Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a...Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a processebased physical modeling of a pileereinforced reservoir landslide and present an improved deformation analysis involving large strains and water effects.We collect multieperiod point clouds using a terrain laser scanner and reconstruct its deformation field through a point cloud processing workflow.The results show that this method can accurately describe the landslide surface deformation at any time and area by both scalar and vector fields.The deformation fields in different profiles of the physical model and different stages of the evolutionary process provide adequate and detailed landslide information.We analyze the large strain upstream of the pile caused by the pile installation and the consequent violent deformation during the evolutionary process.Furthermore,our method effectively overcomes the challenges of identifying targets commonly encountered in geotechnical modeling where water effects are considered and targets are polluted,which facilitates the deformation analysis at the wading area in a reservoir landslide.Eventually,combining subsurface deformation as well as numerical modeling,we comprehensively analyze the kinematics and failure mechanisms of this complicated object involving landslides and pile foundations as well as water effects.This method is of great significance for any geotechnical modeling concerning large-strain analysis and water effects.展开更多
Laser scanning technology has been widely used in landslide aspects.However,the existing deformation analysis based on terrain laser scanners can only provide limited information,which is insufficient for understandin...Laser scanning technology has been widely used in landslide aspects.However,the existing deformation analysis based on terrain laser scanners can only provide limited information,which is insufficient for understanding landslide kinematics and failure mechanisms.To overcome this limitation,this paper proposes an automated method for processing point clouds collected in landslide physical modeling.This method allows the acquisition of quantitative three-dimensional(3D)deformation field information.The results show the organized and spatially related point cloud segmentation in terms of spherical targets.The segmented point clouds can be fitted to determine the locations of all preset targets and their corresponding location changes.The proposed method has been validated based on theoretical analysis and numerical and physical tests,which indicates that it can batch-process massive data sets with high computational efficiency and good noise resistance.Compared to existing methods,this method shows a significant potential for understanding landslide kinematics and failure mechanisms and advancing the application of 3D laser scanning in geotechnical modeling.展开更多
Based on previously reported work, we propose a new method for calibrating image plate(IP) scanners, offering greater flexibility and convenience, which can be extended to the calibration tasks of various scanner mode...Based on previously reported work, we propose a new method for calibrating image plate(IP) scanners, offering greater flexibility and convenience, which can be extended to the calibration tasks of various scanner models. This method was applied to calibrate the sensitivity of a GE Typhoon FLA 7000 scanner. Additionally, we performed a calibration of the spontaneous signal attenuation behavior for BAS-MS, BAS-SR, and BAS-TR type IPs under the 20±1℃ environmental conditions, and observed significant signal carrier diffusion behavior in BAS-MS IP. The calibration results lay a foundation for further research on the interaction between ultra-short, ultra-intense lasers and matter.展开更多
To expand scanning area and attack range without changing the inner structure of intelligent warhead, a new arrangement mode of the scanner for intelligent mine is proposed. The required coordinate systems are es...To expand scanning area and attack range without changing the inner structure of intelligent warhead, a new arrangement mode of the scanner for intelligent mine is proposed. The required coordinate systems are established firstly on the basis of advanced dynamics principle. and the exterior ballistics equations are deduced. Then the equations of scanning trails are established by the method of space analytic geometry. To get the scanning trails. the differential equations are transformed into discrete simulation model using the algorithm of fourth order Runge-Kutta and then are simulated using Matlab. Compared with the scanning trails obtained by the traditional layout of scanner, the scanning trails obtained by the proposed layout of scanner has larger horizontal range of scanning circle and bigger trarget acquisition probability. Therefore, the new arrangement mode of the scanner for intelligent mine can increase attack range.展开更多
The paper approaches the problem of the command functions of galvanometer-based scanners (GS) that are necessary to produce the linear plus parabolic scanning function of the GS, which we have proved previously to p...The paper approaches the problem of the command functions of galvanometer-based scanners (GS) that are necessary to produce the linear plus parabolic scanning function of the GS, which we have proved previously to produce the highest possible duty cycle (i.e., time efficiency) of the device. We have completed this theoretical aspect (which contradicted what has been stated previously in the literature, where it has been considered that the linear plus sinusoidal scanning function was the best) with the experimental study of the most used scanning functions of the GSs (sawtooth, sinusoidal and triangular), with applications in biomedical imaging, in particular in optical coherence tomography, demonstrating that the triangular function is always the best one to be applied, from both an optical and a mechanical point of view. In the present study the input voltage/command function which should be applied to the GS to produce the desired triangular scanning function (with controlled non-linearity for the fastest possible stop-and-turn portions) was determined analytically, in relationship with the active torque that drives the device. This command function is analyzed with regard to the specific, respectively required parameters of the GS: natural frequency and damping factor, respectively scan speed and amplitude. The modeling in an open loop control structure of the GS is finally discussed as a trade-off between using the highest possible duty cycle and minimizing the maximum peaks of the input voltage.展开更多
