The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and t...Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and temporal change characteristics of ecological network and analyzing the integrated relationship between LUCC and ecological security are crucial for ensuring regional ecological security.Gansu is one of the provinces with fragile ecological environment in China,and rapid changes in land use patterns in recent decades have threatened ecological security.Therefore,taking Gansu Province as the study area,this study simulated its land use pattern in 2050 using patch-generating land use simulation(PLUS)model based on the LUCC trend from 2000 to 2020 and integrated the LUCC into morphological spatial pattern analysis(MSPA)to identify ecological sources and extract the ecological corridors to construct ecological network using circuit theory.The results revealed that,according to the prediction results in 2050,the areas of cultivated land,forest land,grassland,water body,construction land,and unused land would be 63,447.52,39,510.80,148,115.18,4605.21,8368.89,and 161,752.40 km^(2),respectively.The number of ecological sources in Gansu Province would increase to 80,with a total area of 99,927.18 km^(2).The number of ecological corridors would increase to 191,with an estimated total length of 6120.66 km.Both ecological sources and ecological corridors showed a sparse distribution in the northwest and dense distribution in the southeast of the province at the spatial scale.The number of ecological pinch points would reach 312 and the total area would expect to increase to 842.84 km^(2),with the most pronounced increase in the Longdong region.Compared with 2020,the number and area of ecological barriers in 2050 would decrease significantly by 63 and 370.71 km^(2),respectively.In general,based on the prediction results,the connectivity of ecological network of Gansu Province would increase in 2050.To achieve the predicted ecological network in 2050,emphasis should be placed on the protection of cultivated land and ecological land,the establishment of ecological sources in desert areas,the reinforcement of the protection for existing ecological sources,and the construction of ecological corridors to enhance the stability of ecological network.This study provides valuable theoretical support and references for the future construction of ecological networks and regional land resource management decision-making.展开更多
Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes d...Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.展开更多
In order to ensure the penetrability of double-cased perforation in offshore oil and gas fields and to maximize the capacity of perforation completion, This study establishes a dynamic model of double-cased perforatio...In order to ensure the penetrability of double-cased perforation in offshore oil and gas fields and to maximize the capacity of perforation completion, This study establishes a dynamic model of double-cased perforation using ANSYS/LS-DYNA simulation technology. The combination of critical perforation parameters for double casing is obtained by studying the influencing factors of the jet-forming process,perforation depth, diameter, and stress changes of the inner and outer casing. The single-target perforation experiments under high-temperature and high-pressure(HTHP) conditions and ground full-scale ring target perforation tests are designed to verify the accuracy of numerical simulation results. The reduced factor is adopted as the quantitative measure of perforation depth and diameter for different types of perforation charge under different conditions. The results show that the perforation depth reduction increases with temperature and pressure, and the reduced factor is between 0.67 and 0.87 under HTHP conditions of 130℃/44 MPa and 137℃/60 MPa. Comparing the results of the numerical simulation and the full-scale test correction, the maximum error is less than 8.91%, and this numerical simulation has strong reliability. This research provides a basis for a reasonable range of double-cased perforation parameters and their optimal selection.展开更多
The maintenance of safety and dependability in rail and road embankments is of utmost importance in order to facilitate the smooth operation of transportation networks.This study introduces a comprehensive methodology...The maintenance of safety and dependability in rail and road embankments is of utmost importance in order to facilitate the smooth operation of transportation networks.This study introduces a comprehensive methodology for soil slope stability evaluation,employing Monte Carlo Simulation(MCS)and Subset Simulation(SS)with the"UPSS 3.0 Add-in"in MS-Excel.Focused on an 11.693-meter embankment with a soil slope(inclination ratio of 2H:1V),the investigation considers earthquake coefficients(kh)and pore water pressure ratios(ru)following Indian zoning requirements.The chance of slope failure showed a considerable increase as the Coefficient of Variation(COV),seismic coefficients(kh),and pore water pressure ratios(ru)experienced an escalation.The SS approach showed exceptional efficacy in calculating odds of failure that are notably low.Within computational modeling,the study optimized the worst-case scenario using ANFIS-GA,ANFIS-GWO,ANFIS-PSO,and ANFIS-BBO models.The ANFIS-PSO model exhibits exceptional accuracy(training R2=0.9011,RMSE=0.0549;testing R2=0.8968,RMSE=0.0615),emerging as the most promising.This study highlights the significance of conducting thorough risk assessments and offers practical insights into evaluating and improving the stability of soil slopes in transportation infrastructure.These findings contribute to the enhancement of safety and reliability in real-world situations.展开更多
