Na/K atoms in the interlayer of SnO_(2)-CFN,and the S doping can increase the conductivity of SnO_(2),thereby enhancing the ion transfer kinetics.The synergistic interaction between S-SnO_(2) QDs and N,S codoped carbon fiber network results in a composite with fast Na+/K+storage and extraordinary long-term cyclability.Specifically,the S-SnO_(2)-CFN delivers high rate capacities of 141.0 mAh g^(−1) at 20 A g^(−1) in SIBs and 102.8 mAh g^(−1) at 10 A g^(−1) in PIBs.Impressively,it delivers ultra-stable sodium storage up to 10,000 cycles at 5 A g^(−1) and potassium storage up to 5000 cycles at 2 A g^(−1).This study provides insights into constructing metal oxide-based carbon fiber network structures for high-performance electrochemical energy storage and conversion devices.
基金financially supported by the National Natural Science Foundation of China (Nos.U2002212,52102058,52204414,52204413,and 52204412)the National Key R&D Program of China (Nos.2021YFC1910504,2019YFC1907101,2019YFC1907103,and 2017YFB0702304)+7 种基金the Key R&D Program of Ningxia Hui Autonomous Region,China (Nos.2021BEG01003 and2020BCE01001)the Xijiang Innovation and Entrepreneurship Team,China (No.2017A0109004)the Macao Young Scholars Program (No.AM2022024),Chinathe Beijing Natural Science Foundation (Nos.L212020 and 2214073),Chinathe Guangdong Basic and Applied Basic Research Foundation,China (Nos.2021A1515110998 and 2020A1515110408)the China Postdoctoral Science Foundation (No.2022M710349)the Fundamental Research Funds for the Central Universities,China (Nos.FRF-BD-20-24A,FRF-TP-20-031A1,FRF-IC-19-017Z,and 06500141)the Integration of Green Key Process Systems MIIT and Scientific and Technological Innovation Foundation of Foshan,China(Nos.BK22BE001 and BK21BE002)。
文摘Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.
基金supported by National Research Foundation of Korea (NRF)funded by the Ministry of Education (2021R1A6A1A03039696,2022R1A2C2009412)
文摘Two-dimensional(2D)transition metal dichalcogenides(TMD)are atomically thin semiconductors with promising optoelectronic applications across the visible spectrum.However,their intrinsically weak light absorption and the low photoluminescence quantum yield(PLQY)restrict their performance and potential use,especially in ultraviolet(UV)wavelength light ranges.Quantum dots(QD)derived from 2D materials(2D/QD)provide efficient light absorption and emission of which energy can be tuned for desirable light wavelength.In this study,we greatly enhanced the photon absorption and PLQY of monolayer(1L)tungsten disulfide(WS_(2))in the UV range via hybridization with 2D/QD,particularly titanium nitride MXene QD(Ti_(2)N MQD)and graphitic carbon nitride QD(GCNQD).With the hybridization of MQD or GCNQD,1LWS_(2)showed a maximum PL enhancement by 15 times with 300 nm wavelength excitation,while no noticeable enhancement was observed when the excitation photon energy was less than the bandgap of the QD,indicating that UV absorption by the QD played a crucial role in enhancing the light emission of 1L-WS_(2)in our 0D/2D hybrid system.Our findings present a convenient method for enhancing the photo-response of 1L-WS_(2)to UV light and offer exciting possibilities for harvesting UV energy using 1L-TMD.
文摘The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.
基金supported by the National Key Research and Development Program of China“New Energy Project for Electric Vehicle”(2016YFB0100204)the National Natural Science Foundation of China(Nos.51772030,21805011,51572011,51802012)+2 种基金the Joint Funds of the National Natural Science Foundation of China(U1564206)Beijing Key Research and Development Plan(Z181100004518001)China Postdoctoral Science Foundation(Nos.2017M620637,2018M643697,2019T120930).
文摘MXenes,a new family of two-dimensional(2D)materials with excellent electronic conductivity and hydrophilicity,have shown distinctive advantages as a highly conductive matrix material for lithium-ion battery anodes.Herein,a facile electrostatic self-assembly of SnO2 quantum dots(QDs)on Ti3C2Tx MXene sheets is proposed.The as-prepared SnO2/MXene hybrids have a unique 0D-2D structure,in which the 0D SnO2 QDs(~4.7 nm)are uniformly distributed over 2D Ti3C2Tx MXene sheets with controllable loading amount.The SnO2 QDs serve as a high capacity provider and the“spacer”to prevent the MXene sheets from restacking;the highly conductive Ti3C2Tx MXene can not only provide efficient pathways for fast transport of electrons and Li ions,but also buffer the volume change of SnO2 during lithiation/delithiation by confining SnO2 QDs between the MXene nanosheets.Therefore,the 0D-2D SnO2 QDs/MXene hybrids deliver superior lithium storage properties with high capacity(887.4 mAh g?1 at 50 mA g?1),stable cycle performance(659.8 mAh g?1 at 100 mA g?1 after 100 cycles with a capacity retention of 91%)and excellent rate performance(364 mAh g?1 at 3 A g?1),making it a promising anode material for lithium-ion batteries.