<b>Introduction:</b> Digital models showed promising results for orthodontic diagnosis and treatment planning. Digital models can be obtained from alginate impressions as well as direct intra-oral scanners...<b>Introduction:</b> Digital models showed promising results for orthodontic diagnosis and treatment planning. Digital models can be obtained from alginate impressions as well as direct intra-oral scanners. Studies assessing the accuracy of digital models have shown digital models to be valid, clinically acceptable, and more quickly obtainable. With the advent of new scanners with better scanning technology researches are necessary to evaluate their accuracy and reliability. <b>Aim of Study:</b> To evaluate the diagnostic accuracy of 3D digital models obtained through intraoral and extraoral scanning modalities to the reference gold standard plaster model. <b>Material & Methods:</b> Twenty-four adult male and female subjects were randomly selected for this study. The intraoral scanners evaluated in this study were Sirona (CEREC Omnicam) and 3 shape (TRIOS 3), while the laboratory scanners used were Sirona (inEos X5), and 3 shape (D850). Intra-oral scanning of the subjects and extra-oral scanning of their alginate impressions, plaster models of the alginate impression, rubber base impression, and plaster model of their rubber base impression were done. Linear dental measurements included intermolar width, interpremolar width, intercanine width, mesiodistal width of the 1<sup>st</sup> permanent molar, 1<sup>st</sup> premolar, canine and central incisor and arch width. All data were collected, tabulated and subjected to statistical analysis. <b>Results:</b> Small differences between the plaster and digital models were observed. Intra-observer reliability analysis for 14 out of the 16 measurements showed that all variables exhibited good to excellent reliability. <b>Conclusions: </b>There was no difference between the digitization using the intraoral scanner or the laboratory scanner. The most accurate digitization technique was the 3 Shape laboratory scanner of the cast of the alginate impression. The inEos X5 showed the highest error of digitization of the alginate and rubber base impressions.展开更多
Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method b...Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method based on genetic clustering VGA-clustering is presented. By integrating the spatial neighbouring information of range data into fuzzy clustering algorithm, a weighted fuzzy clustering algorithm (WFCA) instead of standard clustering algorithm is introduced to realize feature extraction of laser scanner. Aimed at the unknown clustering number in advance, several validation index functions are used to estimate the validity of different clustering algorithms and one validation index is selected as the fitness function of genetic algorithm so as to determine the accurate clustering number automatically. At the same time, an improved genetic algorithm IVGA on the basis of VGA is proposed to solve the local optimum of clustering algorithm, which is implemented by increasing the population diversity and improving the genetic operators of elitist rule to enhance the local search capacity and to quicken the convergence speed. By the comparison with other algorithms, the effectiveness of the algorithm introduced is demonstrated.展开更多
In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structur...In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structured light measurement model based on a galvanometer scanner was proposed to obtain the 3D information of the workpiece. A height calibration method was proposed to further ensure measurement accuracy, so as to achieve accurate laser focusing. In-situ machining software was developed to realize time-saving and labor-saving 3D laser processing. The feasibility and practicability of this in-situ laser machining system were verified using specific cases. In comparison with the conventional line structured light measurement method, the proposed methods do not require light plane calibration, and do not need additional motion axes for 3D reconstruction;thus they provide technical and cost advantages. The insitu laser machining system realizes a simple operation process by integrating measurement and machining,which greatly reduces labor and time costs.展开更多
Objective To validate the performance of Mycob. T Stainer and Scanner(MTSS) for detecting acid-fast bacilli(AFB). Methods A total of 3,816 sputum samples from 1,515 tuberculosis(TB) suspects were tested at the Anhui P...Objective To validate the performance of Mycob. T Stainer and Scanner(MTSS) for detecting acid-fast bacilli(AFB). Methods A total of 3,816 sputum samples from 1,515 tuberculosis(TB) suspects were tested at the Anhui Provincial Chest Hospital and the Linyi People’s Hospital from April-August, 2016. Each specimen was placed on two smear slides. One slide was stained by the ziehl-neelsen(ZN) method to be read by conventional microscopy(CM). The other slide was stained and scanned by MTSS. All specimens were decontaminated with 4% NaO H, and then inoculated into solid culture. The performance of MTSS was assessed. Results MTSS produced higher average positivity rate(27.96%) as compared with the CM(26.83%). The overall sensitivity and specificity of MTSS were 78.9% and 93.9%, respectively. The sensitivity and specificity of CM was 77.4% and 95.0%, respectively. Conclusion MTSS exhibited a favorable performance in the detection of AFB. It may be an alternative to CM for screening TB.展开更多
基金the National Natural Science Foundation of China(Grant No.42020104006).
