The salinization process resulted in agricultural damage in the Hula Valley and water quality deterioration in Lake Kinneret. Therefore, salinization-desalinization (SDS) processes have been emphasized in the last two...The salinization process resulted in agricultural damage in the Hula Valley and water quality deterioration in Lake Kinneret. Therefore, salinization-desalinization (SDS) processes have been emphasized in the last two decades. Global and regional extreme climatological events and water scarcity strengthen the link between Hula Valley and Lake Kinneret management design. A bond between optimizing Hula agricultural maintenance and Kinneret water quality protection is conclusively suggested. Saline contribution originated from the southern Hula Valley region to the underground and surface water is higher than from the northern organic soil. The impact of eastern water Intrusion from the Golan Heights as surface waters, river discharge and underground seepage into the Hula Valley represent north-south gradient enhancement. Salinized surface water contribution from the Hula Valley to Lake Kinneret is unwanted because presently Kinneret desalinization management policy is critically required. The present salinization of surface and underground water in the Hula Valley indicates the upper limit suitable for agricultural crop optimization and the decline of salinity is crucial. Enhancement of the portion of Jordan water within the total balance in the valley is beneficial for Hula agricultural crops but serves as a disadvantage to Kinneret desalinization implementation. Therefore, the enhancement of lake water exchange is recommended.展开更多
Soil salinization may affect biodiversity and species composition,leading to changes in the plant community structure.However,few studies have explored the spatial pattern of soil salinization and its effects on shrub...Soil salinization may affect biodiversity and species composition,leading to changes in the plant community structure.However,few studies have explored the spatial pattern of soil salinization and its effects on shrub community structure at the ecosystem scale.Therefore,we conducted a transect sampling of desert shrublands in Northwest China during the growing season(June–September)in 2021.Soil salinization(both the degree and type),shrub community structure(e.g.,shrub density and height),and biodiversity parameters(e.g.,Simpson diversity,Margalf abundance,Shannon-Wiener diversity,and Pielou evenness indices)were used to assess the effects of soil salinization on shrub community structure.The results showed that the primary degree of soil salinization in the study area was light salinization,with the area proportion of 69.8%.Whereas the main type of soil salinization was characterized as sulfate saline soil,also accounting for 69.8%of the total area.Notably,there was a significant reduction in the degree of soil salinization and a shift in the type of soil salinization from chloride saline soil to sulfate saline soil,with an increase in longitude.Regional mean annual precipitation(MAP),mean annual evapotranspiration(MAE),elevation,and slope significantly contributed to soil salinization and its geochemical differentiation.As soil salinization intensified,shrub community structure displayed increased diversity and evenness,as indicated by the increases in the Simpson diversity,Shannon-Wiener diversity,and Pielou evenness indices.Moreover,the succulent stems and leaves of Chenopodiaceae and Tamaricaceae exhibited clear advantages under these conditions.Furthermore,regional climate and topography,such as MAP,MAE,and elevation,had greater effects on the distribution of shrub plants than soil salinization.These results provide a reference for the origin and pattern of soil salinization in drylands and their effects on the community structure of halophyte shrub species.展开更多
The regular hydrochemical monitoring of groundwater in the Mila basin over an extended period has provided valuable insights into the origin of dissolved salts and the hydrogeochemical processes controlling water sali...The regular hydrochemical monitoring of groundwater in the Mila basin over an extended period has provided valuable insights into the origin of dissolved salts and the hydrogeochemical processes controlling water salinization.The data reveals that the shallow Karst aquifer shows an increase in TDS of 162 mg L^(-1) while the ther-mal carbonate aquifer that is also used for drinking water supply exhibits an increase of 178 mg L^(-1).Additionally,significant temperature variations are recorded at the sur-face in the shallow aquifers and the waters are carbo-gaseous.Analysis of dissolved major and minor elements has identified several processes influencing the chemical composition namely:dissolution of evaporitic minerals,reduction of sulphates,congruent and incongruent car-bonates’dissolution,dedolomitization and silicates’weathering.The hydrogeochemical and geothermometric results show a mixing of saline thermal water with recharge water of meteoric origin.Two main geothermalfields have been identified,a partially evolved water reservoir and a water reservoir whosefluid interacts with sulphuric acid(H_(2)S)of magmatic origin.These hot waters that are char-acterized by a strong hydrothermal alteration do ascend through faults and fractures and contribute to the contamination of shallower aquifers.Understanding the geothermometry and the hydrogeochemistry of waters is crucial for managing and protecting the quality of groundwater resources in the Mila basin,in order to ensure sustainable water supply for the region.A conceptual model for groundwater circulation and mineralization acquisition has been established to further enhance under-standing in this regard.展开更多
The Hotan Prefecture of Xinjiang Uygur Autonomous Region,China belongs to arid desert climate,with significant soil salinization issues.The study selected six rivers in Hotan Prefecture(Pishan,Qaraqash,Yurungqash,Cell...The Hotan Prefecture of Xinjiang Uygur Autonomous Region,China belongs to arid desert climate,with significant soil salinization issues.The study selected six rivers in Hotan Prefecture(Pishan,Qaraqash,Yurungqash,Celle,Kriya,and Niya rivers)to explore the spatial distribution of soil salinization in this area and its underlying mechanisms.Sampling was conducted along each river's watershed,from the Gobi in the upper reaches,through the anthropogenic impact area in the middle reaches,to the desert area in the lower reaches.Soil physical-chemical indicators,including total soluble salts,pH,K+,Na+,Ca2+,Mg2+,SO42-,Cl-,CO32-,HCO3-,organic matter,available nitrogen,available phosphorus,and available potassium,were tested,along with the total dissolved solids of surface water and groundwater.The results revealed that the soil water and nutrient contents in anthropogenic impact area were higher than those in Gobi and desert areas,while the pH and total soluble salts were lower than those in Gobi and desert areas.The ions in the soil of the study area were primarily Cl-,SO42-,K+,and Na+,and the ion concentration of soil salt were positively correlated with surface water and groundwater.Overall,the study area exhibited low soil water content,low clay content,infertile soil,and high soil salinization,dominated by weak to moderate chloride-sulfate types.Compared with Gobi and desert areas,the soil in anthropogenic impact area had higher soil water content,lower pH,lower soluble salts,and higher nutrients,indicating that human farming activities help mitigate salinization.These findings have practical implications for guiding the scientific prevention and control of soil salinization in the arid areas and for promoting sustainable agricultural development.展开更多
Soil salinization seriously restricts the development of agricultural production,the sustainable use of land resources,and the stability of the ecological environment.In order to objectively reveal the research status...Soil salinization seriously restricts the development of agricultural production,the sustainable use of land resources,and the stability of the ecological environment.In order to objectively reveal the research status of soil salinization,CiteSpace software was used to conduct data mining and quantitative analysis on research papers on soil salinization from 2008 to 2023 in China National Knowledge Infrastructure(CNKI)and Web of science databases.The data sources were transformed into visual graphs by reproducing clustering statistics from aspects such as publication volume,authors,keywords,and publishing institutions.In addition,this paper also combined the actual needs and cutting-edge hotspots in relevant research in China,and proposed and analyzed the limitations and future development trends of soil salinity monitoring research in China.This has important practical significance for comprehensively grasping the current research status of salinization,further clarifying and sorting out the research ideas of salinization monitoring,enriching the remote sensing monitoring methods of saline soil,and solving the actual problems of soil salinization in China.展开更多
