期刊文献+
共找到1,959篇文章
< 1 2 98 >
每页显示 20 50 100
High impedance fault detection in distribution network based on S-transform and average singular entropy 被引量:2
1
作者 Xiaofeng Zeng Wei Gao Gengjie Yang 《Global Energy Interconnection》 EI CAS CSCD 2023年第1期64-80,共17页
When a high impedance fault(HIF)occurs in a distribution network,the detection efficiency of traditional protection devices is strongly limited by the weak fault information.In this study,a method based on S-transform... When a high impedance fault(HIF)occurs in a distribution network,the detection efficiency of traditional protection devices is strongly limited by the weak fault information.In this study,a method based on S-transform(ST)and average singular entropy(ASE)is proposed to identify HIFs.First,a wavelet packet transform(WPT)was applied to extract the feature frequency band.Thereafter,the ST was investigated in each half cycle.Afterwards,the obtained time-frequency matrix was denoised by singular value decomposition(SVD),followed by the calculation of the ASE index.Finally,an appropriate threshold was selected to detect the HIFs.The advantages of this method are the ability of fine band division,adaptive time-frequency transformation,and quantitative expression of signal complexity.The performance of the proposed method was verified by simulated and field data,and further analysis revealed that it could still achieve good results under different conditions. 展开更多
关键词 High impedance fault(HIF) Wavelet packet transform(WPT) s-transform(ST) Singular entropy(SE)
下载PDF
Recognition of Hybrid PQ Disturbances Based on Multi-Resolution S-Transform and Decision Tree
2
作者 Feng Zhao Di Liao +1 位作者 Xiaoqiang Chen Ying Wang 《Energy Engineering》 EI 2023年第5期1133-1148,共16页
Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on mult... Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on multiresolution S-transform and decision tree was proposed.Firstly,according to IEEE standard,the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given,and the disturbance waveform samples are generated in batches.Then,in order to improve the recognition accuracy,the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis.On this basis,five disturbance time-frequency domain features are extracted,which quantitatively reflect the characteristics of the analyzed power quality disturbance signal,which is less than the traditional method based on S-transform.Finally,three classifiers such as K-nearest neighbor,support vector machine and decision tree algorithm are used to effectively complete the identification of power quality composite disturbances.Simulation results showthat the classification accuracy of decision tree algorithmis higher than that of K-nearest neighbor and support vector machine.Finally,the proposed method is compared with other commonly used recognition algorithms.Experimental results show that the proposedmethod is effective in terms of detection accuracy,especially for combined PQ interference. 展开更多
关键词 Hybrid power quality disturbances disturbances recognition multi-resolution s-transform decision tree
下载PDF
Fractional S-transform-part 2:Application to reservoir prediction and fluid identification
3
作者 杜正聪 胥德平 张金明 《Applied Geophysics》 SCIE CSCD 2016年第2期343-352,419,共11页
