SHRIMP zircon U-Pb dating in the Liguo and Jiagou intrusives indicates that they were formed at -130 Ma in the Early Cretaceous. Most inherited zircons in the Liguo intrusive were formed at 2509±43 Ma. Most inher...SHRIMP zircon U-Pb dating in the Liguo and Jiagou intrusives indicates that they were formed at -130 Ma in the Early Cretaceous. Most inherited zircons in the Liguo intrusive were formed at 2509±43 Ma. Most inherited and detrital zircons in the Jiagou intrusive were formed at -2500 Ma, -2000 Ma and -1800 Ma. The SHRIMP zircon U-Pb dating in two gneiss xenoliths from the Jiagou intrusive yields the ages of 2461±22 Ma and 2508±15 Ma, respectively. The dating results from inherited and detrital zircons in the intrusives and the gneiss xenoliths imply that the magmas could be derived from the partial melting of the basement of the North China Block (NCB). The magmatism is strong and extensive in the periods from 115 to 132 Ma, which is of typical bimodal characteristics. It is suggested that the lithospheric thinning in the eastern North China Block reached its peak in 115-132 Ma.展开更多
The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic di...The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic diorite. Four samples of the Yunmengshan gneissic granite give SHRIMP zircon U-Pb ages from 145 to 141 Ma, whereas four samples of the Shicheng gneissic diorite have ages from 159 Ma to 151 Ma. Dikes that cut the Yunmengshan diorite record SHRIMP zircon U-Pb age of 162±2 and 156±4 Ma. The cumulative plots of zircons from the diorites show a peak age of 155 Ma, without inherited zircon cores, and the peak age of 142 Ma for granite is interpreted as the emplacement age of the Yunmengshan granitic pluton, whose igneous zircons contain inherited zircon cores. The data presented here show that there were two pulses of magmatism: early diorites, followed c13 Ma later by true granites, which incorporated material from an older continental crust.展开更多
The Lupa Goldfield (LGF) is one of the eight structural terranes in the NW – SE striking Ubendian Belt of SW Tanzania. The LGF is comprised of granitic gneisses with bands of amphibolites which are intruded by mafic ...The Lupa Goldfield (LGF) is one of the eight structural terranes in the NW – SE striking Ubendian Belt of SW Tanzania. The LGF is comprised of granitic gneisses with bands of amphibolites which are intruded by mafic intrusions including gabbros, granodiorites, diorites;and various granites as well as metavol-canics. These rocks are cross-cut by narrow mafic dykes and aplites. SHRIMP zircon U-Pb data are presented for the granodiorite and a mafic dyke that cross-cut the granodiorites in the Saza area of the LGF, with the aim of constraining the mafic and felsic magmatism and their implication to gold mineralization. The zircon U-Pb data shows that the Saza granodiorites were emplaced at 1924 ± 13 Ma (MSWD = 2.6) whereas the cross-cutting mafic dyke yielded a zircon U-Pb age of 1758 ± 33 Ma (MSWD = 0.88). The dated granodiorite sample was in sheared contact with an altered mafic intrusive rock, most likely a diorite, along which an auriferous quartz vein occurs. The 1924 ± 13 Ma age of granodiorites is within error of the reported molybdenite Re-Os age of 1937 Ma determined for the gold mineralization event in Lupa Goldfields. Although auriferous quartz veins are younger than the granodiorites, the more or less similar ages between the emplacement of granodiorites and the mineralizing event indicate that the granodiorites might be the heat source (or driver) of hydrothermal fluids responsible for gold mineralization in the Lupa goldfields. This would further suggest that gold mineralization in the LGF is intrusion-related type. The mafic dykes represent the youngest rocks to have been emplaced in the area and hence the 1758 ± 33 Ma age of the mafic dykes conclude the magmatic evolution in the Lupa goldfields during the Palaeoproterozoic.展开更多
The SHRIMP U-Pb zircon dating result of the Tongshi magmatic complex in western Shandong is presented in this paper. The Tongshi magmatic complex comprises fine-grained porphyritic diorite and syenitic porphyry. Eight...The SHRIMP U-Pb zircon dating result of the Tongshi magmatic complex in western Shandong is presented in this paper. The Tongshi magmatic complex comprises fine-grained porphyritic diorite and syenitic porphyry. Eighteen analyses for fine-grained porphyritic diorite gave two concordia ages, in which ten analyses constitute the young age group, giving ^206Pb/^238U ages ranging from 167.9 Ma to 183 Ma with a weighted mean age of 175.7±3.8 Ma, and the other eight yielded ^207Pb/^206Pb ages of 2502 Ma to 2554 Ma with a weighted mean 2518±11 Ma. Two analyses for syenitic porphyry gave ages of 2485 Ma and 2512 Ma, respectively. The age of 175.7±3.8 Ma indicates that the crystallization of the Tongshi magmatic complex occurred in the Middle Jurassic, whereas that of 2518±11 Ma is interpreted as the age of inherited magmatic zircons in the Neoarchean Wutai period.展开更多
Small granitic intrusions occur in the progressive metamorphic belts of the Chinese Ahai orogen. SHRIMP U-Pb analyses were performed on zircons separated from a tonalite intrusion and yielded a concordant age of 409.6...Small granitic intrusions occur in the progressive metamorphic belts of the Chinese Ahai orogen. SHRIMP U-Pb analyses were performed on zircons separated from a tonalite intrusion and yielded a concordant age of 409.6±3.7 Ma ( MSWD = 0.93 ), restricting the emplacement and crystallization of the tonalite intru- sion to the Early Devonian. Combined with the existing geological data of the contemporary large granitic plutons in the Chinese Altai orogen, the tonalite is considered to be formed together with other granitic rocks in a continental arc setting. The tonalite intrusion has consistent foliation with its country rocks, indicating the strain resuiting in the regional deformation should be very strong during or after the early Devonian.展开更多