文摘H2 is an important energy carrier for replacing fossil fuel in the future due to its high energy density and environmental friendliness.As a sustainable H2-generation method,photocatalytic H2 production by water splitting has attracted much interest.Here,oil-soluble ZnxCd1-xS quantum dot(ZCS QD)with a uniform particle size distribution were prepared by a hot-injection method.However,no photocatalytic H2-production activity was observed for the oil-soluble ZCS QD due to its hydrophobicity.Thus,the oil-soluble ZCS QD was converted into a water-soluble ZCS QD by a ligand-exchange method.The water-soluble ZCS QD exhibited excellent photocatalytic H2-production performance in the presence of glycerin and Ni^2+,with an apparent quantum efficiency of 15.9%under irradiation of 420 nm light.Further,the photocatalytic H2-generation activity of the ZCS QD was~10.7 times higher than that of the ZnxCd1-xS relative samples prepared by the conventional co-precipitation method.This work will inspire the design and fabrication of other semiconductor QD photocatalysts because QD exhibits excellent separation efficiency for photogenerated electron-hole pairs due to its small crystallite size.
基金supported by the National Natural Science Foundation of China(51602207)the Doctoral Scientific Research Foundation of Liaoning Province(20170520011)+3 种基金the Program for Liaoning Excellent Talents in Universities(LR2017074)the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-201810)Fuzhou University,the Scientific Research Project of the Educational Department of Liaoning Province(LQN201712)Shenyang Excellent Talents in Universities(RC180211)~~
文摘Photocatalytic water splitting is a promising method for hydrogen production.Numerous efficient photocatalysts have been synthesized and utilized.However,photocatalysts without a noble metal as the co-catalyst have been rarely reported.Herein,a CoP co-catalyst-modified graphitic-C3N4(g-C3N4/CoP)is investigated for photocatalytic water splitting to produce H2.The g-C3N4/CoP composite is synthesized in two steps.The first step is related to thermal decomposition,and the second step involves an electroless plating technique.The photocatalytic activity for hydrogen evolution reactions of g-C3N4 is distinctly increased by loading the appropriate amount of CoP quantum dots(QDs).Among the as-synthesized samples,the optimized one(g-C3N4/CoP-4%)shows exceptional photocatalytic activity as compared with pristine g-C3N4,generating H2 at a rate of 936μmol g^-1 h^-1,even higher than that of g-C3N4 with 4 wt%Pt(665μmol g^-1 h^-1).The UV-visible and optical absorption behavior confirms that g-C3N4 has an absorption edge at 451 nm,but after being composited with CoP,g-C3N4/CoP-4%has an absorption edge at 497 nm.Furthermore,photoluminescence and photocurrent measurements confirm that loading CoP QDs to pristine g-C3N4 not only enhances the charge separation,but also improves the transfer of photogenerated e--h+pairs,thus improving the photocatalytic performance of the catalyst to generate H2.This work demonstrates a feasible strategy for the synthesis of highly efficient metal phosphide-loaded g-C3N4 for hydrogen generation.
基金financially supported by the National Natural Science Foundation of China(U1510126,21676115)the Natural Science Foundation of Jiangsu Provincial(BK20180884)~~
文摘Herein,we report a novel ternary material comprised of Ag nanoparticles and carbon quantum dots(CDs),which are co-loaded using 2D Bi4Ti3O12(BIT)sheets.In this system,Ag can be applied as excited electron-hole pairs in the Bi4Ti3O12 by transferring the plasmonic energy from the metal to the semiconductor.The surface plasmon resonance of Ag can promote the electron transfer properties of the CDs,thereby improving the separation efficiency of the electron-hole pairs.Meanwhile,the CDs can act as an electron buffer to decrease the recombination rate of the electron hole.Moreover,CDs are prepared using a biomaterial,which can provide a chemical group to enhance the electron transfer and connection.The synergistic effects of CDs,Ag,and BIT enable the design of a photocatalytic application with a remarkably improved efficiency and operational stability.