The fractional S-transform (FRST) has good time-frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals... The fractional S-transform (FRST) has good time-frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals have different optimal fractional parameters which is not conducive to multichannel seismic data processing. Thus, we first decompose the common-frequency sections by the FRST and then we analyze the low-frequency shadow. Second, the combination of the FRST and blind-source separation is used to obtain the independent spectra of the various geological features. The seismic data interpretation improves without requiring to estimating the optimal fractional parameters. The top and bottom of a limestone reservoir can be clearly recognized on the common-frequency section, thus enhancing the vertical resolution of the analysis of the low-frequency shadows compared with traditional ST. Simulations suggest that the proposed method separates the independent frequency information in the time-fractional-frequency domain. We used field seismic and well data to verify the proposed method. 展开更多
关键词 fractional s-transform FASTICA fractional time-frequency analysis spectral decomposition
下载PDF
Enhancing the resolution of seismic data based on the generalized S-transform 被引量:3
4
作者 Tian Jianhua Song Wei Yang Feizhou 《Petroleum Science》 SCIE CAS CSCD 2009年第2期153-157,共5页
In this paper, we analyze the seismic signal in the time-frequency domain using the generalized S-transform combined with spectrum modeling. Without assuming that the reflection coefficients are random white noise as ... In this paper, we analyze the seismic signal in the time-frequency domain using the generalized S-transform combined with spectrum modeling. Without assuming that the reflection coefficients are random white noise as in the conventional resolution-enhanced techniques, the wavelet which changes with time and frequency was simulated and eliminated. After using the inverse S-transform for the processed instantaneous spectrum, the signal in the time domain was obtained again with a more balanced spectrum and broader frequency band. The quality of seismic data was improved without additional noise. 展开更多
关键词 Time-frequency domain generalized s-transform spectrum modeling instantaneous spectrum balanced spectrum
下载PDF
A Protection Method of VSC-HVDC Cables Based on Generalized S-Transform 被引量:2
5
作者 Weishi Man Xiaoman Bei Zhiyu Zhang 《Energy and Power Engineering》 2021年第4期1-10,共10页
<div style="text-align:justify;"> Generalized S-transform is a time-frequency analysis method which has higher resolution than S-transform. It can precisely extract the time-amplitude characteristics o... <div style="text-align:justify;"> Generalized S-transform is a time-frequency analysis method which has higher resolution than S-transform. It can precisely extract the time-amplitude characteristics of different frequency components in the signal. In this paper, a novel protection method for VSC-HVDC (Voltage source converter based high voltage DC) based on Generalized S-transform is proposed. Firstly, extracting frequency component of fault current by Generalized S-transform and using mutation point of high frequency to determine the fault time. Secondly, using the zero-frequency component of fault current to eliminate disturbances. Finally, the polarity of sudden change currents in the two terminals is employed to discriminate the internal and external faults. Simulations in PSCAD/EMTDC and MATLAB show that the proposed method can distinguish faults accurately and effectively. </div> 展开更多