The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested th...The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested that the rocks are metaluminous(A/CNK=1.32-1.45),subduction-related I-type calc-alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures.The host rocks yielded an U-Pb crystallization age of 37.3±0.4 Ma for gabbro-diorite.MMEs have relatively low SiO_(2) contents(52.9-56.6 wt%)and high Mg^(#)(49.8-58.7),probably reflecting a mantle-derived origin.Chondrite-and mantle-normalized trace element patterns are characterized by LREE and LILE enrichment,HREE and HFSE depletion with slight negative Eu anomalies(Eu/Eu^(*)=0.86-1.03).The host rocks yield(^(87)Sr/^(86)Sr)_(i) ratios of 0.70492-0.70510,positive ε_(Nd)(t)values of+1.55-+2.06 and T_(DM2)of 707-736 Ma,which is consistent with the associated mafic microgranular enclaves((^(87)Sr/^(86)Sr)_(i)=0.705014,ε_(Nd)(t)=+1.75,T_(DM2)=729 Ma).All data suggest magma-mixing for enclave and host rock formation,showing a complete equilibration between mixed-mafic and felsic magmas,followed by rapid diffusion.The T_(DM1)(Nd)and T_(DM2)(Nd)model ages and U-Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantlederived magmas in a pre-collisional setting of Arabian-Eurasian plates.Clinopyroxene composition indicates a crystallization temperature of~1000℃ and a depth of~9 km.展开更多
The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UH...The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.展开更多
鲁西地区太古宙表壳岩包括新太古代早期和晚期两期表壳岩,早期表壳岩主要由变质玄武岩-科马提岩组成,晚期表壳岩主要由变质火山岩-碎屑沉积岩和BIF(Banded Iron Formations)组成。韩旺铁矿位于鲁西的西北部,铁矿区内存在大量变质玄武岩...鲁西地区太古宙表壳岩包括新太古代早期和晚期两期表壳岩,早期表壳岩主要由变质玄武岩-科马提岩组成,晚期表壳岩主要由变质火山岩-碎屑沉积岩和BIF(Banded Iron Formations)组成。韩旺铁矿位于鲁西的西北部,铁矿区内存在大量变质玄武岩-科马提岩,早期认为该BIF形成于新太古代早期,而新的研究认为鲁西地区BIF都形成于新太古代晚期。本文对韩旺铁矿区内与BIF互层的黑云变粒岩和侵入其中的片麻状花岗闪长岩开展锆石SHRIMP U-Pb定年,获得年龄分别为(2529±7)Ma和(2534±11)Ma。黑云变粒岩和片麻状花岗闪长岩的TREE、(La/Yb)N、Eu/Eu*分别为76×10^(–6)、19.8、0.84和82.7×10^(–6)、17.3、1.14,它们的岩浆锆石的εHf值、单阶段Hf同位素模式年龄分别为5.5~9.46、2.5~2.6 Ga和6.3~9.4、2.48~2.60 Ga。研究支持了鲁西地区BIF形成于新太古代晚期的认识。表壳岩形成、变质变形和花岗闪长岩侵入发生在一个很短的时间范围内。研究还表明,黑云变粒岩的原岩为英安质火山岩,很可能形成于新生玄武质岩浆的强烈结晶分异作用,花岗闪长岩形成于新生玄武质岩石部分熔融,形成过程中有陆壳物质的加入。展开更多
The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition ...The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition from arc to initial collision.Here we present results from zircon U-Pb geochronology,whole-rock geochemistry,and Sr-Nd-Pb isotope geochemistry of the Beidaban granites to provide crucial information for geodynamic evolution of NQOB.Zircon U-Pb dating yields an age of 468±10 Ma for the Beidaban granites and most of the Beidaban samples contain amphibole,are potassium-rich,and have A/CNK values ranging from 0.7 to 0.9,illustrating that the Middle Ordovician Beidaban granites are K-rich,metaluminous,calc-alkaline granitoid.The geochemical characteristics indicate that the Beidaban granites are transitional I/S-type granitoids that formed in an arc setting.The isotopic compositions of initial(87 Sr/86 Sr)i values ranging from 0.70545 to 0.71082(0.70842 on average)andεNd(t)values ranging from−10.9 to−6.7(−8.8 on average)with two-stage Nd model ages(T DM2)of 1.74-2.08 Ga suggest that the Beidaban granites originated from Paleoproterozoic crustal materials.In addition,the initial Pb isotopic compositions(^(206)Pb/^(204)Pb=19.14-20.26;^(207)Pb/^(204)Pb=15.71-15.77;^(208)Pb/^(204)Pb=37.70-38.26)and geochemical features,such as high Th/Ta(17.43-30.12)and Rb/Nb(6.01-15.49)values,suggest that the Beidaban granite magma source involved recycled crustal components with igneous rocks.Based on these results in combination with previously published geochronological and geochemical data from other early Paleozoic igneous rocks,we suggest that the timing of the tectonic transition from arc to the initial collision to the fi nal closure of the North Qilian Ocean can be constrained to the Middle-Late Ordovician(ca.468–450 Ma).展开更多
Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of ...Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of garnet and zircon in the Dafang Au-Pb-Zn-Ag deposit,which represents prominent gold mineralization in southern Hunan,China.Garnet samples with distinct zoning patterns and compositional variations were identified using various analytical techniques,including Backscattered Electron(BSE)imaging,Cathodoluminescence(CL)response,textural characterization,and analysis of rare-earth elements(REE),major contents,and trace element compositions.The garnet was dated U-Pb dating,which yielded a lower intercept age of 161.06±1.93 Ma.This age is older than the underlying granodiorite porphyry,which has a concordia age of 155.13±0.95 Ma determined by zircon U-Pb dating.These results suggest that the gold mineralization may be related to the concealed granite.Two groups of garnet changed from depleted Al garnet to enriched Al garnet,and the rare earth element(REE)patterns of these groups were converted from light REE(LREE)-enriched and heavy REE(HREE)-depleted with positive europium(Eu)anomalies to medium REE(MREE)-enriched from core to rim zoning.The different REE patterns of garnet in various zones may be attributed to changes in the fluid environment and late superposition alteration.The development of distal skarn in the southern Hunan could be a significant indicator for identifying gold mineralization.展开更多
Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. ...Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. In order to constrain the emplacement age of these dykes, zircons of two samples from diabases in Nagarzê were dated by using the U-Pb SHRIMP method. Two nearly the same weighted mean ^206pb/^23SU ages were obtained in this paper, which are 134.9±1.8 Ma (MSWD=0.65) and 135.5 ± 2.1 Ma (MSWD=1.40), respectively. They not only represent the crystallization age of the diabase, but also documented an important spreading event of the Neo-Tethys Ocean during the late Jurassic and early Cretaceous. This dating result is of great significance to reconstruct the temporal framework of the late Neo-Tethys Ocean in the Qinghai-Tibet Plateau.展开更多
SHRIMP zircon U-Pb dating for Chibaisong No.1 gabbro in the Tonghua area, Jilin Prov- ince, is discussed in the paper. The cathodoluminescence (CL) images of the zircons indicate that they can be divided into two majo...SHRIMP zircon U-Pb dating for Chibaisong No.1 gabbro in the Tonghua area, Jilin Prov- ince, is discussed in the paper. The cathodoluminescence (CL) images of the zircons indicate that they can be divided into two major types, i.e. euhedral-subhedral one with striped absorption and round one with obvious oscillatory zoning rims. The dating results of the zircons suggest that Chibai- song gabbro in the Tonghua area was formed at 134±7Ma—the Early Cretaceous. The concordia ages of 2497±13Ma, 787±35Ma, 321±10Ma, 217±11Ma of zircons imply that the Tonghua area might geologically be located in the convergent region of the Yangtze Block (YB) and the North China Block (NCB) in the early Mesozoic and the zircons should be caught during magma intrusion. The existence of the Early Cretaceous basic dyke swarm in the Tonghua area shows that an intensive extensional environment occurred in the Early Cretaceous. It is suggested that the magmatism and lithospheric extension in the Tonghua area should be related to the subduction of the Pacific plate.展开更多
The Daqing Mountains area comprises a typical occurrence of the Khondalite Belt in the Western Block of the North China Craton (NCC). In this area, both early and late Paleoproterozoic metasedimentary rocks have been ...The Daqing Mountains area comprises a typical occurrence of the Khondalite Belt in the Western Block of the North China Craton (NCC). In this area, both early and late Paleoproterozoic metasedimentary rocks have been identified in what was originally called the Upper Wula Mountains "Subgroup". Six metasedimentary rock samples yielded SHRIMP U-Pb zircon ages of 2.56-2.04 Ga for detrital and 1.96-1.83 Ga for metamorphic zircons. Based on these data and previously published results, the following conclusions can be drawn: 1) The source region for the late Paleoproterozoic detrital sedimentary rocks is mainly 2.55 2.4 and 2.2 2.04 Ga in age, consistent with the early Precambrian geological history identified widely in the basement of the NCC. 2) The majority of sedimentary rocks of the khondalite series were deposited between 2.04 and 1.95 Ga, and then in a protracted period (1.96 and 1.83 Ga) underwent a complex history of amphibolite to granulite-facies metamorphism.展开更多
This paper selected five typical Mesozoic intrusives from the Tongling metallogenic cluster (Xiaotongguanshan, Fenghuangshan, Xinqiao, Dongguashan, and Shatanjiao plutons), and made a systemic SHRIMP zircon U-Pb datin...This paper selected five typical Mesozoic intrusives from the Tongling metallogenic cluster (Xiaotongguanshan, Fenghuangshan, Xinqiao, Dongguashan, and Shatanjiao plutons), and made a systemic SHRIMP zircon U-Pb dating for the five plutons, which produced展开更多
The petrographic characteristics of Jingshan "migmatitic granite" and the occurrence of the magmatic zircons indicate that the granite was formed by normal crystallization of felsic melts. All zircons in the...The petrographic characteristics of Jingshan "migmatitic granite" and the occurrence of the magmatic zircons indicate that the granite was formed by normal crystallization of felsic melts. All zircons in the granite have inherited cores and fine-scale oscillatory zoning rims of magmatic origin. It is realized that the granite was formed at 160.2±1.3 Ma through dating magmatic zircons. The generation of the granitic magma could be related to the lithospheric mantle and/or lower crust delamination after the ultrahigh pressure metamorphism (UHPM) in Triassic. Most inherited zircons yield the ages of 217.1±6.6 Ma, which is consistent with the peak UHPM in the Dabie-Sulu orogenic belt. Some of the inherited zircons (433-722 Ma) constitute a discordia line with the upper intercept age of 850+85/-68 Ma and a lower intercept age of 261+100/-140 Ma. These ages imply that the granite could be derived from the partial melting of the crustal materials of the South China Block that was intensively superimposed by the UHPM. The UHPM could be the reason for the major Pb loss at ±220 Ma.展开更多
Abundant small mafic intrusions occur associated with granitoids along the Gangdise^ magmatic belt. In addition to many discrete gabbro bodies within the granitoid plutons, a gabbro-pyroxenite zone occurs along the so...Abundant small mafic intrusions occur associated with granitoids along the Gangdise^ magmatic belt. In addition to many discrete gabbro bodies within the granitoid plutons, a gabbro-pyroxenite zone occurs along the southern margin of the Gangdise^ belt to the north of the Yarlung Zangbo suture. The mafic intrusion zone spatially corresponds to a strong aeromagnetic anomaly, which extends -1400 km. The mafic intrusions consist of intermittently distributed small bodies and dikes of gabbro and dolerite with accumulates of pyroxenite, olivine pyroxenite, pegmatitic pyroxenite and amphibolite. Much evidence indicates that the Gangdise^ gabbro-pyroxenite assemblage is most