The capture,regeneration,and conversion of CO_(2) from ambient air and flue gas streams are critical aspects of mitigating global warming.Solid sorbents for CO_(2) absorption are very promising as they have high mass ...The capture,regeneration,and conversion of CO_(2) from ambient air and flue gas streams are critical aspects of mitigating global warming.Solid sorbents for CO_(2) absorption are very promising as they have high mass transfer areas without energy input and reduce emissions and minimize corrosion as compared to liquid sorbents.However,precisely tunable solid CO_(2) sorbents are difficult to produce.Here,we demonstrate the high-throughput production of hydrogel-based CO_(2)-absorbing particles via liquid jetting.By wrapping a liquid jet consisting of an aqueous solution of cross-linkable branched polyethylenimine(PEI)with a layer of suspension containing hydrophobic silica nanoparticles,monodisperse droplets with a silica nanoparticle coating layer was formed in the air.A stable Pickering emulsion containing PEI droplets was obtained after these ejected droplets were collected in a heated oil bath.The droplets turn into mm-sized particles after thermal curing in the bath.The diameter,PEI content,and silica content of the particles were systematically varied,and their CO_(2) absorption was measured as a function of time.Steam regeneration of the particles enabled cyclic testing,revealing a CO_(2) absorption capacity of 6.5±0.5 mol kg^(−1)solid PEI in pure CO_(2) environments and 0.7±0.3 mol kg^(−1)solid PEI for direct air capture.Several thousands of particles were produced per second at a rate of around 0.5 kg per hour,with a single nozzle.This process can be further scaled by parallelization.The complete toolbox for the design,fabrication,testing,and regeneration of functional hydrogel particles provides a powerful route toward novel solid sorbents for regenerative CO_(2) capture.展开更多
Upper-level jet streams over East Asia simulated by the LASG/IAP coupled climate system model FGOALS-s2 were assessed, and the mean state bias explained in terms of synoptic-scale transient eddy activ- ity (STEA). T...Upper-level jet streams over East Asia simulated by the LASG/IAP coupled climate system model FGOALS-s2 were assessed, and the mean state bias explained in terms of synoptic-scale transient eddy activ- ity (STEA). The results showed that the spatial distribution of the seasonal mean jet stream was reproduced well by the model, except that following a weaker meridional temperature gradient (MTG), the intensity of the jet stream was weaker than in National Centers for Environment Prediction (NCEP)/Department of Energy Atmospheric Model Inter-comparison Project II reanalysis data (NCEP2). Based on daily mean data, the jet core number was counted to identify the geographical border between the East Asian Sub- tropical Jet (EASJ) and the East Asian Polar-front Jet (EAPJ). The border is located over the Tibetan Plateau according to NCEP2 data, but was not evident in FGOALS-s2 simulations. The seasonal cycles of the jet streams were found to be reasonably reproduced, except that they shifted northward relative to reanalysis data in boreal summer owing to the northward shift of negative MTGs. To identify the reasons for mean state bias, the dynamical and thermal forcings of STEA on mean flow were examined with a focus on boreal winter. The dynamical and thermal forcings were estimated by extended Eliassen-Palm flux (E) and transient heat flux, respectively. The results showed that the failure to reproduce the tripolar-pattern of the divergence of E over the jet regions led to an unsuccessful separation of the EASJ and EAPJ, while dynamical forcing contributed less to the weaker EASJ. In contrast, the weaker transient heat flux partly explained the weaker EASJ over the ocean.展开更多
SnO_(2)/Co_(3)O_(4)nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO_(2)/Co_(3)O_(4)hetero-nanofibers ...SnO_(2)/Co_(3)O_(4)nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO_(2)/Co_(3)O_(4)hetero-nanofibers are characterized by using field emission scanning electron microscope(FE-SEM),transmission electron microscope(TEM),x-ray diffraction(XRD),and x-ray photoelectron spectrometer(XPS).The analyses of SnO_(2)/Co_(3)O_(4)NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber,which is related to the homopolar electrospinning and the crystallization during sintering.As a typical n-type semiconductor,Sn O_(2)has the disadvantages of high optimal operating temperature and poor reproducibility.Comparing with Sn O_(2),the optimal operating temperature of SnO_(2)/Co_(3)O_(4)NFs is reduced from 350℃to 250℃,which may be related to the catalysis of Co_(2)O_(2).The response of SnO_(2)/Co_(3)O_(4)to 100-ppm ethanol at 250℃is 50.9,9 times higher than that of pure Sn O_(2),which may be attributed to the p–n heterojunction between the n-type Sn O_(2)crystalline grain and the p-type Co_(2)O_(2)crystalline grain.The nanoscale p–n heterojunction promotes the electron migration and forms an interface barrier.The synergy effects between Sn O_(2)and Co_(2)O_(2),the crystalline grain p–n heterojunction,the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.展开更多