Salinized soil is an important reserved arable land resource in China.The management and utilization of salinized soil can safeguard the current size of arable land and a stable grain yield.Salt accumulation will lead...Salinized soil is an important reserved arable land resource in China.The management and utilization of salinized soil can safeguard the current size of arable land and a stable grain yield.Salt accumulation will lead to the deterioration of soil properties,destroy soil production potential and damage soil ecological functions,which in turn will threaten global water and soil resources and food security,and affect sustainable socio-economic development.Microorganisms are important components of salinized soil.Microbial remediation is an important research tool in improving salinized soil and is key to realizing sustainable development of agriculture and the ecosystem.Knowledge about the impact of salinization on soil properties and measures using microorganisms in remediation of salinized soil has grown over time.However,the mechanisms governing these impacts and the ecological principles for microbial remediation are scarce.Thus,it is imperative to summarize the effects of salinization on soil physical,chemical,and microbial properties,and then review the related mechanisms of halophilic and halotolerant microorganisms in salinized soil remediation via direct and indirect pathways.The stability,persistence,and safety of the microbial remediation effect is also highlighted in this review to further promote the application of microbial remediation in salinized soil.The objective of this review is to provide reference and theoretical support for the improvement and utilization of salinized soil.展开更多
In Senegal, the agricultural sector remains a major component of the economy and national growth. As the main subsistence activity for 60% of the population, agricultural activity is essential to reduce poverty and en...In Senegal, the agricultural sector remains a major component of the economy and national growth. As the main subsistence activity for 60% of the population, agricultural activity is essential to reduce poverty and ensure food security for the population. In this context, land degradation is a major constraint. In the Fatick region, in the commune of Fimela, land salinization is a worrying environmental problem. The purpose of this study is to understand the dynamics of soil salinization in Fimela in the context of climate change that tends to modify the evolution of landscapes. It required direct observations in the field, socio-economic surveys based on a questionnaire administered in six (6) villages. The processing of the data from these surveys was carried out with Sphinx software for the extraction of data in numerical form and SPSS to carry out the correlations between the collected variables. Excel was also used to perform calculations and make tables and graphs. In addition, the acquisition and processing of Landsat multi-spectral satellite images from 1973, 1988 and 2020 allowed us to observe the evolution of landscape units according to determining climatic events such as drought. The areas of tans have experienced a positive evolution during the period 1973-2020 with an increase of 163.11 hectares or an evolution rate of 7.47%. The localities most affected are Ndangane, Fimela, Djilor, Simal and the villages of the Mar Islands. The overall dynamics of cultivable land are marked by a decline with a rate of change of −18%. Despite the multiple reforestation campaigns, the mangrove has recorded a continuous decrease of 54.58% or a loss estimated at 5335.59 ha during the period 1973-2020. Finally, the analysis of the results of our study shows that land salinization is a determining element of the dynamics of land use and deteriorates the already precarious living conditions of rural populations and compromises the future of the agropastoral production system.展开更多
This research used both geostatistics and GIS approach to compare temporal change of soil salt between 1980 and 2003, to analyze the spatial distribution of surface soil salt, to developed methods for predicting soil ...This research used both geostatistics and GIS approach to compare temporal change of soil salt between 1980 and 2003, to analyze the spatial distribution of surface soil salt, to developed methods for predicting soil salinization potential based on recent improvements to the Dempster-Shafer theory, and to develop probability maps of potential salinization in Yucheng City, China. A semivariogram model of soil salt content was developed from the spherical model, and then employing kriging interpolation the spatial distribution of salt content in 2003 was obtained utilizing data from 100 soil sampling points. Potential salinization distribution was mapped using an approach that integrated soil data of the second general survey in 1980 in Yucheng City, which included groundwater salinity, groundwater depth, soil texture, soil organic matter content, and geomorphic maps. With the support of Dempster-Shafer theory and fuzzy set technique the factors that affected potential soil salinization were characterized and integrated; and then soil salinization was predicted. Finally a prognosis map of potential salinization distribution in the research area was obtained, with higher probability values indicating higher hazards to salinity processes. The distribution of the potential soil salinization probability was a successive surface.展开更多
Soil salinization is a common phenomenon that affects both the environment and the socio-economy in arid and semi-arid regions; it is also an important aspect of land cover change. In this study, we integrated multi-s...Soil salinization is a common phenomenon that affects both the environment and the socio-economy in arid and semi-arid regions; it is also an important aspect of land cover change. In this study, we integrated multi-sensor remote sensing data with a field survey to analyze processes of soil salinization in a semi-arid area in China from 1979 to 2009. Generally, the area of salt-affected soils increased by 0.28% per year with remarkable acceleration from 1999 to 2009 (0.42% increase per year). In contrast, the area of surface water bodies showed a decreasing trend (-0.08% per year) in the same period. Decreases in precipitation and increases in aridity due to annual (especially summer) warming provided a favorable condition for soil salinization. The relatively flat terrain favored waterlogging at the surface, and continuous drought facilitated upward movement of soil water and accumulation of surface saline and calcium. Meanwhile, land-use practices also played a crucial role in accelerating soil salinization. The conversion to cropland from natural vegetation greatly increased the demand for groundwater irrigation and aggravated the process of soil salinization. Furthermore, there are potential feedbacks of soil salinization to regional climate. The salinization of soils can limit the efficiency of plant water use as well as photosynthesis; therefore, it reduces the amount of carbon sequestrated by terrestrial ecosystem. Soil salinization also reduces the absorbed solar radiation by increasing land surface albedo. Such conversions of land cover significantly change the energy and water balance between land and atmosphere.展开更多
Asia is the largest distribution area of salt-affected soils in the world. Very few countries in Asia couldescape from hazard of salinization. This paper deals with various salt-affected soils spreading in East Asiaan...Asia is the largest distribution area of salt-affected soils in the world. Very few countries in Asia couldescape from hazard of salinization. This paper deals with various salt-affected soils spreading in East Asiaand its neighboring regions (including China, Japan, Kampuchea, Democratic People’s Republic of Korea,Republic of Korea, Laos, Mongolia, Burma, Thailand and Vietnam). Principles of occurrence of salinization,and features of salt-affected soils in these regions have been studied in the present paper. Based on studieson types, features and distribution patterns of salt-affected soils, a salt-affected soil map of East Asia andits neighboring regions has been complied. Mechanism and manifestation of the salinization hazard on theregional agriculture and ecological environment, measures of preventing salinization hazard and exploitingsalt-affected soils in these regions are also discussed.展开更多