likely a result of underplating of mantle-derived magma. Detailed field investigation and systematic sampling of the mafic rocks was conducted at six locations along the Lhasa-Xigaze^ segment of the mafic intrusive zone, and was followed by zircon SHRIMP Ⅱ U-Pb dating. In addition to the ages of two samples previously published (47.0±1 Ma and 48.9±1.1 Ma), the isotopic ages of the remaining four gabbro samples are 51.6±1.3Ma, 52.5±3.0 Ma, 50.2±4.2Ma and 49.9±1.1Ma. The range of these ages (47-52.5 Ma) provide geochronologic constraints on the Eocene timing of magma underplating beneath the Gangdise^ belt at ca. 50 Ma. This underplating event post-dated the initiation of the India-Eurasia continental collision by 15 million years and was contemporaneous with a process of magma mixing. The SHRIMP Ⅱ U-Pb isotopic analysis also found several old ages from a few zircon grains, mostly in a range of 479-526 Ma (weighted average age 503±10 Ma), thus yielding information about the pre-existing lower crust when underplating of mafic magma took place. It is believed that magma underplating was one of the major mechanisms for crustal growth during the Indian-Eurasia collision, possibly corresponding in time to the formation of the 14-16 km-thick "crnst-mantle transitional zone" characterized by Vp=6.85-6.9 km/s.展开更多
This paper reports SHRIMP zircon U-Pb ages of 196±2 Ma for granite, and 195±1 Ma for gabbro from the Xialan complex in the Meizhou area, northern Guangdong Province. These results shed new light on the calm ...This paper reports SHRIMP zircon U-Pb ages of 196±2 Ma for granite, and 195±1 Ma for gabbro from the Xialan complex in the Meizhou area, northern Guangdong Province. These results shed new light on the calm stage of magmatic activity in southeastern China during 200-180 Ma, and revealed that the back-arc extension induced by the subduction of the western Pacific plate may have begun at 195 Ma at least. Field observation on the fresh outcrops allows us to recognize some features formed by magma mixing. A part of the gabbro has a fine-grained rim of 20-30 cm at the margin, and thins gradually to-ward the granite; numerous dark fine-grained to microcrystalline dioritic enclaves developed in the granite. These enclaves vary in shape and size, dark minerals concentrated at the margin of enclaves, and the contact between enclaves and host rock is either obvious or obscure, or gradational. In addi-tion, needle-shaped apatites are included in the enclaves. The REE patterns of gabbros, as well as the trace element patterns, are generally consistent with those of granitic rocks. The above characters further suggest that in the Early Jurassic the injection of basic magma had melted deep continental crust and produced acidic magma, and the Xialan complex was produced by the mixing of them.展开更多
The Jinniu Basin in southeast Hubei,located at the westernmost part of middle-lower val-ley of the Yangtze River,is one of the important vol-canic basins in East China. Volcanic rocks in the Jin-niu Basin are distribu...The Jinniu Basin in southeast Hubei,located at the westernmost part of middle-lower val-ley of the Yangtze River,is one of the important vol-canic basins in East China. Volcanic rocks in the Jin-niu Basin are distributed mainly in the Majiashan Formation,the Lingxiang Formation and the Dasi Formation,consisting of rhyolite,basalt and basaltic andesite,(trachy)-basalt and basaltic trachy-andesite and (trachy)-andesite and (trachy)-dacite and rhyolite respectively,in which the Dasi volcanism is volumet-rically dominant and widespread. The Dasi volcanic rocks were selected for SHRIMP zircon U-Pb dating to confirm the timing of volcanism. The results indi-cate that there exist a large amount of magmatic zir-cons characterized by high U and Th contents in the volcanic rocks. The concordia ages for 13 points are 128 ± 1Ma (MSWD = 3.0). On account of the shape of zircons and Th/U ratios,this age is considered to represent the crystallization time of the Dasi volcan-ism. The volcanic rocks in the Dasi,Majiashan and Lingxiang Formations share similar trace elementand REE partition patterns as well as Sr-Nd isotopic compositions. In combination with the regional geol-ogy,it is proposed that the southeast Hubei volcanic rocks were formed mainly during the Early Creta-ceous,just like other volcanic basins in middle-lower Yangtze valley. A lithospheric extension is also sug-gested for tectonic regime in this region in the Cre-taceous Period.展开更多
Located in the eastern part of the East Qinling molybdenum belt, the Donggou deposit is a superlarge porphyry molybdenum deposit discovered in recent years. The authors performed highly precise dating of the mineraliz...Located in the eastern part of the East Qinling molybdenum belt, the Donggou deposit is a superlarge porphyry molybdenum deposit discovered in recent years. The authors performed highly precise dating of the mineralized porphyry and ores in the Donggou molybdenum deposit. A SHRIMP U-Pb zircon dating of the Donggou aluminous A-type granite-porphyry gave a rock-forming age of 112±1 Ma, and the ICP-MS Re-Os analyses of molybdenite from the molybdenum deposit yielded ReOs model ages ranging from 116.5±1.7 to 115.5±1.7 Ma for the deposit. The ages obtained by the two methods are quite close, suggesting that the rocks and ores formed approximately at the same time. The Donggou molybdenum deposit formed at least 20 Ma later than the Jinduicheng, Nannihu, Shangfanggou and Leimengou porphyry molybdenum deposits in the same molybdenum belt, implying that these deposits were formed in different tectonic settings.展开更多
基金research grants No.40172030 from the NSFC and No.TG1999075502 from the Ministryof Science and Technology of China.
