S-adenosyl-L-methionine (SAM) acts as a methyl donor for methylation reactions and participates in the synthesis of glutathione. SAM is also a key metabolite that regulates hepatocyte growth, differentiation and death...S-adenosyl-L-methionine (SAM) acts as a methyl donor for methylation reactions and participates in the synthesis of glutathione. SAM is also a key metabolite that regulates hepatocyte growth, differentiation and death. Hepatic SAM levels are decreased in animal models of alcohol liver injury and in patients with alcohol liver disease or viral cirrhosis. This review describes the protection by SAM against alcohol and cytochrome P450 2E1-dependent cytotoxicity both in vitro and in vivo and evaluates mechanisms for this protection.展开更多
AIM: To elucidate the mechanism(s) by which S-adenosyl-L-methionine(SAM) decreases hepatitis C virus(HCV) expression.METHODS: We examined the effects of SAM on viral expression using an HCV subgenomic replicon cell cu...AIM: To elucidate the mechanism(s) by which S-adenosyl-L-methionine(SAM) decreases hepatitis C virus(HCV) expression.METHODS: We examined the effects of SAM on viral expression using an HCV subgenomic replicon cell culture system. Huh7 HCV-replicon cells were treated with 1 mmol/L SAM for different times(24-72 h), then total RNA and proteins were isolated. c DNA was synthesized and real time-PCR was achieved to quantify HCV-RNA, superoxide dismutase 1 and 2(SOD-1, SOD-2) catalase, thioredoxin 1, methionine adenosyltransferase 1A and 2A(MAT1A, MAT2A) expression, and GAPDH and RPS18 as endogenous genes. Expression of cellular and viral protein was evaluated by western-blot analysis using antibodies vs HCV-NS5 A, SOD-1, SOD-2, catalase, thioredoxin-1, MAT1 A, MAT2 A, GAPDH and actin. Total glutathione levels were measured at different times by Ellman's recycling method(0-24 h). Reactive oxidative species(ROS) levels were quantified by the dichlorofluorescein assay(0-48 h); Pyrrolidin dithiocarbamate(PDTC) was tested as an antioxidant control and H2O2 as a positive oxidant agent.RESULTS: SAM exposition decreased HCV-RNA levels 50%-70% compared to non-treated controls(24-72 h). SAM induced a synergic antiviral effect with standard IFN treatment but it was independent of IFN signaling. In addition, 1 mmol/L SAM exposition did not modify viral RNA stability, but it needs cellular translation machinery in order to decrease HCV expression. Total glutathione levels increased upon SAM treatment in HCV-replicon cells. Transcriptional antioxidant enzyme expression(SOD-1, SOD-2 and thioredoxin-1) was increased at different times but interestingly, there was no significant change in ROS levels upon SAM treatment, contrary to what was detected with PDTC treatment, where an average 40% reduction was observed in exposed cells. There was a turnover from MAT1A/MAT2 A, since MAT1 A expression was increased(2.5 fold-times at 48 h) and MAT2 A was diminished(from 24 h) upon SAM treatment at both the transcriptional and translational level. CONCLUSION: A likely mechanism(s) by which SAM diminish HCV expression could involve modulating antioxidant enzymes, restoring biosynthesis of glutathione and switching MAT1/MAT2 turnover in HCV expressing cells.展开更多
S-Adenosyl-L-methionine(SAM) is a cofactor serving as a methyl donor in numerous enzymatic reactions. It has been reported that SAM has the potential to modify antioxidant-enzymes, glutathione-biosynthesis and methion...S-Adenosyl-L-methionine(SAM) is a cofactor serving as a methyl donor in numerous enzymatic reactions. It has been reported that SAM has the potential to modify antioxidant-enzymes, glutathione-biosynthesis and methionine adenosyltransferases-1/2 in hepatitis C virus-expressing cells at millimolar concentrations. The efficacy of SAM at micromolar concentrations and the underlying mechanisms remain to be demonstrated.展开更多
HL-60 cells have been induced with differentiation index 16% by S-adenosyl-L-methionine (SAM) as in-ducer in the presence of optimum concentration of 10 μmol/L. The methylation level of genome DNA determined by HPLC ...HL-60 cells have been induced with differentiation index 16% by S-adenosyl-L-methionine (SAM) as in-ducer in the presence of optimum concentration of 10 μmol/L. The methylation level of genome DNA determined by HPLC is increased during cell differentiation. When restriction endonuclease Hae Ⅲ, Sma Ⅰ, Sal Ⅰ, Xho Ⅰ and Hind III which are sensitive to 5-methylcytosirte were used to cleave the genome DNA, a resistance effect was found. The interaction between DNA and DNA binding proteins is changed by using gel retarding test.展开更多
基金Supported by NIH/NIAAA Grants No. AA017425Supported by NIH/NIAAA Grants No. AA018790
文摘S-adenosyl-L-methionine (SAM) acts as a methyl donor for methylation reactions and participates in the synthesis of glutathione. SAM is also a key metabolite that regulates hepatocyte growth, differentiation and death. Hepatic SAM levels are decreased in animal models of alcohol liver injury and in patients with alcohol liver disease or viral cirrhosis. This review describes the protection by SAM against alcohol and cytochrome P450 2E1-dependent cytotoxicity both in vitro and in vivo and evaluates mechanisms for this protection.