The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holisti...The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover(LULC)to foster sustainable planning that is tailored to the region's unique resource endowments.However,existing LULC classification methods demonstrate inadequate accuracy,hindering effective regional planning.In this study,we established a two-level LULC classification system(8 primary types and 22 secondary types)for the Tuha Basin.By employing Landsat 5/7/8 imagery at 5-a intervals,we developed the LULC dataset of the Tuha Basin from 1990 to 2020,conducted the accuracy assessment and spatiotemporal evolution analysis,and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation(Markov-FLUS)model.The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types,respectively.Compared with the seven mainstream LULC products(GlobeLand30,Global 30-meter Land Cover with Fine Classification System(GLC_FCS30),Finer Resolution Observation and Monitoring of Global Land Cover PLUS(FROM_GLC PLUS),ESA Global Land Cover(ESA_LC),Esri Land Cover(ESRI_LC),China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset(CNLUCC),and China Annual Land Cover Dataset(CLCD))in 2020,our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features,thereby yielding high-quality data backups for land resource analyses within the basin.In 2020,unused land(78.0%of the study area)and grassland(18.6%)were the dominant LULC types of the basin;although cropland and construction land constituted less than 1.0%of the total area,they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami.Between 1990 and 2020,cropland and construction land exhibited a rapid expansion,and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond.In future scenario simulations,significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario,whereas the wetland area will decrease,suggesting the need for ecological attention under this development pathway.In contrast,the economic development scenario underscores the fast-paced expansion of construction land,primarily from the conversion of unused land,highlighting the significant developmental potential of unused land with a slowing increase in cropland.Special attention should thus be directed toward ecological and cropland protection during development.This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.展开更多
According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the p...According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the process of hydrocarbon generation and expulsion,migration and accumulation,adjustment and transformation of deep oil and gas is restored by means of reservoine-forming dynamics simulation.The thermal evolution history of the Lower Cambrian source rocks in Tahe Oilfield reflects the obvious differences in hydrocarbon generation and expulsion process and intensity in different tectonic zones,which is the main reason controlling the differences in deep oil and gas phases.The complex transport system composed of strike-slip fault and unconformity,etc.controlled early migration and accumulation and late adjustment of deep oil and gas,while the Middle Cambrian gypsum-salt rock in inner carbonate platform prevented vertical migration and accumulation of deep oil and gas,resulting in an obvious"fault-controlled"feature of deep oil and gas,in which the low potential area superimposed by the NE-strike-slip fault zone and deep oil and gas migration was conducive to accumulation,and it is mainly beaded along the strike-slip fault zone in the northeast direction.The dynamic simulation of reservoir formation reveals that the spatio-temporal configuration of"source-fault-fracture-gypsum-preservation"controls the differential accumulation of deep oil and gas in Tahe Oilfield.The Ordovician has experienced the accumulation history of multiple periods of charging,vertical migration and accumulation,and lateral adjustment and transformation,and deep oil and gas have always been in the dynamic equilibrium of migration,accumulation and escape.The statistics of residual oil and gas show that the deep stratum of Tahe Oilfield still has exploration and development potential in the Ordovician Yingshan Formation and Penglaiba Formation,and the Middle and Upper Cambrian ultra-deep stratum has a certain oil and gas resource prospect.This study provides a reference for the dynamic quantitative evaluation of deep oil and gas in the Tarim Basin,and also provides a reference for the study of reservoir formation and evolution in carbonate reservoir of paleo-craton basin.展开更多
Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover chang...Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover change(LUCC)is crucial for guiding the healthy and sustainable development of coastal zones.System dynamic(SD)-future land use simulation(FLUS)model,a coupled simulation model,was developed to analyze land use dynamics in China's coastal zone.This model encompasses five scenarios,namely,SSP1-RCP2.6(A),SSP2-RCP4.5(B),SSP3-RCP4.5(C),SSP4-RCP4.5(D),and SSP5-RCP8.5(E).The SD model simulates land use demand on an annual basis up to the year 2100.Subsequently,the FLUS model determines the spatial distribution of land use for the near term(2035),medium term(2050),and long term(2100).Results reveal a slowing trend in land use changes in China's coastal zone from 2000–2020.Among these changes,the expansion rate of construction land was the highest and exhibited an annual decrease.By 2100,land use predictions exhibit high accuracy,and notable differences are observed in trends across scenarios.In summary,the expansion of production,living,and ecological spaces toward the sea remains prominent.Scenario A emphasizes reduced land resource dependence,benefiting ecological land protection.Scenario B witnesses an intensified expansion of artificial wetlands.Scenario C sees substantial land needs for living and production,while Scenario D shows coastal forest and grassland shrinkage.Lastly,in Scenario E,the conflict between humans and land intensifies.This study presents pertinent recommendations for the future development,utilization,and management of coastal areas in China.The research contributes valuable scientific support for informed,long-term strategic decision making within coastal regions.展开更多