文摘SHRIMP zircon U-Pb dating in the Liguo and Jiagou intrusives indicates that they were formed at -130 Ma in the Early Cretaceous. Most inherited zircons in the Liguo intrusive were formed at 2509±43 Ma. Most inherited and detrital zircons in the Jiagou intrusive were formed at -2500 Ma, -2000 Ma and -1800 Ma. The SHRIMP zircon U-Pb dating in two gneiss xenoliths from the Jiagou intrusive yields the ages of 2461±22 Ma and 2508±15 Ma, respectively. The dating results from inherited and detrital zircons in the intrusives and the gneiss xenoliths imply that the magmas could be derived from the partial melting of the basement of the North China Block (NCB). The magmatism is strong and extensive in the periods from 115 to 132 Ma, which is of typical bimodal characteristics. It is suggested that the lithospheric thinning in the eastern North China Block reached its peak in 115-132 Ma.
基金supported by the National Natural Science Foundation of China(no.:40703012)the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology of the Peoples Republic of China(no.:J0809),and Miyun Tourism Administration for the Yunmengshan National Geopark.
文摘The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic diorite. Four samples of the Yunmengshan gneissic granite give SHRIMP zircon U-Pb ages from 145 to 141 Ma, whereas four samples of the Shicheng gneissic diorite have ages from 159 Ma to 151 Ma. Dikes that cut the Yunmengshan diorite record SHRIMP zircon U-Pb age of 162±2 and 156±4 Ma. The cumulative plots of zircons from the diorites show a peak age of 155 Ma, without inherited zircon cores, and the peak age of 142 Ma for granite is interpreted as the emplacement age of the Yunmengshan granitic pluton, whose igneous zircons contain inherited zircon cores. The data presented here show that there were two pulses of magmatism: early diorites, followed c13 Ma later by true granites, which incorporated material from an older continental crust.
文摘The Lupa Goldfield (LGF) is one of the eight structural terranes in the NW – SE striking Ubendian Belt of SW Tanzania. The LGF is comprised of granitic gneisses with bands of amphibolites which are intruded by mafic intrusions including gabbros, granodiorites, diorites;and various granites as well as metavol-canics. These rocks are cross-cut by narrow mafic dykes and aplites. SHRIMP zircon U-Pb data are presented for the granodiorite and a mafic dyke that cross-cut the granodiorites in the Saza area of the LGF, with the aim of constraining the mafic and felsic magmatism and their implication to gold mineralization. The zircon U-Pb data shows that the Saza granodiorites were emplaced at 1924 ± 13 Ma (MSWD = 2.6) whereas the cross-cutting mafic dyke yielded a zircon U-Pb age of 1758 ± 33 Ma (MSWD = 0.88). The dated granodiorite sample was in sheared contact with an altered mafic intrusive rock, most likely a diorite, along which an auriferous quartz vein occurs. The 1924 ± 13 Ma age of granodiorites is within error of the reported molybdenite Re-Os age of 1937 Ma determined for the gold mineralization event in Lupa Goldfields. Although auriferous quartz veins are younger than the granodiorites, the more or less similar ages between the emplacement of granodiorites and the mineralizing event indicate that the granodiorites might be the heat source (or driver) of hydrothermal fluids responsible for gold mineralization in the Lupa goldfields. This would further suggest that gold mineralization in the LGF is intrusion-related type. The mafic dykes represent the youngest rocks to have been emplaced in the area and hence the 1758 ± 33 Ma age of the mafic dykes conclude the magmatic evolution in the Lupa goldfields during the Palaeoproterozoic.
基金This study was supported by the Major State Basic Rsearch Program of China(grant G1999043211)National Natural Science Foundation of China(grant 40272088).
文摘The SHRIMP U-Pb zircon dating result of the Tongshi magmatic complex in western Shandong is presented in this paper. The Tongshi magmatic complex comprises fine-grained porphyritic diorite and syenitic porphyry. Eighteen analyses for fine-grained porphyritic diorite gave two concordia ages, in which ten analyses constitute the young age group, giving ^206Pb/^238U ages ranging from 167.9 Ma to 183 Ma with a weighted mean age of 175.7±3.8 Ma, and the other eight yielded ^207Pb/^206Pb ages of 2502 Ma to 2554 Ma with a weighted mean 2518±11 Ma. Two analyses for syenitic porphyry gave ages of 2485 Ma and 2512 Ma, respectively. The age of 175.7±3.8 Ma indicates that the crystallization of the Tongshi magmatic complex occurred in the Middle Jurassic, whereas that of 2518±11 Ma is interpreted as the age of inherited magmatic zircons in the Neoarchean Wutai period.
文摘Small granitic intrusions occur in the progressive metamorphic belts of the Chinese Ahai orogen. SHRIMP U-Pb analyses were performed on zircons separated from a tonalite intrusion and yielded a concordant age of 409.6±3.7 Ma ( MSWD = 0.93 ), restricting the emplacement and crystallization of the tonalite intru- sion to the Early Devonian. Combined with the existing geological data of the contemporary large granitic plutons in the Chinese Altai orogen, the tonalite is considered to be formed together with other granitic rocks in a continental arc setting. The tonalite intrusion has consistent foliation with its country rocks, indicating the strain resuiting in the regional deformation should be very strong during or after the early Devonian.