基金Supported by CONACYT-Mexico,grant register CB2010-01-155082 to Rivas-Estilla AM
文摘AIM: To elucidate the mechanism(s) by which S-adenosyl-L-methionine(SAM) decreases hepatitis C virus(HCV) expression.METHODS: We examined the effects of SAM on viral expression using an HCV subgenomic replicon cell culture system. Huh7 HCV-replicon cells were treated with 1 mmol/L SAM for different times(24-72 h), then total RNA and proteins were isolated. c DNA was synthesized and real time-PCR was achieved to quantify HCV-RNA, superoxide dismutase 1 and 2(SOD-1, SOD-2) catalase, thioredoxin 1, methionine adenosyltransferase 1A and 2A(MAT1A, MAT2A) expression, and GAPDH and RPS18 as endogenous genes. Expression of cellular and viral protein was evaluated by western-blot analysis using antibodies vs HCV-NS5 A, SOD-1, SOD-2, catalase, thioredoxin-1, MAT1 A, MAT2 A, GAPDH and actin. Total glutathione levels were measured at different times by Ellman's recycling method(0-24 h). Reactive oxidative species(ROS) levels were quantified by the dichlorofluorescein assay(0-48 h); Pyrrolidin dithiocarbamate(PDTC) was tested as an antioxidant control and H2O2 as a positive oxidant agent.RESULTS: SAM exposition decreased HCV-RNA levels 50%-70% compared to non-treated controls(24-72 h). SAM induced a synergic antiviral effect with standard IFN treatment but it was independent of IFN signaling. In addition, 1 mmol/L SAM exposition did not modify viral RNA stability, but it needs cellular translation machinery in order to decrease HCV expression. Total glutathione levels increased upon SAM treatment in HCV-replicon cells. Transcriptional antioxidant enzyme expression(SOD-1, SOD-2 and thioredoxin-1) was increased at different times but interestingly, there was no significant change in ROS levels upon SAM treatment, contrary to what was detected with PDTC treatment, where an average 40% reduction was observed in exposed cells. There was a turnover from MAT1A/MAT2 A, since MAT1 A expression was increased(2.5 fold-times at 48 h) and MAT2 A was diminished(from 24 h) upon SAM treatment at both the transcriptional and translational level. CONCLUSION: A likely mechanism(s) by which SAM diminish HCV expression could involve modulating antioxidant enzymes, restoring biosynthesis of glutathione and switching MAT1/MAT2 turnover in HCV expressing cells.
文摘S-Adenosyl-L-methionine(SAM) is a cofactor serving as a methyl donor in numerous enzymatic reactions. It has been reported that SAM has the potential to modify antioxidant-enzymes, glutathione-biosynthesis and methionine adenosyltransferases-1/2 in hepatitis C virus-expressing cells at millimolar concentrations. The efficacy of SAM at micromolar concentrations and the underlying mechanisms remain to be demonstrated.
文摘HL-60 cells have been induced with differentiation index 16% by S-adenosyl-L-methionine (SAM) as in-ducer in the presence of optimum concentration of 10 μmol/L. The methylation level of genome DNA determined by HPLC is increased during cell differentiation. When restriction endonuclease Hae Ⅲ, Sma Ⅰ, Sal Ⅰ, Xho Ⅰ and Hind III which are sensitive to 5-methylcytosirte were used to cleave the genome DNA, a resistance effect was found. The interaction between DNA and DNA binding proteins is changed by using gel retarding test.