Extracting information about saline soils from remote sensing data is useful, particularly given the environmental significance and changing nature of these areas in arid environments. One interesting case study to co...Extracting information about saline soils from remote sensing data is useful, particularly given the environmental significance and changing nature of these areas in arid environments. One interesting case study to consider is the delta oasis of the Weigan and Kuqa rivers, China, which was studied using a Landsat Enhanced Thematic Mapper Plus (ETM+) image collected in August 2001. In recent years, decision tree classifiers have been successfully used for land cover classification from remote sensing data. Principal component analysis (PCA) is a popular data reduction technique used to help build a decision tree; it reduces complexity and can help the classification precision of a decision tree to be improved. A decision tree approach was used to determine the key variables to be used for classification and ultimately extract salinized soil from other cover and soil types within the study area. According to the research, the third principal component (PC3) is an effective variable in the decision tree classification for salinized soil information extraction. The research demonstrated that the PC3 was the best band to identify areas of severely salinized soil; the blue spectral band from the ETM+ sensor (TM1) was the best band to identify salinized soil with the salt-tolerant vegetation of tamarisk (Tamarix chinensis Lour); and areas comprising mixed water bodies and vegetation can be identified using the spectral indices MNDWI (modified normalized difference water index) and NDVI (normalized difference vegetation index). Based upon this analysis, a decision tree classifier was applied to classify landcover types with different levels of soil saline. The results were checked using a statistical accuracy assessment. The overall accuracy of the classification was 94.80%, which suggested that the decision tree model is a simple and effective method with relatively high precision.展开更多
Jizzakh Province in Uzbekistan is one of the largest irrigated areas in Central Asia without natural drainage.In combination with aridity,climate change and extensive irrigation practices,this has led to the widesprea...Jizzakh Province in Uzbekistan is one of the largest irrigated areas in Central Asia without natural drainage.In combination with aridity,climate change and extensive irrigation practices,this has led to the widespread salinization of agricultural land.The aim of this study was to identify opportunities to improve the reclamation status of the irrigated area and how best to effectively use the water resources in Jizzakh Province based on investigations conducted between 1995 and 2016.A database of field measurements of groundwater levels,mineralization and soil salinity conducted by the provincial Hydro-Geological Reclamation Expeditions was used in the study.The total groundwater mineralization was determined using a portable electric conductometer(Progress 1T)and the chloride concentration was determined using the Mohr method.The soil salinity analyses were conducted by applying two different methods:(1)the extraction and assessment of the soluble salt content,and(2)using an SM-138 conductivity sensor applied to a 1:1 mixture of soil sample and water.The analyses of the monitoring results and the salt balance in the"irrigation water–soil–drainage water"system clearly demonstrated that the condition of the irrigated land in the province was not significantly improved.Under these conditions,the stability of crop yields is achieved mainly through the use of large volumes of fertilizer.However,excess amounts of mineral fertilizers can also cause the salinization of soils.The average groundwater salinization value in most of the irrigated land(75.3%)fluctuated between 1.1 and 5.0 g/L,while the values were less than 1.0 g/L in 13.1%of the land and in the range of 5.1–10.0 g/L in 10.5%of the land.During the period of 1995–2016 the salinization level of the irrigated land in Jizzakh Province increased slightly and the area could be divided into the following classes:no salinity(17.7%of the total area),low salinity(51.3%),moderate salinity(29.0%),and high salinity(2.0%).Detailed studies of the salt balance in irrigated land,the impact of climate change,increased fertilizer use,and repeated remediation leaching on the groundwater level and mineralization should be conducted in the future,due to the possibility of accelerated salinization,fertility decline,and reduced yields of agricultural crops.展开更多
In order to ameliorate saline-alkaline soil, EM Bokashi has been applied to rice production in conjunction with subdrainage in Ningxia Autonomous Region and Zhejiang Province. The preliminary results can be summarized...In order to ameliorate saline-alkaline soil, EM Bokashi has been applied to rice production in conjunction with subdrainage in Ningxia Autonomous Region and Zhejiang Province. The preliminary results can be summarized as follows: EM Bokashi can increase soil organic matter content, improve soil porosity and permeability, and raise the soil's levels of available nutrients; and EM Bokashi combined with subdrainage treatment is more effective in controlling secondary soil salinization and raising the grain yield and quality than other treatments. The results suggest that EM Bokashi can reduce the necessary amount of chemical fertilizer application, thereby improving the agricultural environment, and that the introduction of EM Bokashi into systems of secondary soil salinization control systems has resulted in significant benefits.展开更多
This study applied a computerized parametric methodology to monitor, map, and quantify land degradation by salinization risk detection techniques at a 1:250 000 mapping scale using geo-information technology. The nor...This study applied a computerized parametric methodology to monitor, map, and quantify land degradation by salinization risk detection techniques at a 1:250 000 mapping scale using geo-information technology. The northern part of the Shaanxi province in China was taken as a case. Multi-temporal remotely sensed materials of both Landsat TM and thematic maps (ETM+) were used as the bases to provide comprehensive views of surface conditions such as vegetation cover and salinization detection. With ERDAS ver. 9.1 software, the Normalized Differential Salinity Index (NDSl) and Salinity Index (S.I.) were computed and then evaluated for land degradation by salinization. Arc/Info ver. 9.2 software was used along with field observation data (GPS) for analysis. Using spatial analysis methods, results showed that 19 973.1 km^2 (72%) of land had no risk of land degradation by salinization, 3 684.7 km^2 (13%) had slight land degradation by salinization risk, 2 797.9 km^2 (10%) had moderate land degradation by salinization risk, and 1 218.9 km^2 (4%) of the total land area was at a high risk of land degradation by salinization. The study area, in general, is exposed to a high risk of soil salinization.展开更多
The arid area is one of the most concerned areas among the water resources researchers and economists. Northwest China will be an important developing region of China in the 21st century. Yaoba is a well-irrigation oa...The arid area is one of the most concerned areas among the water resources researchers and economists. Northwest China will be an important developing region of China in the 21st century. Yaoba is a well-irrigation oasis within this arid area, which is located in the Alxa area west of the Helan Mountains and next to the Tengger desert in the east. It has contributed greatly to the local stock raising and agriculture since its development in 1970. However, the groundwater which the oasis depends on to survive has been getting salinized gradually and more serious in recent years.展开更多
In this paper,we reviewed the progress in the application of stable isotope techniques to the study of soil salinization.As a powerful technique,stable isotopes have been widely used in the studies of soil water evapo...In this paper,we reviewed the progress in the application of stable isotope techniques to the study of soil salinization.As a powerful technique,stable isotopes have been widely used in the studies of soil water evaporation,the dynamics of soil salinization and salt-tolerant plant breeding.The impact of single environmental factors on plant isotope composition has been the focus of previous studies.However,the impact of multiple environmental factors on plant isotope composition remains unclear and needs to be carefully studied.In order to gain insights into soil salinization and amelioration,especially soil salinization in arid and semiarid areas,it is essential to employ stable isotope techniques and combine them with other methods,such as located field observation and remote sensing technology.展开更多