基金supported by the Iran National Science Foundation(INSF)(Grant No.98012578)projects from the National Natural Science Foundation of China(Grant Nos.41473033,41673031)。
文摘The Hesar pluton in the northern Urumieh-Dokhtar magmatic arc hosts numerous mafic-microgranular enclaves(MMEs).Whole rock geochemistry,mineral chemistry,zircon U-Pb and Sr-Nd isotopes were measured.It is suggested that the rocks are metaluminous(A/CNK=1.32-1.45),subduction-related I-type calc-alkaline gabbro to diorite with similar mineral assemblages and geochemical signatures.The host rocks yielded an U-Pb crystallization age of 37.3±0.4 Ma for gabbro-diorite.MMEs have relatively low SiO_(2) contents(52.9-56.6 wt%)and high Mg^(#)(49.8-58.7),probably reflecting a mantle-derived origin.Chondrite-and mantle-normalized trace element patterns are characterized by LREE and LILE enrichment,HREE and HFSE depletion with slight negative Eu anomalies(Eu/Eu^(*)=0.86-1.03).The host rocks yield(^(87)Sr/^(86)Sr)_(i) ratios of 0.70492-0.70510,positive ε_(Nd)(t)values of+1.55-+2.06 and T_(DM2)of 707-736 Ma,which is consistent with the associated mafic microgranular enclaves((^(87)Sr/^(86)Sr)_(i)=0.705014,ε_(Nd)(t)=+1.75,T_(DM2)=729 Ma).All data suggest magma-mixing for enclave and host rock formation,showing a complete equilibration between mixed-mafic and felsic magmas,followed by rapid diffusion.The T_(DM1)(Nd)and T_(DM2)(Nd)model ages and U-Pb dating indicate that the host pluton was produced by partial melting of the lower continental crust and subsequent mixing with injected lithospheric mantlederived magmas in a pre-collisional setting of Arabian-Eurasian plates.Clinopyroxene composition indicates a crystallization temperature of~1000℃ and a depth of~9 km.
基金supported by the National Nature Science Foundation of China(Grant no.41972050).
文摘The Rauer Group is located on the eastern margin of the early Paleozoic Prydz Belt in East Antarctica,and the typical ultrahigh-temperature(UHT,>900℃)granulites outcrop on Mather Peninsula.However,the timing of UHT metamorphism and P–T path of the UHT granulites have long been debated,which is critical to understanding the tectonic nature and evolution history of the Prydz Belt.Thus,both a sapphirine-bearing UHT metapelitic granulite and a garnet-bearing UHT mafic granulite are selected for zircon SHRIMP U-Pb age dating.The results show that metamorphic zircon mantles yield weighted mean^(206)Pb/^(238)U ages of 918±29 Ma and 901±29 Ma for the metapelitic and mafic granulites,respectively,while zircon rims and newly grown zircons yield weighted mean^(206)Pb/^(238)U ages of 523±9 Ma and 532±11 Ma,respectively.These new zircon age data suggest that the UHT granulites may have experienced polymetamorphism,in which pre-peak prograde stage occurred in the early Neoproterozoic Grenvillian orogenesis(1000–900 Ma),whereas the UHT metamorphism occurred in the late Neoproterozoic to early Paleozoic Pan-African orogenesis(580–460 Ma).This implies that P–T path of the UHT granulites should consist of two separate high-grade metamorphic events including the Grenvillian and Pan-African events,which are supposed to be related to assembly of Rodinia and Gondwana supercontinents respectively,and hence the overprinting UHT metamorphic event may actually reflect an important intracontinental reworking.
基金This study was fi nancially supported by the Youth Science and Technology Talent Recruitment Project of Gansu Province(2022-19)Technological Innovation Project of Gansu Provincial Department of Natural Resources(2022-3,2022-4,2022-28)+2 种基金National Natural Science Foundation of China(Nos.42073059 and 42303034)Outstanding Youth Fund of Anhui Provincial Department of Education(No.2022AH020084)Doctoral Startup Foundation of Suzhou University(2021BSK038)。
文摘The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition from arc to initial collision.Here we present results from zircon U-Pb geochronology,whole-rock geochemistry,and Sr-Nd-Pb isotope geochemistry of the Beidaban granites to provide crucial information for geodynamic evolution of NQOB.Zircon U-Pb dating yields an age of 468±10 Ma for the Beidaban granites and most of the Beidaban samples contain amphibole,are potassium-rich,and have A/CNK values ranging from 0.7 to 0.9,illustrating that the Middle Ordovician Beidaban granites are K-rich,metaluminous,calc-alkaline granitoid.The geochemical characteristics indicate that the Beidaban granites are transitional I/S-type granitoids that formed in an arc setting.The isotopic compositions of initial(87 Sr/86 Sr)i values ranging from 0.70545 to 0.71082(0.70842 on average)andεNd(t)values ranging from−10.9 to−6.7(−8.8 on average)with two-stage Nd model ages(T DM2)of 1.74-2.08 Ga suggest that the Beidaban granites originated from Paleoproterozoic crustal materials.In addition,the initial Pb isotopic compositions(^(206)Pb/^(204)Pb=19.14-20.26;^(207)Pb/^(204)Pb=15.71-15.77;^(208)Pb/^(204)Pb=37.70-38.26)and geochemical features,such as high Th/Ta(17.43-30.12)and Rb/Nb(6.01-15.49)values,suggest that the Beidaban granite magma source involved recycled crustal components with igneous rocks.Based on these results in combination with previously published geochronological and geochemical data from other early Paleozoic igneous rocks,we suggest that the timing of the tectonic transition from arc to the initial collision to the fi nal closure of the North Qilian Ocean can be constrained to the Middle-Late Ordovician(ca.468–450 Ma).
基金financially supported by the National Key Research and Development Plan(Grant No.2023YFC2906801)。
文摘Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of garnet and zircon in the Dafang Au-Pb-Zn-Ag deposit,which represents prominent gold mineralization in southern Hunan,China.Garnet samples with distinct zoning patterns and compositional variations were identified using various analytical techniques,including Backscattered Electron(BSE)imaging,Cathodoluminescence(CL)response,textural characterization,and analysis of rare-earth elements(REE),major contents,and trace element compositions.The garnet was dated U-Pb dating,which yielded a lower intercept age of 161.06±1.93 Ma.This age is older than the underlying granodiorite porphyry,which has a concordia age of 155.13±0.95 Ma determined by zircon U-Pb dating.These results suggest that the gold mineralization may be related to the concealed granite.Two groups of garnet changed from depleted Al garnet to enriched Al garnet,and the rare earth element(REE)patterns of these groups were converted from light REE(LREE)-enriched and heavy REE(HREE)-depleted with positive europium(Eu)anomalies to medium REE(MREE)-enriched from core to rim zoning.The different REE patterns of garnet in various zones may be attributed to changes in the fluid environment and late superposition alteration.The development of distal skarn in the southern Hunan could be a significant indicator for identifying gold mineralization.