Objectives: There is no data in the current medical literature on efficacy or accuracy of transcutaneous (tcPCO2) monitoring during jet ventilation for cardiac ablation. The use of tcPCO2 during cardiac ablation proce...Objectives: There is no data in the current medical literature on efficacy or accuracy of transcutaneous (tcPCO2) monitoring during jet ventilation for cardiac ablation. The use of tcPCO2 during cardiac ablation procedures offers the opportunity to compare end-tidal and transcutaneous methods of CO2 measurement before and after the use of the jet ventilation. Comparison of these measurements with arterial blood gas CO2 levels allows evaluation of the accuracy of the tcPCO2 technique for use during jet ventilation. Design: Observational study;patients served as their own controls. Setting: Cardiac electrophysiology laboratory. Participants: 15 adult patients (9 M), ASA III-IV, aged 26 to 82 years (median 66 years) undergoing radiofrequency ablation for atrial fibrillation. Interventions: Jet ventilation (JV) versus conventional ventilation. Measurements and Main Results: Paired measurements of end-tidal CO2 (EtCO2) and transcutaneous CO2 (tcPCO2) were recorded during periods of conventional ventilation. Paired measurements of arterial blood CO2 (PaCO2) levels and tcPCO2 were recorded during JV. ABG samples were drawn at the anesthesiologist’s discretion to assess the patient’s respiratory status. The level of agreement between the three methods was compared using the Bland Altman plot. We found that tcPCO2 values consistently provided a close approximation to PaCO2 levels. The mean difference between tcPCO2 and EtCO2 values in baseline and post-JV was on the order of 3 - 5 mmHg, with standard deviation of 4 - 6 mmHg. This is well within the range of variability that is accepted in clinical practice. Conclusions: These preliminary results suggest that tcPCO2 provides an acceptable estimate of CO2 concentration in arterial blood during JV, as well as prior to and following JV.展开更多
This paper describes the design of a ventilation system to be paired with a carbon capture system. The ventilation system utilizes the geometry of the George C. Wallace tunnel, located in the City of Mobile, Alabama, ...This paper describes the design of a ventilation system to be paired with a carbon capture system. The ventilation system utilizes the geometry of the George C. Wallace tunnel, located in the City of Mobile, Alabama, USA to capture and redirect emissions to a direct air capture (DAC) device to sequester 25% of the total CO2 mass generated from inside the tunnel. The total CO2 mass rate for the westbound traffic between the week-day hours of 7 a.m. and 6 p.m. has been estimated between 2,300 to 3,000 lbs./hr. By sequestering these emissions, the overall surrounding air quality was shown to be improved to a level that mirrors that from the pre-US industrial era of 270 ppm.展开更多
基金supported by the European Regional Development Fund(CONTROL,EFRO#00943).
文摘The capture,regeneration,and conversion of CO_(2) from ambient air and flue gas streams are critical aspects of mitigating global warming.Solid sorbents for CO_(2) absorption are very promising as they have high mass transfer areas without energy input and reduce emissions and minimize corrosion as compared to liquid sorbents.However,precisely tunable solid CO_(2) sorbents are difficult to produce.Here,we demonstrate the high-throughput production of hydrogel-based CO_(2)-absorbing particles via liquid jetting.By wrapping a liquid jet consisting of an aqueous solution of cross-linkable branched polyethylenimine(PEI)with a layer of suspension containing hydrophobic silica nanoparticles,monodisperse droplets with a silica nanoparticle coating layer was formed in the air.A stable Pickering emulsion containing PEI droplets was obtained after these ejected droplets were collected in a heated oil bath.The droplets turn into mm-sized particles after thermal curing in the bath.The diameter,PEI content,and silica content of the particles were systematically varied,and their CO_(2) absorption was measured as a function of time.Steam regeneration of the particles enabled cyclic testing,revealing a CO_(2) absorption capacity of 6.5±0.5 mol kg^(−1)solid PEI in pure CO_(2) environments and 0.7±0.3 mol kg^(−1)solid PEI for direct air capture.Several thousands of particles were produced per second at a rate of around 0.5 kg per hour,with a single nozzle.This process can be further scaled by parallelization.The complete toolbox for the design,fabrication,testing,and regeneration of functional hydrogel particles provides a powerful route toward novel solid sorbents for regenerative CO_(2) capture.