文摘Development of efficient heterostructured photocatalysts that respond to visible light remains a considerable challenge.We herein show the synthesis of ZnIn2S4/carbon quantum dot hybrid photocatalysts with flowerlike microspheres via a facile solvothermal method.The ZnIn2S4/carbon quantum dot flowerlike microspheres display enhanced photocatalytic and photoelectrochemical activity compared with that of pure ZnIn2S4.With a content of only 0.5 wt%carbon quantum dots,93%of Cr(VI)is reduced under visible‐light irradiation at 40 min.As a co‐catalyst,the carbon quantum dots improve the light absorption and lengthen the lifetime of charge carriers,consequently enhancing the photocatalytic and photoelectrochemical activity.
基金This work is supported by National Natural Science Foundation of China(No.92163135,11904098,51972105,U19A2090 and 62090035)Hunan Provincial Natural Science Foundation of China(No.2019JJ30004)+1 种基金Hunan International Innovation Cooperation Platform(No.2018WK4004)Key Program of Science and Technology Department of Hunan Province(Nos.2019XK2001,2020XK2001).
文摘Mix-dimensional van der Waals heterostructures(vdWHs)have inspired worldwide interests and efforts in the field of ad-vanced electronics and optoelectronics.The fundamental understanding of interfacial charge transfer is of vital import-ance for guiding the design of functional optoelectronic applications.In this work,type-Ⅱ0D-2D CdSe/ZnS quantum dots/MoS_(2)vdWHs are designed to study the light-triggered interfacial charge behaviors and enhanced optoelectronic performances.From spectral measurements in both steady and transient states,the phenomena of suppressed photolu-minescence(PL)emissions,shifted Raman signals and changed PL lifetimes provide strong evidences of efficient charge transfer at the 0D-2D interface.A series of spectral evolutions of heterostructures with various QDs overlapping concentrations at different laser powers are analyzed in details,which clarifies the dynamic competition between exciton and trion during an efficient doping of 3.9×10^(13)cm^(−2).The enhanced photoresponses(1.57×10^(4)A·W^(-1))and detectivities(2.86×10^(11)Jones)in 0D/2D phototransistors further demonstrate that the light-induced charge transfer is still a feasible way to optimize the performance of optoelectronic devices.These results are expected to inspire the basic understand-ing of interfacial physics at 0D/2D interfaces,and shed the light on promoting the development of mixed-dimensional op-toelectronic devices in the near future.
基金Project supported by NSFC (10171035) and Hubei University Youth Foundation (97A012)
文摘In this paper by Sobolev imbedding theorem and characterization theorem of generalized operators the existence of P(φ)2 quantum fields as generalized operators is obtained and a rigorous mathematical interpretation of renormalization procedure is given under white noise theory.
基金financial supports from National Natural Science Foundation of China (51802269 and 21773138)Chongqing Natural Science Foundation (cstc2018jcyjAX0624)+1 种基金Fundamental Research Funds for the Central Universities (XDJK2019AA002)Venture & Innovation Support Program for Chongqing overseas returnees (cx2018027)。
文摘Smartcombination of manifold carbonaceous materials with admirable functionalities(like full of pores/functional groups,high specific surface area) is still a mainstream/preferential way to address knotty issues of polysulfides dissolution/shuttling and poor electrical conductivity for S-based cathodes.However,extensive use of conductive carbon fillers in cell designs/technology would induce electrolytic overconsumption and thereby shelve high-energy-density promise of Li-S cells.To cut down carbon usage,we propose the incorporation of multi-functionalized NiFe2O4 quantum dots(QDs) as affordable additive substitutes.The total carbon content can be greatly curtailed from 26%(in traditional S/C cathodes) to a low/commercial mass ratio(~5%).Particularly,note that NiFe2O4 QDs additives own superb chemisorption interactions with soluble Li2Sn molecules and proper catalytic features facilitating polysulfide phase conversions and can also strengthen charge-transfer capability/redox kinetics of overall cathode systems.Benefiting from these intrinsic properties,such hybrid cathodes demonstrate prominent rate behaviors(decent capacity retention with ~526 mAh g^-1 even at 5 A g^-1) and stable cyclic performance in LiNO3-free electrolytes(only ~0.08% capacity decay per cycle in 500 cycles at 0.2 A g^-1).This work may arouse tremendous research interest in seeking other alternative QDs and offer an economical/more applicable methodology to construct low-carbon-content electrodes for practical usage.