文摘Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. In order to constrain the emplacement age of these dykes, zircons of two samples from diabases in Nagarzê were dated by using the U-Pb SHRIMP method. Two nearly the same weighted mean ^206pb/^23SU ages were obtained in this paper, which are 134.9±1.8 Ma (MSWD=0.65) and 135.5 ± 2.1 Ma (MSWD=1.40), respectively. They not only represent the crystallization age of the diabase, but also documented an important spreading event of the Neo-Tethys Ocean during the late Jurassic and early Cretaceous. This dating result is of great significance to reconstruct the temporal framework of the late Neo-Tethys Ocean in the Qinghai-Tibet Plateau.
基金supported by the National Natural Science Foundation of China(Grant Nos.40133020 and 40172030)the Key Laboratory of Continental Dynamics,Northwestern University.
文摘SHRIMP zircon U-Pb dating for Chibaisong No.1 gabbro in the Tonghua area, Jilin Prov- ince, is discussed in the paper. The cathodoluminescence (CL) images of the zircons indicate that they can be divided into two major types, i.e. euhedral-subhedral one with striped absorption and round one with obvious oscillatory zoning rims. The dating results of the zircons suggest that Chibai- song gabbro in the Tonghua area was formed at 134±7Ma—the Early Cretaceous. The concordia ages of 2497±13Ma, 787±35Ma, 321±10Ma, 217±11Ma of zircons imply that the Tonghua area might geologically be located in the convergent region of the Yangtze Block (YB) and the North China Block (NCB) in the early Mesozoic and the zircons should be caught during magma intrusion. The existence of the Early Cretaceous basic dyke swarm in the Tonghua area shows that an intensive extensional environment occurred in the Early Cretaceous. It is suggested that the magmatism and lithospheric extension in the Tonghua area should be related to the subduction of the Pacific plate.
基金supported by National Natural Science Foundation of China (Grant No.41002062)Scientific Research Program of the Ministry of Science and Technology of China (Grant No. J0901)the Key Program of the Land and Resource Ministry of China (Grant Nos. 1212011120151,1212010811033, 1212010711815)
文摘The Daqing Mountains area comprises a typical occurrence of the Khondalite Belt in the Western Block of the North China Craton (NCC). In this area, both early and late Paleoproterozoic metasedimentary rocks have been identified in what was originally called the Upper Wula Mountains "Subgroup". Six metasedimentary rock samples yielded SHRIMP U-Pb zircon ages of 2.56-2.04 Ga for detrital and 1.96-1.83 Ga for metamorphic zircons. Based on these data and previously published results, the following conclusions can be drawn: 1) The source region for the late Paleoproterozoic detrital sedimentary rocks is mainly 2.55 2.4 and 2.2 2.04 Ga in age, consistent with the early Precambrian geological history identified widely in the basement of the NCC. 2) The majority of sedimentary rocks of the khondalite series were deposited between 2.04 and 1.95 Ga, and then in a protracted period (1.96 and 1.83 Ga) underwent a complex history of amphibolite to granulite-facies metamorphism.
基金the National Natural Science Foundation of China (Grant No. 40434011)the Major State Basic Research Program (Grant No. 1999CB043206)the National Natural Science Foundation of China (Grant No. 40372050)
文摘This paper selected five typical Mesozoic intrusives from the Tongling metallogenic cluster (Xiaotongguanshan, Fenghuangshan, Xinqiao, Dongguashan, and Shatanjiao plutons), and made a systemic SHRIMP zircon U-Pb dating for the five plutons, which produced
基金supported by MST(Grant No.TG1999075502)the National Natural Science Foundation of China(Grant No.40172030)Jilin University(Grant No.2002CX004).
文摘The petrographic characteristics of Jingshan "migmatitic granite" and the occurrence of the magmatic zircons indicate that the granite was formed by normal crystallization of felsic melts. All zircons in the granite have inherited cores and fine-scale oscillatory zoning rims of magmatic origin. It is realized that the granite was formed at 160.2±1.3 Ma through dating magmatic zircons. The generation of the granitic magma could be related to the lithospheric mantle and/or lower crust delamination after the ultrahigh pressure metamorphism (UHPM) in Triassic. Most inherited zircons yield the ages of 217.1±6.6 Ma, which is consistent with the peak UHPM in the Dabie-Sulu orogenic belt. Some of the inherited zircons (433-722 Ma) constitute a discordia line with the upper intercept age of 850+85/-68 Ma and a lower intercept age of 261+100/-140 Ma. These ages imply that the granite could be derived from the partial melting of the crustal materials of the South China Block that was intensively superimposed by the UHPM. The UHPM could be the reason for the major Pb loss at ±220 Ma.