Yellow River water transfer for Tianjin is important in solving the water shortage in Tianjin, which facilitate economic development and social progress for many years. Fresh water drawn from Yellow River( i. e., Yin...Yellow River water transfer for Tianjin is important in solving the water shortage in Tianjin, which facilitate economic development and social progress for many years. Fresh water drawn from Yellow River( i. e., Yin-Huang water) becomes saltier and saltier when being stored in the Bei-Da-Gang reservoir. We qualitatively analyze the water salinization mechanism based on mass transfer theory. The main factors are salinity transfer of saline soil, evaporation concentrating, and the agitation of wind. A simulative experimental pond and an evaporation pond were built beside the Bei-Da-Gang reservoir to quantitatively investigate the water salinization based on water and solute balance in the simulative pond. 80% of increased [Cl^-] is due to the salinity transfer of the saline soil and the other 20% is due to evaporation concentrating, so the former is the most important factor. We found that the salinization of Yin-Huang water can be described with a zero-dimension linear model.展开更多
Soil salinization is one of the most important causes of land degradation and desertification,especially in arid and semi-arid areas.The dynamic monitoring of soil salinization is of great significance to land managem...Soil salinization is one of the most important causes of land degradation and desertification,especially in arid and semi-arid areas.The dynamic monitoring of soil salinization is of great significance to land management,agricultural activities,water quality,and sustainable development.The remote sensing images taken by the synthetic aperture radar(SAR)Sentinel-1 and the multispectral satellite Sentinel-2 with high resolution and short revisit period have the potential to monitor the spatial distribution of soil attribute information on a large area;however,there are limited studies on the combination of Sentinel-1 and Sentinel-2 for digital mapping of soil salinization.Therefore,in this study,we used topography indices derived from digital elevation model(DEM),SAR indices generated by Sentinel-1,and vegetation indices generated by Sentinel-2 to map soil salinization in the Ogan-Kuqa River Oasis located in the central and northern Tarim Basin in Xinjiang of China,and evaluated the potential of multi-source sensors to predict soil salinity.Using the soil electrical conductivity(EC)values of 70 ground sampling sites as the target variable and the optimal environmental factors as the predictive variable,we constructed three soil salinity inversion models based on classification and regression tree(CART),random forest(RF),and extreme gradient boosting(XGBoost).Then,we evaluated the prediction ability of different models through the five-fold cross validation.The prediction accuracy of XGBoost model is better than those of CART and RF,and soil salinity predicted by the three models has similar spatial distribution characteristics.Compared with the combination of topography indices and vegetation indices,the addition of SAR indices effectively improves the prediction accuracy of the model.In general,the method of soil salinity prediction based on multi-source sensor combination is better than that based on a single sensor.In addition,SAR indices,vegetation indices,and topography indices are all effective variables for soil salinity prediction.Weighted Difference Vegetation Index(WDVI)is designated as the most important variable in these variables,followed by DEM.The results showed that the high-resolution radar Sentinel-1 and multispectral Sentinel-2 have the potential to develop soil salinity prediction model.展开更多
Based on monitored data from 840 samples, we assessed the spatial and temporal variability of groundwater salinization in the Tarim River lower reaches combining classical statistics and geostatistics. Results show th...Based on monitored data from 840 samples, we assessed the spatial and temporal variability of groundwater salinization in the Tarim River lower reaches combining classical statistics and geostatistics. Results show that total dissolved solids (TDS) is significantly correlated with other related ions, such as Na+, Mg2+, Ca2-, C1- and K+. TDS and underground water level have characteristics of spatial autocorrelation, both of which present the isotropic characteristic and con- form to the spherical model in each year from 2001-2009. TDS is basically greater than 1 g/L but less than 2 g/L in the Tarim River lower reaches, which indicates that salt stagnation pollution is more serious. The most serious salinization (3 g/L 〈 TDS _〈 35 g/L) contaminated area is mainly in the middle and lower part of the study area.展开更多
This study aimed to identify the role of natural and anthropogenic influence on geochemical processes controlling groundwater salinization in the middle portion of the Mono River basin, Togo. Multivariate statistical ...This study aimed to identify the role of natural and anthropogenic influence on geochemical processes controlling groundwater salinization in the middle portion of the Mono River basin, Togo. Multivariate statistical analysis, geochemical masse balance modeling, and conventional graphical methods were applied to the chemical dataset obtained from 110 groundwater samples collected during two campaigns (March-May 2011 and April 2014). The results showed that groundwater is predominantly fresh, acidic to circumneutral and mixed cations-<span style="white-space:nowrap;">HCO<sup>-</sup><sub style="margin-left:-7px;">3</sub> </span>water types. The proportion of ions (Na<sup>+</sup>, K<sup>+</sup>, Cl<sup>-</sup> and <span style="white-space:nowrap;">SO<sup>2-</sup><sub style="margin-left:-7px;">4</sub></span>) occurring ubiquitously in a saline environment increases substantially with TDS. Two factors, defined as natural and anthropogenic, account for 76.5% of the hydrochemical dataset variance. Based on the hierarchical cluster analysis, groundwater samples are classified into four clusters that corroborate the factor analysis results and illustrate different hydrochemical evolution stages along a topographically-driven groundwater flow path. The primary natural process contributing to cations and bicarbonate ions is the weathering of silicate minerals and possibly secondary carbonates by infiltrating water enriched with soil CO<sub>2</sub> gas. Groundwater salinization indicators including Cl<sup>-</sup>, <span style="white-space:nowrap;">SO<sup>2-</sup><sub style="margin-left:-7px;">4</sub> and <span style="white-space:nowrap;">NO<sup>-</sup><sub style="margin-left:-7px;">3</sub></span></span>, originate from potential sources such as human and animal wastes, agrochemicals, and deforestation. Thermodynamic equilibrium conditions ranged from saturation to oversaturation with respect to quartz, chalcedony, amorphous silica, calcite, dolomite, sepiolite, and talc. In conjunction with the lowering of CO<sub>2</sub> partial pressure and evaporation, these conditions restrict acidic hydrolysis of primary silicates but magnify the groundwater salinization process in the lower elevation areas where soil crusts’ formation is favorable. This study showed the effective use of multivariate statistical analysis and complementary techniques in identifying the significant factors and processes controlling groundwater chemistry.展开更多
文摘The salinization process resulted in agricultural damage in the Hula Valley and water quality deterioration in Lake Kinneret. Therefore, salinization-desalinization (SDS) processes have been emphasized in the last two decades. Global and regional extreme climatological events and water scarcity strengthen the link between Hula Valley and Lake Kinneret management design. A bond between optimizing Hula agricultural maintenance and Kinneret water quality protection is conclusively suggested. Saline contribution originated from the southern Hula Valley region to the underground and surface water is higher than from the northern organic soil. The impact of eastern water Intrusion from the Golan Heights as surface waters, river discharge and underground seepage into the Hula Valley represent north-south gradient enhancement. Salinized surface water contribution from the Hula Valley to Lake Kinneret is unwanted because presently Kinneret desalinization management policy is critically required. The present salinization of surface and underground water in the Hula Valley indicates the upper limit suitable for agricultural crop optimization and the decline of salinity is crucial. Enhancement of the portion of Jordan water within the total balance in the valley is beneficial for Hula agricultural crops but serves as a disadvantage to Kinneret desalinization implementation. Therefore, the enhancement of lake water exchange is recommended.