基金supported by the National High Technology Research and Development Program of China(Grant No.2010AA012304)the National Program on Key Basic Research Project of China(Grant No.2010CB951904)+1 种基金the National Natural Science Foundation of China project(Grant No.41125017)the"Strategic Priority Research Program-Climate Change:Carbon Budget and RelatedIssues"of the Chinese Academy of Sciences(Grant No.XDA05110301)
文摘Upper-level jet streams over East Asia simulated by the LASG/IAP coupled climate system model FGOALS-s2 were assessed, and the mean state bias explained in terms of synoptic-scale transient eddy activ- ity (STEA). The results showed that the spatial distribution of the seasonal mean jet stream was reproduced well by the model, except that following a weaker meridional temperature gradient (MTG), the intensity of the jet stream was weaker than in National Centers for Environment Prediction (NCEP)/Department of Energy Atmospheric Model Inter-comparison Project II reanalysis data (NCEP2). Based on daily mean data, the jet core number was counted to identify the geographical border between the East Asian Sub- tropical Jet (EASJ) and the East Asian Polar-front Jet (EAPJ). The border is located over the Tibetan Plateau according to NCEP2 data, but was not evident in FGOALS-s2 simulations. The seasonal cycles of the jet streams were found to be reasonably reproduced, except that they shifted northward relative to reanalysis data in boreal summer owing to the northward shift of negative MTGs. To identify the reasons for mean state bias, the dynamical and thermal forcings of STEA on mean flow were examined with a focus on boreal winter. The dynamical and thermal forcings were estimated by extended Eliassen-Palm flux (E) and transient heat flux, respectively. The results showed that the failure to reproduce the tripolar-pattern of the divergence of E over the jet regions led to an unsuccessful separation of the EASJ and EAPJ, while dynamical forcing contributed less to the weaker EASJ. In contrast, the weaker transient heat flux partly explained the weaker EASJ over the ocean.
文摘SnO_(2)/Co_(3)O_(4)nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO_(2)/Co_(3)O_(4)hetero-nanofibers are characterized by using field emission scanning electron microscope(FE-SEM),transmission electron microscope(TEM),x-ray diffraction(XRD),and x-ray photoelectron spectrometer(XPS).The analyses of SnO_(2)/Co_(3)O_(4)NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber,which is related to the homopolar electrospinning and the crystallization during sintering.As a typical n-type semiconductor,Sn O_(2)has the disadvantages of high optimal operating temperature and poor reproducibility.Comparing with Sn O_(2),the optimal operating temperature of SnO_(2)/Co_(3)O_(4)NFs is reduced from 350℃to 250℃,which may be related to the catalysis of Co_(2)O_(2).The response of SnO_(2)/Co_(3)O_(4)to 100-ppm ethanol at 250℃is 50.9,9 times higher than that of pure Sn O_(2),which may be attributed to the p–n heterojunction between the n-type Sn O_(2)crystalline grain and the p-type Co_(2)O_(2)crystalline grain.The nanoscale p–n heterojunction promotes the electron migration and forms an interface barrier.The synergy effects between Sn O_(2)and Co_(2)O_(2),the crystalline grain p–n heterojunction,the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.
文摘Objectives: There is no data in the current medical literature on efficacy or accuracy of transcutaneous (tcPCO2) monitoring during jet ventilation for cardiac ablation. The use of tcPCO2 during cardiac ablation procedures offers the opportunity to compare end-tidal and transcutaneous methods of CO2 measurement before and after the use of the jet ventilation. Comparison of these measurements with arterial blood gas CO2 levels allows evaluation of the accuracy of the tcPCO2 technique for use during jet ventilation. Design: Observational study;patients served as their own controls. Setting: Cardiac electrophysiology laboratory. Participants: 15 adult patients (9 M), ASA III-IV, aged 26 to 82 years (median 66 years) undergoing radiofrequency ablation for atrial fibrillation. Interventions: Jet ventilation (JV) versus conventional ventilation. Measurements and Main Results: Paired measurements of end-tidal CO2 (EtCO2) and transcutaneous CO2 (tcPCO2) were recorded during periods of conventional ventilation. Paired measurements of arterial blood CO2 (PaCO2) levels and tcPCO2 were recorded during JV. ABG samples were drawn at the anesthesiologist’s discretion to assess the patient’s respiratory status. The level of agreement between the three methods was compared using the Bland Altman plot. We found that tcPCO2 values consistently provided a close approximation to PaCO2 levels. The mean difference between tcPCO2 and EtCO2 values in baseline and post-JV was on the order of 3 - 5 mmHg, with standard deviation of 4 - 6 mmHg. This is well within the range of variability that is accepted in clinical practice. Conclusions: These preliminary results suggest that tcPCO2 provides an acceptable estimate of CO2 concentration in arterial blood during JV, as well as prior to and following JV.
文摘This paper describes the design of a ventilation system to be paired with a carbon capture system. The ventilation system utilizes the geometry of the George C. Wallace tunnel, located in the City of Mobile, Alabama, USA to capture and redirect emissions to a direct air capture (DAC) device to sequester 25% of the total CO2 mass generated from inside the tunnel. The total CO2 mass rate for the westbound traffic between the week-day hours of 7 a.m. and 6 p.m. has been estimated between 2,300 to 3,000 lbs./hr. By sequestering these emissions, the overall surrounding air quality was shown to be improved to a level that mirrors that from the pre-US industrial era of 270 ppm.