基金supported by the Equipment Pre-research Fund under the Equipment Development Department(EDD)of China’s Central Military Commission(CMC)(Grant No.1422030209)the Innovation Team Program of China North Industries Group Corporation Limited(NORINCO)Group(Grant No.2017CX024)the National Natural Science Foundation of China(Grant Nos.61106098 and 11864044)
文摘Tin sulfide quantum dots(SnS_2 QDs) are n-type wide band gap semiconductor. They exhibit a high optical absorption coefficient and strong photoconductive property in the ultraviolet and visible regions. Therefore, they have been found to have many potential applications, such as gas sensors, resistors, photodetectors, photocatalysts, and solar cells. However, the existing preparation methods for SnS_2 QDs are complicated and require a high temperature and high pressure environments; hence they are unsuitable for large-scale industrial production. An effective method for the preparation of monodispersed SnS_2 QDs at normal temperature and pressure will be discussed in this paper. The method is facile, green,and low-cost. In this work, the structure, morphology, optical, electrical, and photoelectric properties of SnS_2 QDs are studied. The synthesized SnS_2 QDs are homogeneous in size and exhibit good photoelectric performance. A photoelectric detector based on the SnS_2 QDs is fabricated and its J–V and C–V characteristics are also studied. The detector responds under λ = 365 nm light irradiation and reverse bias voltage. Its detectivity approximately stabilizes at 1011 Jones at room temperature. These results show the possible use of SnS_2 QDs in photodetectors.
基金supported by National Natural Science Foundation of China(51672113)Six Talent Peaks Project in Jiangsu Province(2015-XCL-026)+3 种基金Natural Science Foundation of Jiangsu Province(BK20171299)State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-KF201705),Fuzhou UniversityState Key Laboratory of Advanced Technology for Materials Synthesis and Processing(2016-KF-10),Wuhan University of Technologythe Qing Lan Project Foundation of Jiangsu Province~~
文摘Graphite‐like carbon nitride(g‐C3N4)‐based compounds have attracted considerable attention because of their excellent photocatalytic performance.In this work,a novel direct Z‐scheme system constructed from two‐dimensional(2D)g‐C3N4nanoplates and zero‐dimensional(0D)MoS2quantum dots(QDs)was prepared through the combination of a hydrothermal process and microemulsion preparation.The morphologies,structures,and optical properties of the as‐prepared photocatalysts were characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,atomic force microscopy,transmission electron microscopy,and UV‐vis diffuse reflectance spectroscopy.In addition,the photocatalytic performances of the prepared2D/0D hybrid composites were evaluated based on the photodegradation of rhodamine B under visible‐light irradiation.The results demonstrated that the introduction of MoS2QDs to g‐C3N4greatly enhanced the photocatalytic efficiency.For the optimum7%MoS2QD/g‐C3N4photocatalyst,the degradation rate constant was8.8times greater than that of pure g‐C3N4under visible‐light irradiation.Photocurrent and electrochemical impedance spectroscopy results further demonstrated that the MoS2QD/g‐C3N4composites exhibited higher photocurrent density and lower chargetransfer resistance than those of the pure g‐C3N4or MoS2QDs.Active species trapping,terephthalic acid photoluminescence,and nitro blue tetrazolium transformation experiments were performed to investigate the evolution of reactive oxygen species,including hydroxyl radicals and superoxide radicals.The possible enhanced photocatalytic mechanism was attributed to a direct Z‐scheme system,which not only can increase the separation efficiency of photogenerated electron‐hole pairs but also possesses excellent oxidation and reduction ability for high photocatalytic performances.This work provides an effective synthesis approach and insight to help develop other C3N4‐based direct Z‐scheme photocatalytic systems for environmental purification and energy conversion.
基金The project supported by the Natural Science Foundation of Sichuan Normal University
文摘The quantum properties of O(2,2) string cosmology with a dilaton potential are studied in this paper. The cosmological solutions are obtained on three-dlmensional space-time. Moreover, the quantum probability of transition between two duality universe is calculated through a Wheeler-De Witt approach.
文摘Depositing a cocatalyst has proven to be an important strategy for improving the photoelectrochemical(PEC)water-splitting efficiency of photoanodes.In this study,Ni(OH)2 quantum dots(Ni(OH)2 QDs)were deposited in situ onto anα-Fe_(2)O_(3)photoanode via a chelation-mediated hydrolysis method.The photocurrent density of the Ni(OH)2 QDs/α-Fe_(2)O_(3)photoanode reached 1.93 mA·cm^(−2)at 1.23 V vs.RHE,which is 3.5 times that ofα-Fe_(2)O_(3),and an onset potential with a negative shift of ca.100 mV was achieved.More importantly,the Ni(OH)2 QDs exhibited excellent stability in maintaining PEC water oxidation at a high current density,which is attributed to the ultra-small crystalline size,allowing for the rapid acceptance of holes fromα-Fe_(2)O_(3)to Ni(OH)_(2)QDs,formation of active sites for water oxidation,and hole transfer from the active sites to water molecules.Further(photo)electrochemical analysis suggests that Ni(OH)_(2)QDs not only provide maximal active sites for water oxidation but also suppress charge recombination by passivating the surface states ofα-Fe_(2)O_(3),thereby significantly enhancing the water oxidation kinetics over theα-Fe_(2)O_(3)surface.