关键词 Generalized s-transform VSC-HVDC Phase-Mode Transformation DC Cable Protection
下载PDF
Detection and correction of level echo based on generalized S-transform and singular value decomposition 被引量:1
6
作者 ZHU Tianliang WANG Xiaopeng WANG Qi 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期442-448,共7页
The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material... The echo of the material level is non-stationary and contains many singularities.The echo contains false echoes and noise,which affects the detection of the material level signals,resulting in low accuracy of material level measurement.A new method for detecting and correcting the material level signal is proposed,which is based on the generalized S-transform and singular value decomposition(GST-SVD).In this project,the change of material level is regarded as the low speed moving target.First,the generalized S-transform is performed on the echo signals.During the transformation process,the variation trend of window of the generalized S-transform is adjusted according to the frequency distribution characteristics of the material level echo signal,achieving the purpose of detecting the signal.Secondly,the SVD is used to reconstruct the time-frequency coefficient matrix.At last,the reconstructed time-frequency matrix performs an inverse transform.The experimental results show that the method can accurately detect the material level echo signal,and it can reserve the detailed characteristics of the signal while suppressing the noise,and reduce the false echo interference.Compared with other methods,the material level measurement error does not exceed 4.01%,and the material level measurement accuracy can reach 0.40%F.S. 展开更多
关键词 echo signal false echo generalized s-transform singular value decomposition(SVD) level measurement
下载PDF
Comparison of ICA and WT with S-transform based method for removal of ocular artifact from EEG signals 被引量:1
7
作者 Kedarnath Senapati Aurobinda Routray 《Journal of Biomedical Science and Engineering》 2011年第5期341-351,共11页
Ocular artifacts are most unwanted disturbance in electroencephalograph (EEG) signals. These are characterized by high amplitude but have overlap-ping frequency band with the useful signal. Hence, it is difficult to r... Ocular artifacts are most unwanted disturbance in electroencephalograph (EEG) signals. These are characterized by high amplitude but have overlap-ping frequency band with the useful signal. Hence, it is difficult to remove the ocular artifacts by traditional filtering methods. This paper proposes a new approach of artifact removal using S-transform (ST). It provides an instantaneous time-frequency repre-sentation of a time-varying signal and generates high magnitude S-coefficients at the instances of abrupt changes in the signal. A threshold function has been defined in S-domain to detect the artifact zone in the signal. The artifact has been attenuated by a suitable multiplying factor. The major advantage of ST-fil- tering is that the artifacts may be removed within a narrow time-window, while preserving the frequency information at all other time points. It also preserves the absolutely referenced phase information of the signal after the removal of artifacts. Finally, a com-parative study with wavelet transform (WT) and in-dependent component analysis (ICA) demonstrates the effectiveness of the proposed approach. 展开更多
关键词 EEG OCULAR ARTIFACT s-transform WAVELET Transform Independent Component Analysis