基金financially supported by the National Natural Sciences Foundation of China(42330503,42171068)the Third Xinjiang Scientific Expedition Program(2022xjkk0901)the Tianshan Talent Training Program(2023TSYCLJ0048).
文摘Soil salinization may affect biodiversity and species composition,leading to changes in the plant community structure.However,few studies have explored the spatial pattern of soil salinization and its effects on shrub community structure at the ecosystem scale.Therefore,we conducted a transect sampling of desert shrublands in Northwest China during the growing season(June–September)in 2021.Soil salinization(both the degree and type),shrub community structure(e.g.,shrub density and height),and biodiversity parameters(e.g.,Simpson diversity,Margalf abundance,Shannon-Wiener diversity,and Pielou evenness indices)were used to assess the effects of soil salinization on shrub community structure.The results showed that the primary degree of soil salinization in the study area was light salinization,with the area proportion of 69.8%.Whereas the main type of soil salinization was characterized as sulfate saline soil,also accounting for 69.8%of the total area.Notably,there was a significant reduction in the degree of soil salinization and a shift in the type of soil salinization from chloride saline soil to sulfate saline soil,with an increase in longitude.Regional mean annual precipitation(MAP),mean annual evapotranspiration(MAE),elevation,and slope significantly contributed to soil salinization and its geochemical differentiation.As soil salinization intensified,shrub community structure displayed increased diversity and evenness,as indicated by the increases in the Simpson diversity,Shannon-Wiener diversity,and Pielou evenness indices.Moreover,the succulent stems and leaves of Chenopodiaceae and Tamaricaceae exhibited clear advantages under these conditions.Furthermore,regional climate and topography,such as MAP,MAE,and elevation,had greater effects on the distribution of shrub plants than soil salinization.These results provide a reference for the origin and pattern of soil salinization in drylands and their effects on the community structure of halophyte shrub species.
文摘The regular hydrochemical monitoring of groundwater in the Mila basin over an extended period has provided valuable insights into the origin of dissolved salts and the hydrogeochemical processes controlling water salinization.The data reveals that the shallow Karst aquifer shows an increase in TDS of 162 mg L^(-1) while the ther-mal carbonate aquifer that is also used for drinking water supply exhibits an increase of 178 mg L^(-1).Additionally,significant temperature variations are recorded at the sur-face in the shallow aquifers and the waters are carbo-gaseous.Analysis of dissolved major and minor elements has identified several processes influencing the chemical composition namely:dissolution of evaporitic minerals,reduction of sulphates,congruent and incongruent car-bonates’dissolution,dedolomitization and silicates’weathering.The hydrogeochemical and geothermometric results show a mixing of saline thermal water with recharge water of meteoric origin.Two main geothermalfields have been identified,a partially evolved water reservoir and a water reservoir whosefluid interacts with sulphuric acid(H_(2)S)of magmatic origin.These hot waters that are char-acterized by a strong hydrothermal alteration do ascend through faults and fractures and contribute to the contamination of shallower aquifers.Understanding the geothermometry and the hydrogeochemistry of waters is crucial for managing and protecting the quality of groundwater resources in the Mila basin,in order to ensure sustainable water supply for the region.A conceptual model for groundwater circulation and mineralization acquisition has been established to further enhance under-standing in this regard.
基金This research was supported by the Tianfu Yongxing Laboratory Organized Research Project Funding(2023KJGG05)the Geological Survey Project of Xinjiang Uygur Autonomous Region Geology and Mineral Exploration and Development Bureau(XGMB202356).
文摘The Hotan Prefecture of Xinjiang Uygur Autonomous Region,China belongs to arid desert climate,with significant soil salinization issues.The study selected six rivers in Hotan Prefecture(Pishan,Qaraqash,Yurungqash,Celle,Kriya,and Niya rivers)to explore the spatial distribution of soil salinization in this area and its underlying mechanisms.Sampling was conducted along each river's watershed,from the Gobi in the upper reaches,through the anthropogenic impact area in the middle reaches,to the desert area in the lower reaches.Soil physical-chemical indicators,including total soluble salts,pH,K+,Na+,Ca2+,Mg2+,SO42-,Cl-,CO32-,HCO3-,organic matter,available nitrogen,available phosphorus,and available potassium,were tested,along with the total dissolved solids of surface water and groundwater.The results revealed that the soil water and nutrient contents in anthropogenic impact area were higher than those in Gobi and desert areas,while the pH and total soluble salts were lower than those in Gobi and desert areas.The ions in the soil of the study area were primarily Cl-,SO42-,K+,and Na+,and the ion concentration of soil salt were positively correlated with surface water and groundwater.Overall,the study area exhibited low soil water content,low clay content,infertile soil,and high soil salinization,dominated by weak to moderate chloride-sulfate types.Compared with Gobi and desert areas,the soil in anthropogenic impact area had higher soil water content,lower pH,lower soluble salts,and higher nutrients,indicating that human farming activities help mitigate salinization.These findings have practical implications for guiding the scientific prevention and control of soil salinization in the arid areas and for promoting sustainable agricultural development.