In this paper,we consider the numerical implementation of the 2D wave equation in isotropic-heterogeneous media.The stability analysis of the scheme using the von Neumann stability method has been studied.We conducted...In this paper,we consider the numerical implementation of the 2D wave equation in isotropic-heterogeneous media.The stability analysis of the scheme using the von Neumann stability method has been studied.We conducted a study on modeling the propagation of acoustic waves in a heterogeneous medium and performed numerical simulations in various heterogeneous media at different time steps.Developed parallel code using Compute Unified Device Architecture(CUDA)technology and tested on domains of various sizes.Performance analysis showed that our parallel approach showed significant speedup compared to sequential code on the Central Processing Unit(CPU).The proposed parallel visualization simulator can be an important tool for numerous wave control systems in engineering practice.展开更多
As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem ...As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem service value(ESV).Based on the patterns of land use change and the ESV change in Su-Xi-Chang metropolitan area from 2000 to 2020,we set up four scenarios:natural development scenario,urban development scenario,arable land protection scenario and ecological protection scenario,and simulated the impact of land use changes on the ESV in these scenarios.The results showed that:1) the area of built-up land in the Su-XiChang metropolitan area increased significantly from 2000 to 2020,and the area of other types of land decreased.Arable land underwent the highest transfer-out area,and was primarily converted into built-up land.The total ESV of Su-Xi-Chang metropolitan area increased initially then declined from 2000–2020,and the value of almost all individual ecosystem services decreased.2) Population density,GDP per area,night lighting intensity,and road network density can negatively impact the ESV.3) The total ESV loss under the natural development and urban development scenarios was high,and the expansion of the built-up land and the drastic shrinkage of the arable land contributed to the ESV decline under both scenarios.The total ESV under arable land protection and ecological protection scenarios increases,and therefore these scenarios are suitable for future land use optimization in Su-Xi-Chang.This study could provide a certain reference for land use planning and allocation,and offer guidance for the rational allocation of land resources.展开更多
MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations.Using the features of the Julia programming language,MicroMagnetic.jl supports CPU and various GPU platforms,including NVIDI...MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations.Using the features of the Julia programming language,MicroMagnetic.jl supports CPU and various GPU platforms,including NVIDIA,AMD,Intel,and Apple GPUs.Moreover,MicroMagnetic.jl supports Monte Carlo simulations for atomistic models and implements the nudged-elastic-band method for energy barrier computations.With built-in support for double and single precision modes and a design allowing easy extensibility to add new features,MicroMagnetic.jl provides a versatile toolset for researchers in micromagnetics and atomistic simulations.展开更多
Regarding the spatial profile extraction method of a multi-field co-simulation dataset,different extraction directions,locations,and numbers of profileswill greatly affect the representativeness and integrity of data....Regarding the spatial profile extraction method of a multi-field co-simulation dataset,different extraction directions,locations,and numbers of profileswill greatly affect the representativeness and integrity of data.In this study,a multi-field co-simulation data extractionmethod based on adaptive infinitesimal elements is proposed.Themultifield co-simulation dataset based on related infinitesimal elements is constructed,and the candidate directions of data profile extraction undergo dimension reduction by principal component analysis to determine the direction of data extraction.Based on the fireworks algorithm,the data profile with optimal representativeness is searched adaptively in different data extraction intervals to realize the adaptive calculation of data extraction micro-step length.The multi-field co-simulation data extraction process based on adaptive microelement is established and applied to the data extraction process of the multi-field co-simulation dataset of the sintering furnace.Compared with traditional data extraction methods for multi-field co-simulation,the approximate model constructed by the data extracted from the proposed method has higher construction efficiency.Meanwhile,the relative maximum absolute error,root mean square error,and coefficient of determination of the approximationmodel are better than those of the approximation model constructed by the data extracted from traditional methods,indicating higher accuracy,it is verified that the proposed method demonstrates sound adaptability and extraction efficiency.展开更多
Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone fe...Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone feature method based on conventional characteristics parameters to derive the full-state characteristics of fan.The application of the fan’s full-state characteristics in component-level model of turbofan engine enables zero-speed iterative simulation for ground start-up process and windmill simulation for windmill start-up process,thereby improving the simulation capability of sub-idle state during turbofan engine start-up.展开更多