下载PDF
S-transformation based integrated approach for spectrum estimation, storage, and sensing in cognitive radio
8
作者 Pyari Mohan Pradhan Ganapati Panda 《Digital Communications and Networks》 SCIE 2019年第3期160-169,共10页
Cognitive Radio (CR) uses the principle of dynamic spectrum allocation to improve the utilization of spectrum bands. The estimation of missing data is essential for maintaining an uninterrupted quality of service in t... Cognitive Radio (CR) uses the principle of dynamic spectrum allocation to improve the utilization of spectrum bands. The estimation of missing data is essential for maintaining an uninterrupted quality of service in the CR. However, the existing methods are not suitable for interpolating missing data in high frequency signals. The storage of spectrum occupancy information is crucial for learning the spectrum usage and prediction. The existing techniques for wideband spectrum sensing suffer from poor edge detection capabilities. This paper proposes an STransformation (ST) based approach to solve these problems. For missing samples, the proposed method improves the accuracy of estimation. The ST can also be used to store the spectrum occupancy information. The simulation results show that the proposed scheme outperforms others by improving the accuracy of edge detection. Further, the simple implementation of the ST in the frequency domain is an advantage for the real time application. 展开更多
关键词 Cognitive radio s-transformation MISSING data estimation Wideband SENSING Spectrum OCCUPANCY
下载PDF
Characteristic Analysis of White Gaussian Noise in S-Transformation Domain
9
作者 Xinliang Zhang Yue Qi Mingzhe Zhu 《Journal of Computer and Communications》 2014年第2期20-24,共5页
The characteristic property of white Gaussian noise (WGN) is derived in S-transformation domain. The results show that the distribution of normalized S-spectrum of WGN follows X2?distribution with two degrees of freed... The characteristic property of white Gaussian noise (WGN) is derived in S-transformation domain. The results show that the distribution of normalized S-spectrum of WGN follows X2?distribution with two degrees of freedom. The conclusion has been confirmed through both theoretical derivations and numerical simulations. Combined with different criteria, an effective signal detection in S-transformation can be realized. 展开更多
关键词 Signal Detection s-transform WHITE GAUSSIAN Noise X2 Distribution
下载PDF
Power Supply Quality Analysis Using S-Transform and SVM Classifier
10
作者 Jiaqi Li M. V. Chilukuri 《Journal of Power and Energy Engineering》 2014年第4期438-447,共10页
In this paper, a SVM classifier based on S-Transform is presented for power quality disturbances classification. Firstly, seven types of PQ events are created using Matlab simulation. These signals are analyzed to det... In this paper, a SVM classifier based on S-Transform is presented for power quality disturbances classification. Firstly, seven types of PQ events are created using Matlab simulation. These signals are analyzed to detect and localize PQ events via S-Transform by visual inspection. Then five significant features of the PQ disturbances are extracted from the S-Transform output. Afterwards, PQ disturbance samples with the five features are fed to SVM for training and automatic classification. Besides, particle swarm optimization is implemented to improve the performance of SVM. The results of the classification indicate that SVM classifier is an effective mechanism to detect and classify power quality disturbances. 展开更多