基金Supported by Jilin Provincial Department of Education Project(JJKH20230724KJ).
文摘Soil salinization seriously restricts the development of agricultural production,the sustainable use of land resources,and the stability of the ecological environment.In order to objectively reveal the research status of soil salinization,CiteSpace software was used to conduct data mining and quantitative analysis on research papers on soil salinization from 2008 to 2023 in China National Knowledge Infrastructure(CNKI)and Web of science databases.The data sources were transformed into visual graphs by reproducing clustering statistics from aspects such as publication volume,authors,keywords,and publishing institutions.In addition,this paper also combined the actual needs and cutting-edge hotspots in relevant research in China,and proposed and analyzed the limitations and future development trends of soil salinity monitoring research in China.This has important practical significance for comprehensively grasping the current research status of salinization,further clarifying and sorting out the research ideas of salinization monitoring,enriching the remote sensing monitoring methods of saline soil,and solving the actual problems of soil salinization in China.
基金the National Natural Science Foundation of China(No.42107513)the Key Projects of Natural Science Foundation of Gansu Province(No.22JR5RA051)+1 种基金the Gansu Province Science and Technology project(No.21JR7RA070)the Key Research and Development Program of Gansu Province(No.21YF5FA151).
文摘Salinized soil is an important reserved arable land resource in China.The management and utilization of salinized soil can safeguard the current size of arable land and a stable grain yield.Salt accumulation will lead to the deterioration of soil properties,destroy soil production potential and damage soil ecological functions,which in turn will threaten global water and soil resources and food security,and affect sustainable socio-economic development.Microorganisms are important components of salinized soil.Microbial remediation is an important research tool in improving salinized soil and is key to realizing sustainable development of agriculture and the ecosystem.Knowledge about the impact of salinization on soil properties and measures using microorganisms in remediation of salinized soil has grown over time.However,the mechanisms governing these impacts and the ecological principles for microbial remediation are scarce.Thus,it is imperative to summarize the effects of salinization on soil physical,chemical,and microbial properties,and then review the related mechanisms of halophilic and halotolerant microorganisms in salinized soil remediation via direct and indirect pathways.The stability,persistence,and safety of the microbial remediation effect is also highlighted in this review to further promote the application of microbial remediation in salinized soil.The objective of this review is to provide reference and theoretical support for the improvement and utilization of salinized soil.
文摘In Senegal, the agricultural sector remains a major component of the economy and national growth. As the main subsistence activity for 60% of the population, agricultural activity is essential to reduce poverty and ensure food security for the population. In this context, land degradation is a major constraint. In the Fatick region, in the commune of Fimela, land salinization is a worrying environmental problem. The purpose of this study is to understand the dynamics of soil salinization in Fimela in the context of climate change that tends to modify the evolution of landscapes. It required direct observations in the field, socio-economic surveys based on a questionnaire administered in six (6) villages. The processing of the data from these surveys was carried out with Sphinx software for the extraction of data in numerical form and SPSS to carry out the correlations between the collected variables. Excel was also used to perform calculations and make tables and graphs. In addition, the acquisition and processing of Landsat multi-spectral satellite images from 1973, 1988 and 2020 allowed us to observe the evolution of landscape units according to determining climatic events such as drought. The areas of tans have experienced a positive evolution during the period 1973-2020 with an increase of 163.11 hectares or an evolution rate of 7.47%. The localities most affected are Ndangane, Fimela, Djilor, Simal and the villages of the Mar Islands. The overall dynamics of cultivable land are marked by a decline with a rate of change of −18%. Despite the multiple reforestation campaigns, the mangrove has recorded a continuous decrease of 54.58% or a loss estimated at 5335.59 ha during the period 1973-2020. Finally, the analysis of the results of our study shows that land salinization is a determining element of the dynamics of land use and deteriorates the already precarious living conditions of rural populations and compromises the future of the agropastoral production system.
基金Project supported by the National Natural Science Foundation of China (No, 40371058), and the National Key BasicResearch Support Foundation of China (No. G1999011803)
文摘This research used both geostatistics and GIS approach to compare temporal change of soil salt between 1980 and 2003, to analyze the spatial distribution of surface soil salt, to developed methods for predicting soil salinization potential based on recent improvements to the Dempster-Shafer theory, and to develop probability maps of potential salinization in Yucheng City, China. A semivariogram model of soil salt content was developed from the spherical model, and then employing kriging interpolation the spatial distribution of salt content in 2003 was obtained utilizing data from 100 soil sampling points. Potential salinization distribution was mapped using an approach that integrated soil data of the second general survey in 1980 in Yucheng City, which included groundwater salinity, groundwater depth, soil texture, soil organic matter content, and geomorphic maps. With the support of Dempster-Shafer theory and fuzzy set technique the factors that affected potential soil salinization were characterized and integrated; and then soil salinization was predicted. Finally a prognosis map of potential salinization distribution in the research area was obtained, with higher probability values indicating higher hazards to salinity processes. The distribution of the potential soil salinization probability was a successive surface.
基金supported by the National Basic Research Program of China (Grant No.2009CB723904)the National Natural Science Foundation of China (Grant No. 41105076)+1 种基金the National Key technology R & D program (Grant No. 2012BAC22B04)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05090201)
文摘Soil salinization is a common phenomenon that affects both the environment and the socio-economy in arid and semi-arid regions; it is also an important aspect of land cover change. In this study, we integrated multi-sensor remote sensing data with a field survey to analyze processes of soil salinization in a semi-arid area in China from 1979 to 2009. Generally, the area of salt-affected soils increased by 0.28% per year with remarkable acceleration from 1999 to 2009 (0.42% increase per year). In contrast, the area of surface water bodies showed a decreasing trend (-0.08% per year) in the same period. Decreases in precipitation and increases in aridity due to annual (especially summer) warming provided a favorable condition for soil salinization. The relatively flat terrain favored waterlogging at the surface, and continuous drought facilitated upward movement of soil water and accumulation of surface saline and calcium. Meanwhile, land-use practices also played a crucial role in accelerating soil salinization. The conversion to cropland from natural vegetation greatly increased the demand for groundwater irrigation and aggravated the process of soil salinization. Furthermore, there are potential feedbacks of soil salinization to regional climate. The salinization of soils can limit the efficiency of plant water use as well as photosynthesis; therefore, it reduces the amount of carbon sequestrated by terrestrial ecosystem. Soil salinization also reduces the absorbed solar radiation by increasing land surface albedo. Such conversions of land cover significantly change the energy and water balance between land and atmosphere.