文摘A novel visible light‐responsive homogeneous catalyst based on Bi2WO6 quantum dots(QDs‐BWO)/Bi2WO6 nanosheets(N‐BWO)was successfully fabricated through a simple hydrothermal method.A variety of techniques were employed to investigate the morphology,structure,and electronic properties of the samples.The photocatalytic performance of the QDs/N‐BWO materials was investigated by monitoring the degradation of 4‐chlorophenol and rhodamine B under visible light irradiation.The as‐fabricated QDs/N‐BWO materials showed higher photocatalytic activity than both QDs‐BWO and N‐BWO.The results reveal that the incorporation of the QDs improved the separation efficiency of electron‐hole pairs,leading to enhanced photocatalytic activity.Moreover,the results of quenching experiments show that·O2– species played a major role in the degradation process.This work provides an important reference for the fabrication of homogeneous catalysts with high performance in the degradation of different types of pollutants.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant No.E2017203029)。
文摘Mn:ZnSe/ZnS/L-Cys core-shell quantum dots(QDs)sensitized La-doped nano-TiO2 thin film(QDSTF)was prepared.X-ray photoelectron spectroscopy(XPS),nanosecond transient photovoltaic(TPV),and steady state surface photovoltaic(SPV)technologies were used for probing the photoelectron behaviors in the Mn-doped QDSTF.The results revealed that the Mn-doped QDSTF had a p-type TPV characteristic.The bottom of the conduction band of the QDs as a sensitizer was just 0.86 eV above that of the La-doped nano-TiO2 thin film,while the acceptor level of the doped Mn2+ions was located at about 0.39 eV below and near the bottom of the conduction band of the QDs.The intensity of the SPV response of the Mn-doped QDSTF at a specific wavelength was ~2.1 times higher than that of the undoped QDSTF.The region of the SPV response of the Mn-doped QDSTF was extended by 191 nm to almost the whole visible region as compared with the undoped QDSTF one.And the region of the TPV response of the Mn-doped QDSTF was also obviously wider than that of the undoped QDSTF.These PV characteristics of the Mn-doped QDSTF may be due to the prolonged lifetime and extended diffusion length of photogenerated free charge carriers injected into the sensitized La-doped nano-TiO2 thin film.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the South Korean Ministries of Education(NRF-2021R1I1A3059469,NRF2018R1A6A1A03024962)Science and ICT(NRF-2020R1A2C2100746)。
文摘Solar-driven photocatalytic CO_(2) reduction to produce valuable chemicals and fuels offers an attractive strategy in alleviating the energy crisis.Pt quantum dots(PtQDs)with TiO_(2) nanowire(TiO_(2)NW)/Ti_(3)C_(2) MXene heterostructures(Pt-TiO_(2)NW/Ti_(3)C_(2)) with tight interfacial contacts between the various components were prepared at room temperature via oxidation reactions.The incorporated PtQDs played crucial roles as electron conduction bridges supported by the cocatalyst effect,effectively enhancing the separation efficiencies of photoinduced electron/hole pairs and improving CO_(2) reduction under simulated solar light irradiation.The Pt-TiO_(2)NW/Ti_(3)C_(2) heterostructures exhibited remarkable carbon monoxide(CO)and methane(CH_(4)) production at respective rates of 38.14 and 36.15μmol g^(-1)after 10 h of simulated solar light irradiation,an apparent quantum yield of 1.68%,and 79.2%selectivity for CH4.The photocatalytic activities of the Pt-TiO_(2) NW/Ti_(3)C_(2) heterostructures for CO_(2) reduction were significantly enhanced compared to those of TiO_(2)NW/Ti_(3)C_(2) and the single-component photocatalysts,and they exhibited remarkable stabilities even after five cycles.In addition,the densities of states and electronic characteristics of Ti_(3)C_(2) MXene and Pt-TiO_(2)NW/Ti_(3)C_(2) were studied using density functional theory,and a synergistic mechanism of the improvement in CO_(2) photoreduction is proposed.