关键词 POWER QUALITY DISTURBANCE s-transform SVM
下载PDF
Application of S-transform threshold filtering in Anhui experiment airgun sounding data de-noising 被引量:1
11
作者 Chenglong Zheng Xiaofeng Tian +2 位作者 Zhuoxin Yang Shuaijun Wang Zhenyu Fan 《Geodesy and Geodynamics》 2018年第4期320-327,共8页
As a relatively new method of processing non-stationary signal with high time-frequency resolution, S transform can be used to analyze the time-frequency characteristics of seismic signals. It has the following charac... As a relatively new method of processing non-stationary signal with high time-frequency resolution, S transform can be used to analyze the time-frequency characteristics of seismic signals. It has the following characteristics: its time-frequency resolution corresponding to the signal frequency, reversible inverse transform, basic wavelet that does not have to meet the permit conditions. We combined the threshold method, proposed the S-transform threshold filtering on the basis of S transform timefrequency filtering, and processed airgun seismic records from temporary stations in "Yangtze Program"(the Anhui experiment). Compared with the results of the bandpass filtering, the S transform threshold filtering can improve the signal to noise ratio(SNR) of seismic waves and provide effective help for first arrival pickup and accurate travel time. The first arrival wave seismic phase can be traced farther continuously, and the Pm seismic phase in the subsequent zone is also highlighted. 展开更多
关键词 S transform Time-frequency filtering Airgun data Threshold filtering DE-NOISING
下载PDF
K-S变换及其电网超谐波时频分析应用
12
作者 滕召胜 梁成斌 +2 位作者 唐求 张雷鹏 成达 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期128-136,共9页
依据FFT→优化窗→IFFT思路,突破线性时频变换的窗函数积分性能桎梏,实现高性能优化窗函数的线性时频变换应用,建立新型时频变换算法——K-S变换.对信号x(t)的FFT频谱向量进行频移处理后,与该频移点下Kaiser优化窗的频谱向量进行Hadamar... 依据FFT→优化窗→IFFT思路,突破线性时频变换的窗函数积分性能桎梏,实现高性能优化窗函数的线性时频变换应用,建立新型时频变换算法——K-S变换.对信号x(t)的FFT频谱向量进行频移处理后,与该频移点下Kaiser优化窗的频谱向量进行Hadamard乘积,再将乘积结果进行FFT逆变换(IFFT),构造出K-S变换复时频矩阵,由此获得x(t)的时间-频率-幅值、时间-频率-相位三维信息;给出逆变换的数学推导与局部性质、线性性质和变分辨率特性;0~150 kHz电网的稳态与时变超谐波信号仿真实验表明,K-S变换的时域、频域分辨能力均优于流行的短时傅里叶变换、S变换,具有优良的变分辨率性能;0~40 kHz超谐波信号的实测证明,基于K-S变换的超谐波电压幅值测量绝对误差均小于0.032 3 V. 展开更多
关键词 K-S变换 时频分析 Kaiser优化窗 变分辨率特性 电网超谐波
下载PDF
基于哨兵函数和S变换的风力机叶片材料损伤特性研究
13
作者 廖力达 舒王咏 +3 位作者 张芝铭 刘亮 冯飞 陈为强 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期656-663,共8页
利用声发射检测技术研究玻璃纤维增强环氧树脂复合材料的损伤特性,在此过程中,采用哨兵函数来表征该材料的损伤程度,并通过S变换和模糊C均值(FCM)聚类来分析声发射信号,从而获得材料的损伤特征。三点弯曲实验结束后对试件断口进行扫描... 利用声发射检测技术研究玻璃纤维增强环氧树脂复合材料的损伤特性,在此过程中,采用哨兵函数来表征该材料的损伤程度,并通过S变换和模糊C均值(FCM)聚类来分析声发射信号,从而获得材料的损伤特征。三点弯曲实验结束后对试件断口进行扫描电子显微镜(SEM)拍照来验证,可得:通过对SEM照片的分析得到基体开裂、纤维脱粘、分层破坏、纤维断裂4种损伤模式;对整个声发射事件进行哨兵函数分析,观察到试件在弯曲过程中哨兵函数曲线呈明显下降趋势;对依据哨兵函数划分的不同阶段的信号进行VMD降噪处理,然后采用S变换进行时频分析得到不同损伤的特征频率,最后采用FCM聚类进行验证。结果表明:哨兵函数值的突变可作为材料断裂的预警信号,材料损伤类型的识别可依据S变换的频率分布结果进行确定。 展开更多
关键词 风力机叶片 复合材料 声发射 损伤特性 哨兵函数 S变换
下载PDF
基于S变换双阈值法的汽车零部件载荷谱加速编辑
14
作者 姚凌云 林勇杰 李丽 《中国机械工程》 EI CAS CSCD 北大核心 2024年第2期215-220,共6页
针对S变换编辑法加速编辑效果不佳的问题,提出了一种基于S变换双阈值编辑方法。该方法先对载荷谱进行S变换以获取最大幅值谱,在以双阈值识别并保留的幅值谱片段为依据保留对应的载荷谱片段后,再将其拼接成加速后的载荷谱,最后对比分析S... 针对S变换编辑法加速编辑效果不佳的问题,提出了一种基于S变换双阈值编辑方法。该方法先对载荷谱进行S变换以获取最大幅值谱,在以双阈值识别并保留的幅值谱片段为依据保留对应的载荷谱片段后,再将其拼接成加速后的载荷谱,最后对比分析S变换双阈值编辑法与S变换编辑法编辑的加速谱的统计参数、功率谱密度、穿级计数和疲劳仿真结果。研究结果表明,S变换双阈值编辑法可明显压缩原始载荷时间,且其压缩效率高于S变换编辑法,转向节的疲劳损伤和寿命分析误差更小,适用于汽车零部件载荷谱加速编辑研究。 展开更多