文摘Asia is the largest distribution area of salt-affected soils in the world. Very few countries in Asia couldescape from hazard of salinization. This paper deals with various salt-affected soils spreading in East Asiaand its neighboring regions (including China, Japan, Kampuchea, Democratic People’s Republic of Korea,Republic of Korea, Laos, Mongolia, Burma, Thailand and Vietnam). Principles of occurrence of salinization,and features of salt-affected soils in these regions have been studied in the present paper. Based on studieson types, features and distribution patterns of salt-affected soils, a salt-affected soil map of East Asia andits neighboring regions has been complied. Mechanism and manifestation of the salinization hazard on theregional agriculture and ecological environment, measures of preventing salinization hazard and exploitingsalt-affected soils in these regions are also discussed.
基金supported by the National Natural Science Foundation of China (40861020, 40961008)Huoyingdong Education Fund, China (121018)Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (200821128)
文摘Extracting information about saline soils from remote sensing data is useful, particularly given the environmental significance and changing nature of these areas in arid environments. One interesting case study to consider is the delta oasis of the Weigan and Kuqa rivers, China, which was studied using a Landsat Enhanced Thematic Mapper Plus (ETM+) image collected in August 2001. In recent years, decision tree classifiers have been successfully used for land cover classification from remote sensing data. Principal component analysis (PCA) is a popular data reduction technique used to help build a decision tree; it reduces complexity and can help the classification precision of a decision tree to be improved. A decision tree approach was used to determine the key variables to be used for classification and ultimately extract salinized soil from other cover and soil types within the study area. According to the research, the third principal component (PC3) is an effective variable in the decision tree classification for salinized soil information extraction. The research demonstrated that the PC3 was the best band to identify areas of severely salinized soil; the blue spectral band from the ETM+ sensor (TM1) was the best band to identify salinized soil with the salt-tolerant vegetation of tamarisk (Tamarix chinensis Lour); and areas comprising mixed water bodies and vegetation can be identified using the spectral indices MNDWI (modified normalized difference water index) and NDVI (normalized difference vegetation index). Based upon this analysis, a decision tree classifier was applied to classify landcover types with different levels of soil saline. The results were checked using a statistical accuracy assessment. The overall accuracy of the classification was 94.80%, which suggested that the decision tree model is a simple and effective method with relatively high precision.
基金funded by the National Natural Science Foundation of China(U1603242)the Chinese Academy of Sciences President’s International Fellowship Initiative(2018VCA0007)the Science and Technology Service Network Initiative(Y838031)
文摘Jizzakh Province in Uzbekistan is one of the largest irrigated areas in Central Asia without natural drainage.In combination with aridity,climate change and extensive irrigation practices,this has led to the widespread salinization of agricultural land.The aim of this study was to identify opportunities to improve the reclamation status of the irrigated area and how best to effectively use the water resources in Jizzakh Province based on investigations conducted between 1995 and 2016.A database of field measurements of groundwater levels,mineralization and soil salinity conducted by the provincial Hydro-Geological Reclamation Expeditions was used in the study.The total groundwater mineralization was determined using a portable electric conductometer(Progress 1T)and the chloride concentration was determined using the Mohr method.The soil salinity analyses were conducted by applying two different methods:(1)the extraction and assessment of the soluble salt content,and(2)using an SM-138 conductivity sensor applied to a 1:1 mixture of soil sample and water.The analyses of the monitoring results and the salt balance in the"irrigation water–soil–drainage water"system clearly demonstrated that the condition of the irrigated land in the province was not significantly improved.Under these conditions,the stability of crop yields is achieved mainly through the use of large volumes of fertilizer.However,excess amounts of mineral fertilizers can also cause the salinization of soils.The average groundwater salinization value in most of the irrigated land(75.3%)fluctuated between 1.1 and 5.0 g/L,while the values were less than 1.0 g/L in 13.1%of the land and in the range of 5.1–10.0 g/L in 10.5%of the land.During the period of 1995–2016 the salinization level of the irrigated land in Jizzakh Province increased slightly and the area could be divided into the following classes:no salinity(17.7%of the total area),low salinity(51.3%),moderate salinity(29.0%),and high salinity(2.0%).Detailed studies of the salt balance in irrigated land,the impact of climate change,increased fertilizer use,and repeated remediation leaching on the groundwater level and mineralization should be conducted in the future,due to the possibility of accelerated salinization,fertility decline,and reduced yields of agricultural crops.
基金supported by the College Sci-Tech Achievements Industrialization Project of Jiangsu Education Department(Grant No.JH07-010)
文摘In order to ameliorate saline-alkaline soil, EM Bokashi has been applied to rice production in conjunction with subdrainage in Ningxia Autonomous Region and Zhejiang Province. The preliminary results can be summarized as follows: EM Bokashi can increase soil organic matter content, improve soil porosity and permeability, and raise the soil's levels of available nutrients; and EM Bokashi combined with subdrainage treatment is more effective in controlling secondary soil salinization and raising the grain yield and quality than other treatments. The results suggest that EM Bokashi can reduce the necessary amount of chemical fertilizer application, thereby improving the agricultural environment, and that the introduction of EM Bokashi into systems of secondary soil salinization control systems has resulted in significant benefits.
基金the Geo-information Science and Technology Program (No. IRT 0438)
文摘This study applied a computerized parametric methodology to monitor, map, and quantify land degradation by salinization risk detection techniques at a 1:250 000 mapping scale using geo-information technology. The northern part of the Shaanxi province in China was taken as a case. Multi-temporal remotely sensed materials of both Landsat TM and thematic maps (ETM+) were used as the bases to provide comprehensive views of surface conditions such as vegetation cover and salinization detection. With ERDAS ver. 9.1 software, the Normalized Differential Salinity Index (NDSl) and Salinity Index (S.I.) were computed and then evaluated for land degradation by salinization. Arc/Info ver. 9.2 software was used along with field observation data (GPS) for analysis. Using spatial analysis methods, results showed that 19 973.1 km^2 (72%) of land had no risk of land degradation by salinization, 3 684.7 km^2 (13%) had slight land degradation by salinization risk, 2 797.9 km^2 (10%) had moderate land degradation by salinization risk, and 1 218.9 km^2 (4%) of the total land area was at a high risk of land degradation by salinization. The study area, in general, is exposed to a high risk of soil salinization.
基金The study was supported by the cooperation project of China and Britain “Yaoba oasis environment controlof saline intrusion”(ODA TC,1994-1996).
文摘The arid area is one of the most concerned areas among the water resources researchers and economists. Northwest China will be an important developing region of China in the 21st century. Yaoba is a well-irrigation oasis within this arid area, which is located in the Alxa area west of the Helan Mountains and next to the Tengger desert in the east. It has contributed greatly to the local stock raising and agriculture since its development in 1970. However, the groundwater which the oasis depends on to survive has been getting salinized gradually and more serious in recent years.
