Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with...Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with nanosized Schwarz crystals exhibited high strength and excellent thermal stability.However,the grainsize effect and associated deformation mechanisms of Schwarz nanocrystals remain unknown.Here,we performed large-scale atomistic simulations to investigate the deformation behaviors and grain-size effect of nanocrystalline Cu with Schwarz crystals.Our simulations showed that similar to regular nanocrystals,Schwarz nanocrystals exhibit a strengthening-softening transition with decreasing grain size.The critical grain size in Schwarz nanocrystals is smaller than that in regular nanocrystals,leading to a maximum strength higher than that of regular nanocrystals.Our simulations revealed that the softening in Schwarz nanocrystals mainly originates from TB migration(or detwinning)and annihilation of GBs,rather than GB-mediated processes(including GB migration,sliding and diffusion)dominating the softening in regular nanocrystals.Quantitative analyses of simulation data further showed that compared with those in regular nanocrystals,the GB-mediated processes in Schwarz nanocrystals are suppressed,which is related to the low volume fraction of amorphous-like GBs and constraints of TB networks.The smaller critical grain size arises from the suppression of GB-mediated processes.展开更多
By introducing the Carathéodory metric,we establish the Schwarz lemma at the boundary for holomorphic self-mappings on the unit p-ball B_(p)^(n) of C^(n).Furthermore,the boundary rigidity theorem for holomorphic ...By introducing the Carathéodory metric,we establish the Schwarz lemma at the boundary for holomorphic self-mappings on the unit p-ball B_(p)^(n) of C^(n).Furthermore,the boundary rigidity theorem for holomorphic self-mappings defined on B_(n)^(p) is obtained.These results cover the boundary Schwarz lemma and rigidity result for holomorphic self-mappings on the unit ball for p=2,and the unit polydisk for p=∞,respectively.展开更多
基金the financial support from National Natural Science Foundation of China (Grants Nos.12325203,91963117,and 11921002)。
文摘Recently,a Schwarz crystal structure with curved grain boundaries(GBs)constrained by twin-boundary(TB)networks was discovered in nanocrystalline Cu through experiments and atomistic simulations.Nanocrystalline Cu with nanosized Schwarz crystals exhibited high strength and excellent thermal stability.However,the grainsize effect and associated deformation mechanisms of Schwarz nanocrystals remain unknown.Here,we performed large-scale atomistic simulations to investigate the deformation behaviors and grain-size effect of nanocrystalline Cu with Schwarz crystals.Our simulations showed that similar to regular nanocrystals,Schwarz nanocrystals exhibit a strengthening-softening transition with decreasing grain size.The critical grain size in Schwarz nanocrystals is smaller than that in regular nanocrystals,leading to a maximum strength higher than that of regular nanocrystals.Our simulations revealed that the softening in Schwarz nanocrystals mainly originates from TB migration(or detwinning)and annihilation of GBs,rather than GB-mediated processes(including GB migration,sliding and diffusion)dominating the softening in regular nanocrystals.Quantitative analyses of simulation data further showed that compared with those in regular nanocrystals,the GB-mediated processes in Schwarz nanocrystals are suppressed,which is related to the low volume fraction of amorphous-like GBs and constraints of TB networks.The smaller critical grain size arises from the suppression of GB-mediated processes.
基金supported by the National Natural Science Foundation of China(12071161,11971165)supported by the National Natural Science Foundation of China(11971042)the Natural Science Foundation of Zhejiang Province(Z24A010005)。
文摘By introducing the Carathéodory metric,we establish the Schwarz lemma at the boundary for holomorphic self-mappings on the unit p-ball B_(p)^(n) of C^(n).Furthermore,the boundary rigidity theorem for holomorphic self-mappings defined on B_(n)^(p) is obtained.These results cover the boundary Schwarz lemma and rigidity result for holomorphic self-mappings on the unit ball for p=2,and the unit polydisk for p=∞,respectively.