文摘Abundant small mafic intrusions occur associated with granitoids along the Gangdise^ magmatic belt. In addition to many discrete gabbro bodies within the granitoid plutons, a gabbro-pyroxenite zone occurs along the southern margin of the Gangdise^ belt to the north of the Yarlung Zangbo suture. The mafic intrusion zone spatially corresponds to a strong aeromagnetic anomaly, which extends -1400 km. The mafic intrusions consist of intermittently distributed small bodies and dikes of gabbro and dolerite with accumulates of pyroxenite, olivine pyroxenite, pegmatitic pyroxenite and amphibolite. Much evidence indicates that the Gangdise^ gabbro-pyroxenite assemblage is most likely a result of underplating of mantle-derived magma. Detailed field investigation and systematic sampling of the mafic rocks was conducted at six locations along the Lhasa-Xigaze^ segment of the mafic intrusive zone, and was followed by zircon SHRIMP Ⅱ U-Pb dating. In addition to the ages of two samples previously published (47.0±1 Ma and 48.9±1.1 Ma), the isotopic ages of the remaining four gabbro samples are 51.6±1.3Ma, 52.5±3.0 Ma, 50.2±4.2Ma and 49.9±1.1Ma. The range of these ages (47-52.5 Ma) provide geochronologic constraints on the Eocene timing of magma underplating beneath the Gangdise^ belt at ca. 50 Ma. This underplating event post-dated the initiation of the India-Eurasia continental collision by 15 million years and was contemporaneous with a process of magma mixing. The SHRIMP Ⅱ U-Pb isotopic analysis also found several old ages from a few zircon grains, mostly in a range of 479-526 Ma (weighted average age 503±10 Ma), thus yielding information about the pre-existing lower crust when underplating of mafic magma took place. It is believed that magma underplating was one of the major mechanisms for crustal growth during the Indian-Eurasia collision, possibly corresponding in time to the formation of the 14-16 km-thick "crnst-mantle transitional zone" characterized by Vp=6.85-6.9 km/s.
基金Supported by National Natural Science Foundation of China (Grant Nos. 40642012, 40772134)
文摘This paper reports SHRIMP zircon U-Pb ages of 196±2 Ma for granite, and 195±1 Ma for gabbro from the Xialan complex in the Meizhou area, northern Guangdong Province. These results shed new light on the calm stage of magmatic activity in southeastern China during 200-180 Ma, and revealed that the back-arc extension induced by the subduction of the western Pacific plate may have begun at 195 Ma at least. Field observation on the fresh outcrops allows us to recognize some features formed by magma mixing. A part of the gabbro has a fine-grained rim of 20-30 cm at the margin, and thins gradually to-ward the granite; numerous dark fine-grained to microcrystalline dioritic enclaves developed in the granite. These enclaves vary in shape and size, dark minerals concentrated at the margin of enclaves, and the contact between enclaves and host rock is either obvious or obscure, or gradational. In addi-tion, needle-shaped apatites are included in the enclaves. The REE patterns of gabbros, as well as the trace element patterns, are generally consistent with those of granitic rocks. The above characters further suggest that in the Early Jurassic the injection of basic magma had melted deep continental crust and produced acidic magma, and the Xialan complex was produced by the mixing of them.
基金Acknowledgements The authors would like to thank Southeast Hubei Geological Party and No.4 Geological Party of Hubei Province, and Hubei Geological Survey Institution for help during the field investigation. Chen Fukun, Li Sunrong, Feng Jiayi, Hu Jing, Qiu Yi, Tao Hua and Chen Zhenyu are thanked for their assistance during major and trace element and Sr-Nd isotope and SHRIMP analyses. Comments and discussion given by Wan Yusheng, Li Jianwei and Yang Zhusen were very helpful in improving and clarifying the manuscript. Two anonymous reviewers have provided detailed suggestions, critical comments, which led to considerable improvement and modification of this manuscript. This work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 40434011 and 40402011), State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Grant Nos.GPM40504), State Key Laboratory of 0re Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (Grant Nos. 200402), the Chinese Geological Survey Bureau (Grant Nos. 20031020081) and Postdoctoral Science Foundation.
文摘The Jinniu Basin in southeast Hubei,located at the westernmost part of middle-lower val-ley of the Yangtze River,is one of the important vol-canic basins in East China. Volcanic rocks in the Jin-niu Basin are distributed mainly in the Majiashan Formation,the Lingxiang Formation and the Dasi Formation,consisting of rhyolite,basalt and basaltic andesite,(trachy)-basalt and basaltic trachy-andesite and (trachy)-andesite and (trachy)-dacite and rhyolite respectively,in which the Dasi volcanism is volumet-rically dominant and widespread. The Dasi volcanic rocks were selected for SHRIMP zircon U-Pb dating to confirm the timing of volcanism. The results indi-cate that there exist a large amount of magmatic zir-cons characterized by high U and Th contents in the volcanic rocks. The concordia ages for 13 points are 128 ± 1Ma (MSWD = 3.0). On account of the shape of zircons and Th/U ratios,this age is considered to represent the crystallization time of the Dasi volcan-ism. The volcanic rocks in the Dasi,Majiashan and Lingxiang Formations share similar trace elementand REE partition patterns as well as Sr-Nd isotopic compositions. In combination with the regional geol-ogy,it is proposed that the southeast Hubei volcanic rocks were formed mainly during the Early Creta-ceous,just like other volcanic basins in middle-lower Yangtze valley. A lithospheric extension is also sug-gested for tectonic regime in this region in the Cre-taceous Period.
基金supported by the National Natural Science Foundation of China(Grant 40434011)China Geological Survey Project of the Ministry of Land and Resources(Grant 1212010535804).
文摘Located in the eastern part of the East Qinling molybdenum belt, the Donggou deposit is a superlarge porphyry molybdenum deposit discovered in recent years. The authors performed highly precise dating of the mineralized porphyry and ores in the Donggou molybdenum deposit. A SHRIMP U-Pb zircon dating of the Donggou aluminous A-type granite-porphyry gave a rock-forming age of 112±1 Ma, and the ICP-MS Re-Os analyses of molybdenite from the molybdenum deposit yielded ReOs model ages ranging from 116.5±1.7 to 115.5±1.7 Ma for the deposit. The ages obtained by the two methods are quite close, suggesting that the rocks and ores formed approximately at the same time. The Donggou molybdenum deposit formed at least 20 Ma later than the Jinduicheng, Nannihu, Shangfanggou and Leimengou porphyry molybdenum deposits in the same molybdenum belt, implying that these deposits were formed in different tectonic settings.