文摘Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a processebased physical modeling of a pileereinforced reservoir landslide and present an improved deformation analysis involving large strains and water effects.We collect multieperiod point clouds using a terrain laser scanner and reconstruct its deformation field through a point cloud processing workflow.The results show that this method can accurately describe the landslide surface deformation at any time and area by both scalar and vector fields.The deformation fields in different profiles of the physical model and different stages of the evolutionary process provide adequate and detailed landslide information.We analyze the large strain upstream of the pile caused by the pile installation and the consequent violent deformation during the evolutionary process.Furthermore,our method effectively overcomes the challenges of identifying targets commonly encountered in geotechnical modeling where water effects are considered and targets are polluted,which facilitates the deformation analysis at the wading area in a reservoir landslide.Eventually,combining subsurface deformation as well as numerical modeling,we comprehensively analyze the kinematics and failure mechanisms of this complicated object involving landslides and pile foundations as well as water effects.This method is of great significance for any geotechnical modeling concerning large-strain analysis and water effects.
基金the National Natural Science Foundation of China(Grant No.42020104006).
文摘Laser scanning technology has been widely used in landslide aspects.However,the existing deformation analysis based on terrain laser scanners can only provide limited information,which is insufficient for understanding landslide kinematics and failure mechanisms.To overcome this limitation,this paper proposes an automated method for processing point clouds collected in landslide physical modeling.This method allows the acquisition of quantitative three-dimensional(3D)deformation field information.The results show the organized and spatially related point cloud segmentation in terms of spherical targets.The segmented point clouds can be fitted to determine the locations of all preset targets and their corresponding location changes.The proposed method has been validated based on theoretical analysis and numerical and physical tests,which indicates that it can batch-process massive data sets with high computational efficiency and good noise resistance.Compared to existing methods,this method shows a significant potential for understanding landslide kinematics and failure mechanisms and advancing the application of 3D laser scanning in geotechnical modeling.
基金supported by the Nuclear Industry Academician Fund, the National Natural Science Foundation of China (Grant No. 1220051312)Young Talents Fund of China National Nuclear Corporation (Grant No. FY212406000901)。
文摘Based on previously reported work, we propose a new method for calibrating image plate(IP) scanners, offering greater flexibility and convenience, which can be extended to the calibration tasks of various scanner models. This method was applied to calibrate the sensitivity of a GE Typhoon FLA 7000 scanner. Additionally, we performed a calibration of the spontaneous signal attenuation behavior for BAS-MS, BAS-SR, and BAS-TR type IPs under the 20±1℃ environmental conditions, and observed significant signal carrier diffusion behavior in BAS-MS IP. The calibration results lay a foundation for further research on the interaction between ultra-short, ultra-intense lasers and matter.
文摘To expand scanning area and attack range without changing the inner structure of intelligent warhead, a new arrangement mode of the scanner for intelligent mine is proposed. The required coordinate systems are established firstly on the basis of advanced dynamics principle. and the exterior ballistics equations are deduced. Then the equations of scanning trails are established by the method of space analytic geometry. To get the scanning trails. the differential equations are transformed into discrete simulation model using the algorithm of fourth order Runge-Kutta and then are simulated using Matlab. Compared with the scanning trails obtained by the traditional layout of scanner, the scanning trails obtained by the proposed layout of scanner has larger horizontal range of scanning circle and bigger trarget acquisition probability. Therefore, the new arrangement mode of the scanner for intelligent mine can increase attack range.
基金the support of the US Department of State through Fulbright Scholar Grant 474/2009
文摘The paper approaches the problem of the command functions of galvanometer-based scanners (GS) that are necessary to produce the linear plus parabolic scanning function of the GS, which we have proved previously to produce the highest possible duty cycle (i.e., time efficiency) of the device. We have completed this theoretical aspect (which contradicted what has been stated previously in the literature, where it has been considered that the linear plus sinusoidal scanning function was the best) with the experimental study of the most used scanning functions of the GSs (sawtooth, sinusoidal and triangular), with applications in biomedical imaging, in particular in optical coherence tomography, demonstrating that the triangular function is always the best one to be applied, from both an optical and a mechanical point of view. In the present study the input voltage/command function which should be applied to the GS to produce the desired triangular scanning function (with controlled non-linearity for the fastest possible stop-and-turn portions) was determined analytically, in relationship with the active torque that drives the device. This command function is analyzed with regard to the specific, respectively required parameters of the GS: natural frequency and damping factor, respectively scan speed and amplitude. The modeling in an open loop control structure of the GS is finally discussed as a trade-off between using the highest possible duty cycle and minimizing the maximum peaks of the input voltage.