关键词 S变换 最大幅值谱 双阈值 疲劳计算 载荷谱加速编辑
下载PDF
天山中段2次6级地震前钻孔应变高频异常分析
15
作者 斯琴 关冬晓 +1 位作者 王斌 郭春生 《地震工程学报》 CSCD 北大核心 2024年第1期232-240,共9页
2014年以来,天山中段分量钻孔应变仪空前增多,这些高采样率的应变观测资料蕴含着丰富的构造信息。如何从高采样率观测资料中提取有效的前兆异常信息,是分析研究人员亟待解决的问题。文章通过对天山中段分量钻孔应变观测数据进行S变换和... 2014年以来,天山中段分量钻孔应变仪空前增多,这些高采样率的应变观测资料蕴含着丰富的构造信息。如何从高采样率观测资料中提取有效的前兆异常信息,是分析研究人员亟待解决的问题。文章通过对天山中段分量钻孔应变观测数据进行S变换和超限率分析发现,在天山中段2次6级地震前有5套应变资料出现高频信息异常。这些异常均在震前出现,随后达到峰值,临震前或地震后衰减,其中短周期异常信号主要集中在10~720 min频段,且S变换与超限率分析结果具有很好的同步性。结合精河地震震源区及附近的GPS分析结果,发现高频异常信息的分布与该地区地壳运动场具有很好的一致性,进一步验证了高频信息异常的可信度。 展开更多
关键词 钻孔应变 S变换 超限率分析 高频异常
下载PDF
基于S变换模能量分析的直流电缆故障测距
16
作者 夏向阳 刘奕玹 +3 位作者 刘雄 夏君山 王瑞琪 朱鹏 《高压电器》 CAS CSCD 北大核心 2024年第7期201-209,共9页
针对现有高压直流电缆故障定位方法故障定位精度低、定位模型泛化能力差等问题,文中在考虑电缆故障后故障点产生的暂态信号中含有丰富的故障信息的特征,提出一种时频域能量分析的故障测距方法。该方法利用多分类支持向量机(SVM)的特性... 针对现有高压直流电缆故障定位方法故障定位精度低、定位模型泛化能力差等问题,文中在考虑电缆故障后故障点产生的暂态信号中含有丰富的故障信息的特征,提出一种时频域能量分析的故障测距方法。该方法利用多分类支持向量机(SVM)的特性构建直流电缆故障定位模型,利用直流电缆相模解耦矩阵对电缆电气量解耦,并采用S变换进行时频域变换,将得到的模量构造模能量,将其作为样本对SVM模型训练。实验结果表明,所提方法对于不同故障类型在不同过渡电阻及不同位置故障下均可进行准确测距。 展开更多
关键词 S变换 SVM模型 相模解耦 模能量 故障定位
下载PDF
基于初始电流行波相位的多端混合直流线路单端保护方案
17
作者 戴志辉 牛宝仪 +3 位作者 邱宏逸 奚潇睿 韩哲宇 韦舒清 《高电压技术》 EI CAS CSCD 北大核心 2024年第2期649-659,I0003-I0010,共19页
为了解决LCC-MMC型多端混合直流系统线路保护存在的问题,提出一种基于初始电流行波相位的多端混合直流线路单端保护方案。首先基于多端混合直流输电线路发生不同位置和类型的故障工况,推导直流线路入射电压行波的解析式并计算其高频段... 为了解决LCC-MMC型多端混合直流系统线路保护存在的问题,提出一种基于初始电流行波相位的多端混合直流线路单端保护方案。首先基于多端混合直流输电线路发生不同位置和类型的故障工况,推导直流线路入射电压行波的解析式并计算其高频段相位。其次结合线路边界行波折反射原理和测量波阻抗特性,提出利用初始电压行波相位的区内外识别判据,并根据雷击和短路故障的入射行波低频相位特性构建雷击干扰判据。在PSCAD/EMTDC中搭建昆柳龙多端混合直流系统模型进行验证,证明所提方案仅利用单端量信息即可满足故障判断和选线要求,满足速度性的同时具备一定的抗过渡电阻能力(500Ω)。 展开更多
关键词 多端混合直流 电流行波相位 线路故障 S变换 单端量保护
下载PDF
经验小波变换和改进S变换结合的电能质量检测与识别方法
18
作者 李宁 王茹月 朱龙辉 《电气传动》 2024年第5期26-33,72,共9页
为分析不确定干扰因素影响下的实际电力网络电能质量问题,提出一种经验小波变换(EWT)和改进S变换相结合的电能质量检测与识别方法。该方法一方面利用EWT联合归一化直接正交(NDQ)算法和奇异值分解(SVD)算法准确提取调幅-调频分量的频率... 为分析不确定干扰因素影响下的实际电力网络电能质量问题,提出一种经验小波变换(EWT)和改进S变换相结合的电能质量检测与识别方法。该方法一方面利用EWT联合归一化直接正交(NDQ)算法和奇异值分解(SVD)算法准确提取调幅-调频分量的频率、幅值和时间参数,另一方面考虑到EWT算法在高噪声环境下瞬时幅值波动的问题,引入改进S变换提取高噪声干扰下的电能质量扰动时频信息,最后,基于EWT和改进S变换提取的扰动特征向量,利用基于改进粒子群优化算法(IPSO)优化支持向量机(SVM)的电能质量扰动识别分类器实现扰动类型的精确识别。仿真和实验表明所提方法在复合扰动识别分类时平均识别准确率为93.23%,且能够准确识别4种实测扰动信号。 展开更多
关键词 电能质量 扰动检测识别 经验小波变换 快速多分辨率S变换 改进粒子群优化 支持向量机
下载PDF
市域视角下安徽省科技成果转化效率评价 被引量:1
19
作者 杨剑 赵倩雅 韩传轶 《科技创新与应用》 2024年第8期81-85,共5页
科学分析评价科技成果转化效率不仅能够体现该地区科研创新水平,也可以反映自身的未来发展潜力,有助于带动区域经济的发展。该研究选取安徽省16个地级市2014—2019年的数据,基于数据包络分析法(DEA),对市域范围科技成果转化绩效进行测... 科学分析评价科技成果转化效率不仅能够体现该地区科研创新水平,也可以反映自身的未来发展潜力,有助于带动区域经济的发展。该研究选取安徽省16个地级市2014—2019年的数据,基于数据包络分析法(DEA),对市域范围科技成果转化绩效进行测量分析。研究发现,安徽省科技成果转化整体上效率偏低,而从市域层面上看,科技成果转化效率并不均衡。 展开更多
关键词 科技成果转化效率 DEA 安徽省 地级市 BCC模型
下载PDF
S-100β CysC和NF-κB对急性缺血性脑卒中患者静脉溶栓后出血转化的预测价值
20
作者 李鹤 李樱 李磊 《中国实用神经疾病杂志》 2024年第4期415-419,共5页
目的 探讨急性缺血性脑卒中(AIS)外周血中S-100β、CysC和NF-κB水平对静脉溶栓后出血转化的影响及预测价值。方法 收集2019-03—2022-03接受溶栓治疗的AIS患者140例,根据溶栓后24 h是否发生出血转化(HT)将患者分为非HT组(n=112)和HT组(... 目的 探讨急性缺血性脑卒中(AIS)外周血中S-100β、CysC和NF-κB水平对静脉溶栓后出血转化的影响及预测价值。方法 收集2019-03—2022-03接受溶栓治疗的AIS患者140例,根据溶栓后24 h是否发生出血转化(HT)将患者分为非HT组(n=112)和HT组(n=28)。比较2组一般临床资料,采用多因Logistic回归分析影响HT发生的危险因素,受试者工作特征(ROC)曲线评估S-100β、CysC和NF-κB预测HT发生的价值。结果 HT组与非HT组相比,患者年龄、发病至溶栓时间、房颤、TOAST分型、C反应蛋白、凝血酶原时间、S-100β、CysC、NF-κB、白质高信号和脑微出血等均有统计学差异(P<0.05)。Logistic多因素回归分析显示,房颤、S-100β、CysC和NF-κB为影响HT发生的危险因素。S-100β、CysC和NF-κB预测AIS患者静脉溶栓后出血转化的曲线下面积分别为0.915(0.902~0.923)、0.874(0.856~0.882)和0.789(0.771~0.796),均具有一定的预测价值。结论 S-100β、CysC和NF-κB为AIS患者静脉溶栓后HT发生的危险因素,对HT发生具有一定的预测价值。 展开更多
关键词 急性缺血性脑卒中 静脉溶栓 出血转化 中枢神经特异蛋白 胱抑素C 核因子ΚB 外周血 危险因素 预测价值
下载PDF
上一页 1 2 98 下一页 到第
使用帮助 返回顶部