Objective To investigate the impact of all-trans retinoic acid (ATRA) on MDM2 gene expression in astrocytoma cell line SHG-44, and to provide basic data for further research on the progression mechanism and gene the...Objective To investigate the impact of all-trans retinoic acid (ATRA) on MDM2 gene expression in astrocytoma cell line SHG-44, and to provide basic data for further research on the progression mechanism and gene therapy of human astrocytoma. Methods The differential expressions of MDM2 gene and protein in SHG-44 cells were detected by cDNA microarray and Western blot, respectively, before and after treatment of ATRA. The expressions of MDM2 protein in WHO grade Ⅱ and grade Ⅳ astrocytomas were determined by immunohistochemical streptavidin-peroxidase method. Some differentially expressed genes were selected randomly for Northern blot analysis. Results The intensity ratio of ATRA-treated to untreated SHG-44 cell was 0.37 in the cDNA microarray, suggesting that the expression of MDM2 gene was down-regulated in SHG-44 cells after treatment with ATRA. Some genes differentially expressed in the microarray were confirmed by Northern blot. Western blot demonstrated that the optical density ratios of MDM2 to β-actin in ATRA-treated and untreated SHG-44 were 14.02±0.35 and 21.40±0.58 (t = 24.728, P = 0.000), respectively, suggesting that the expression of MDM2 protein was inhibited in ATRA-treated SHG-44 cells. Moreover, the percentages of MDM2-positive protein were 24.00% (6/25) and 56.52% (13/23) (x^2 = 5.298, P = 0.021) in WHO grade Ⅱ and grade Ⅳ astrocytomas, respectively, suggesting that the expression of MDM2 protein may increase along with the elevation of astrocytoma malignancy. Conclusion ATRA can inhibit MDM2 gene expression in SHG-44 cells, and MDM2 is related to astrocytoma progression.展开更多
基金a grant from the Bureau of Health, Sichuan Province, China (No. 050209).
文摘Objective To investigate the impact of all-trans retinoic acid (ATRA) on MDM2 gene expression in astrocytoma cell line SHG-44, and to provide basic data for further research on the progression mechanism and gene therapy of human astrocytoma. Methods The differential expressions of MDM2 gene and protein in SHG-44 cells were detected by cDNA microarray and Western blot, respectively, before and after treatment of ATRA. The expressions of MDM2 protein in WHO grade Ⅱ and grade Ⅳ astrocytomas were determined by immunohistochemical streptavidin-peroxidase method. Some differentially expressed genes were selected randomly for Northern blot analysis. Results The intensity ratio of ATRA-treated to untreated SHG-44 cell was 0.37 in the cDNA microarray, suggesting that the expression of MDM2 gene was down-regulated in SHG-44 cells after treatment with ATRA. Some genes differentially expressed in the microarray were confirmed by Northern blot. Western blot demonstrated that the optical density ratios of MDM2 to β-actin in ATRA-treated and untreated SHG-44 were 14.02±0.35 and 21.40±0.58 (t = 24.728, P = 0.000), respectively, suggesting that the expression of MDM2 protein was inhibited in ATRA-treated SHG-44 cells. Moreover, the percentages of MDM2-positive protein were 24.00% (6/25) and 56.52% (13/23) (x^2 = 5.298, P = 0.021) in WHO grade Ⅱ and grade Ⅳ astrocytomas, respectively, suggesting that the expression of MDM2 protein may increase along with the elevation of astrocytoma malignancy. Conclusion ATRA can inhibit MDM2 gene expression in SHG-44 cells, and MDM2 is related to astrocytoma progression.