文摘<b>Introduction:</b> Digital models showed promising results for orthodontic diagnosis and treatment planning. Digital models can be obtained from alginate impressions as well as direct intra-oral scanners. Studies assessing the accuracy of digital models have shown digital models to be valid, clinically acceptable, and more quickly obtainable. With the advent of new scanners with better scanning technology researches are necessary to evaluate their accuracy and reliability. <b>Aim of Study:</b> To evaluate the diagnostic accuracy of 3D digital models obtained through intraoral and extraoral scanning modalities to the reference gold standard plaster model. <b>Material & Methods:</b> Twenty-four adult male and female subjects were randomly selected for this study. The intraoral scanners evaluated in this study were Sirona (CEREC Omnicam) and 3 shape (TRIOS 3), while the laboratory scanners used were Sirona (inEos X5), and 3 shape (D850). Intra-oral scanning of the subjects and extra-oral scanning of their alginate impressions, plaster models of the alginate impression, rubber base impression, and plaster model of their rubber base impression were done. Linear dental measurements included intermolar width, interpremolar width, intercanine width, mesiodistal width of the 1<sup>st</sup> permanent molar, 1<sup>st</sup> premolar, canine and central incisor and arch width. All data were collected, tabulated and subjected to statistical analysis. <b>Results:</b> Small differences between the plaster and digital models were observed. Intra-observer reliability analysis for 14 out of the 16 measurements showed that all variables exhibited good to excellent reliability. <b>Conclusions: </b>There was no difference between the digitization using the intraoral scanner or the laboratory scanner. The most accurate digitization technique was the 3 Shape laboratory scanner of the cast of the alginate impression. The inEos X5 showed the highest error of digitization of the alginate and rubber base impressions.
基金the National Natural Science Foundation of China (60234030)the Natural Science Foundationof He’nan Educational Committee of China (2007520019, 2008B520015)Doctoral Foundation of Henan Polytechnic Universityof China (B050901, B2008-61)
文摘Feature extraction of range images provided by ranging sensor is a key issue of pattern recognition. To automatically extract the environmental feature sensed by a 2D ranging sensor laser scanner, an improved method based on genetic clustering VGA-clustering is presented. By integrating the spatial neighbouring information of range data into fuzzy clustering algorithm, a weighted fuzzy clustering algorithm (WFCA) instead of standard clustering algorithm is introduced to realize feature extraction of laser scanner. Aimed at the unknown clustering number in advance, several validation index functions are used to estimate the validity of different clustering algorithms and one validation index is selected as the fitness function of genetic algorithm so as to determine the accurate clustering number automatically. At the same time, an improved genetic algorithm IVGA on the basis of VGA is proposed to solve the local optimum of clustering algorithm, which is implemented by increasing the population diversity and improving the genetic operators of elitist rule to enhance the local search capacity and to quicken the convergence speed. By the comparison with other algorithms, the effectiveness of the algorithm introduced is demonstrated.
文摘In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structured light measurement model based on a galvanometer scanner was proposed to obtain the 3D information of the workpiece. A height calibration method was proposed to further ensure measurement accuracy, so as to achieve accurate laser focusing. In-situ machining software was developed to realize time-saving and labor-saving 3D laser processing. The feasibility and practicability of this in-situ laser machining system were verified using specific cases. In comparison with the conventional line structured light measurement method, the proposed methods do not require light plane calibration, and do not need additional motion axes for 3D reconstruction;thus they provide technical and cost advantages. The insitu laser machining system realizes a simple operation process by integrating measurement and machining,which greatly reduces labor and time costs.
基金supported by Chinese Anti-Tuberculosis Association[042016]
文摘Objective To validate the performance of Mycob. T Stainer and Scanner(MTSS) for detecting acid-fast bacilli(AFB). Methods A total of 3,816 sputum samples from 1,515 tuberculosis(TB) suspects were tested at the Anhui Provincial Chest Hospital and the Linyi People’s Hospital from April-August, 2016. Each specimen was placed on two smear slides. One slide was stained by the ziehl-neelsen(ZN) method to be read by conventional microscopy(CM). The other slide was stained and scanned by MTSS. All specimens were decontaminated with 4% NaO H, and then inoculated into solid culture. The performance of MTSS was assessed. Results MTSS produced higher average positivity rate(27.96%) as compared with the CM(26.83%). The overall sensitivity and specificity of MTSS were 78.9% and 93.9%, respectively. The sensitivity and specificity of CM was 77.4% and 95.0%, respectively. Conclusion MTSS exhibited a favorable performance in the detection of AFB. It may be an alternative to CM for screening TB.