基金supported by the National Basic Research Program of China (2009CB825101)the National Natural Science Foundation of China (41071032)the West Light Foundation of the Chinese Academy of Sciences (2009)
文摘In this paper,we reviewed the progress in the application of stable isotope techniques to the study of soil salinization.As a powerful technique,stable isotopes have been widely used in the studies of soil water evaporation,the dynamics of soil salinization and salt-tolerant plant breeding.The impact of single environmental factors on plant isotope composition has been the focus of previous studies.However,the impact of multiple environmental factors on plant isotope composition remains unclear and needs to be carefully studied.In order to gain insights into soil salinization and amelioration,especially soil salinization in arid and semiarid areas,it is essential to employ stable isotope techniques and combine them with other methods,such as located field observation and remote sensing technology.
基金The Science and Technology Development in Tianjin(No.033112211)
文摘Yellow River water transfer for Tianjin is important in solving the water shortage in Tianjin, which facilitate economic development and social progress for many years. Fresh water drawn from Yellow River( i. e., Yin-Huang water) becomes saltier and saltier when being stored in the Bei-Da-Gang reservoir. We qualitatively analyze the water salinization mechanism based on mass transfer theory. The main factors are salinity transfer of saline soil, evaporation concentrating, and the agitation of wind. A simulative experimental pond and an evaporation pond were built beside the Bei-Da-Gang reservoir to quantitatively investigate the water salinization based on water and solute balance in the simulative pond. 80% of increased [Cl^-] is due to the salinity transfer of the saline soil and the other 20% is due to evaporation concentrating, so the former is the most important factor. We found that the salinization of Yin-Huang water can be described with a zero-dimension linear model.
基金This work was financially supported by the National Natural Science Foundation of China(41771470)the China Postdoctoral Science Foundation(2020M672776).
文摘Soil salinization is one of the most important causes of land degradation and desertification,especially in arid and semi-arid areas.The dynamic monitoring of soil salinization is of great significance to land management,agricultural activities,water quality,and sustainable development.The remote sensing images taken by the synthetic aperture radar(SAR)Sentinel-1 and the multispectral satellite Sentinel-2 with high resolution and short revisit period have the potential to monitor the spatial distribution of soil attribute information on a large area;however,there are limited studies on the combination of Sentinel-1 and Sentinel-2 for digital mapping of soil salinization.Therefore,in this study,we used topography indices derived from digital elevation model(DEM),SAR indices generated by Sentinel-1,and vegetation indices generated by Sentinel-2 to map soil salinization in the Ogan-Kuqa River Oasis located in the central and northern Tarim Basin in Xinjiang of China,and evaluated the potential of multi-source sensors to predict soil salinity.Using the soil electrical conductivity(EC)values of 70 ground sampling sites as the target variable and the optimal environmental factors as the predictive variable,we constructed three soil salinity inversion models based on classification and regression tree(CART),random forest(RF),and extreme gradient boosting(XGBoost).Then,we evaluated the prediction ability of different models through the five-fold cross validation.The prediction accuracy of XGBoost model is better than those of CART and RF,and soil salinity predicted by the three models has similar spatial distribution characteristics.Compared with the combination of topography indices and vegetation indices,the addition of SAR indices effectively improves the prediction accuracy of the model.In general,the method of soil salinity prediction based on multi-source sensor combination is better than that based on a single sensor.In addition,SAR indices,vegetation indices,and topography indices are all effective variables for soil salinity prediction.Weighted Difference Vegetation Index(WDVI)is designated as the most important variable in these variables,followed by DEM.The results showed that the high-resolution radar Sentinel-1 and multispectral Sentinel-2 have the potential to develop soil salinity prediction model.
基金supported by the National Basic Research Program of China(973 ProgramNo.2010CB951003)
文摘Based on monitored data from 840 samples, we assessed the spatial and temporal variability of groundwater salinization in the Tarim River lower reaches combining classical statistics and geostatistics. Results show that total dissolved solids (TDS) is significantly correlated with other related ions, such as Na+, Mg2+, Ca2-, C1- and K+. TDS and underground water level have characteristics of spatial autocorrelation, both of which present the isotropic characteristic and con- form to the spherical model in each year from 2001-2009. TDS is basically greater than 1 g/L but less than 2 g/L in the Tarim River lower reaches, which indicates that salt stagnation pollution is more serious. The most serious salinization (3 g/L 〈 TDS _〈 35 g/L) contaminated area is mainly in the middle and lower part of the study area.
文摘This study aimed to identify the role of natural and anthropogenic influence on geochemical processes controlling groundwater salinization in the middle portion of the Mono River basin, Togo. Multivariate statistical analysis, geochemical masse balance modeling, and conventional graphical methods were applied to the chemical dataset obtained from 110 groundwater samples collected during two campaigns (March-May 2011 and April 2014). The results showed that groundwater is predominantly fresh, acidic to circumneutral and mixed cations-<span style="white-space:nowrap;">HCO<sup>-</sup><sub style="margin-left:-7px;">3</sub> </span>water types. The proportion of ions (Na<sup>+</sup>, K<sup>+</sup>, Cl<sup>-</sup> and <span style="white-space:nowrap;">SO<sup>2-</sup><sub style="margin-left:-7px;">4</sub></span>) occurring ubiquitously in a saline environment increases substantially with TDS. Two factors, defined as natural and anthropogenic, account for 76.5% of the hydrochemical dataset variance. Based on the hierarchical cluster analysis, groundwater samples are classified into four clusters that corroborate the factor analysis results and illustrate different hydrochemical evolution stages along a topographically-driven groundwater flow path. The primary natural process contributing to cations and bicarbonate ions is the weathering of silicate minerals and possibly secondary carbonates by infiltrating water enriched with soil CO<sub>2</sub> gas. Groundwater salinization indicators including Cl<sup>-</sup>, <span style="white-space:nowrap;">SO<sup>2-</sup><sub style="margin-left:-7px;">4</sub> and <span style="white-space:nowrap;">NO<sup>-</sup><sub style="margin-left:-7px;">3</sub></span></span>, originate from potential sources such as human and animal wastes, agrochemicals, and deforestation. Thermodynamic equilibrium conditions ranged from saturation to oversaturation with respect to quartz, chalcedony, amorphous silica, calcite, dolomite, sepiolite, and talc. In conjunction with the lowering of CO<sub>2</sub> partial pressure and evaporation, these conditions restrict acidic hydrolysis of primary silicates but magnify the groundwater salinization process in the lower elevation areas where soil crusts’ formation is favorable. This study showed the effective use of multivariate statistical analysis and complementary techniques in identifying the significant factors and processes controlling groundwater chemistry.