Power system simulations that extend over a time period of minutes,hours,or even longer are called extendedterm simulations.As power systems evolve into complex systems with increasing interdependencies and richer dyn...Power system simulations that extend over a time period of minutes,hours,or even longer are called extendedterm simulations.As power systems evolve into complex systems with increasing interdependencies and richer dynamic behaviors across a wide range of timescales,extendedterm simulation is needed for many power system analysis tasks(e.g.,resilience analysis,renewable energy integration,cascading failures),and there is an urgent need for efficient and robust extendedterm simulation approaches.The conventional approaches are insufficient for dealing with the extendedterm simulation of multitimescale processes.This paper proposes an extendedterm simulation approach based on the semianalytical simulation(SAS)methodology.Its accuracy and computational efficiency are backed by SAS's high accuracy in eventdriven simulation,larger and adaptive time steps,and flexible switching between fulldynamic and quasisteadystate(QSS)models.We used this proposed extendedterm simulation approach to evaluate bulk power system restoration plans,and it demonstrates satisfactory accuracy and efficiency in this complex simulation task.展开更多
This study introduces an innovative approach by integrating AnyLogic simulation into emergency evacuation strategies to enhance security protocols.The research focuses on leveraging advanced computational models to si...This study introduces an innovative approach by integrating AnyLogic simulation into emergency evacuation strategies to enhance security protocols.The research focuses on leveraging advanced computational models to simulate and optimize evacuation scenarios in various settings,including public venues,residential areas,and urban environments.By integrating real-world data and behavioral models,the simulation accurately represents human movements,decision-making processes,and traffic flow dynamics during evacuation scenarios.The study evaluates the effectiveness of various evacuation strategies,including route planning,crowd behavior,and emergency response coordination,using a scenario-driven approach within the AnyLogic simulation environment.Furthermore,this research contributes to the establishment of optimized emergency response protocols by systematically evaluating and refining evacuation plans.The research frameworks mentioned in the research imply the efficient use of the AnyLogic simulation model to be used in different sectors and fields to enhance the strategies for saving lives and implementing an efficient evacuation management system.展开更多
Background:High-fidelity simulation has been demonstrated to make great progress in learning.However,there is still ongoing exploration on how to fully harness the advantages of this teaching method and enhance its ef...Background:High-fidelity simulation has been demonstrated to make great progress in learning.However,there is still ongoing exploration on how to fully harness the advantages of this teaching method and enhance its effectiveness.This study conducted high-fidelity simulation in medical nursing based on the Healthcare Simulation Standards of Best Practice and evaluated its effect.Methods:The study was conducted from September 2019 to June 2020.A total of 82 undergraduate nursing students from a university in Shanghai participated in the high-fidelity simulation in medical nursing.The simulation design scale,educational practices in simulation scale,and students’satisfaction and self-confidence were used to evaluate the effect.Results:The mean score of simulation design scale was 4.06±0.63 with the mean scores of all dimensions being over 3.0.The mean score of educational practices in simulation scale was 4.14±0.56 with the mean scores of all dimensions being over 4.0.The mean scores of students’satisfaction and self-confidence were 4.07±0.72 and 3.89±0.58,respectively.Conclusion:Students reported high levels of simulation design and educational practices in simulation.They were also satisfied with learning and reported high levels of self-confidence.Some key points need to be considered so that the learning effects might be optimized.展开更多
The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameteri...The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.展开更多
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
基金supported by the Science Fund for the Gansu Provincial Natural Science Foundation Project(22JR5RA339).
文摘Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and temporal change characteristics of ecological network and analyzing the integrated relationship between LUCC and ecological security are crucial for ensuring regional ecological security.Gansu is one of the provinces with fragile ecological environment in China,and rapid changes in land use patterns in recent decades have threatened ecological security.Therefore,taking Gansu Province as the study area,this study simulated its land use pattern in 2050 using patch-generating land use simulation(PLUS)model based on the LUCC trend from 2000 to 2020 and integrated the LUCC into morphological spatial pattern analysis(MSPA)to identify ecological sources and extract the ecological corridors to construct ecological network using circuit theory.The results revealed that,according to the prediction results in 2050,the areas of cultivated land,forest land,grassland,water body,construction land,and unused land would be 63,447.52,39,510.80,148,115.18,4605.21,8368.89,and 161,752.40 km^(2),respectively.The number of ecological sources in Gansu Province would increase to 80,with a total area of 99,927.18 km^(2).The number of ecological corridors would increase to 191,with an estimated total length of 6120.66 km.Both ecological sources and ecological corridors showed a sparse distribution in the northwest and dense distribution in the southeast of the province at the spatial scale.The number of ecological pinch points would reach 312 and the total area would expect to increase to 842.84 km^(2),with the most pronounced increase in the Longdong region.Compared with 2020,the number and area of ecological barriers in 2050 would decrease significantly by 63 and 370.71 km^(2),respectively.In general,based on the prediction results,the connectivity of ecological network of Gansu Province would increase in 2050.To achieve the predicted ecological network in 2050,emphasis should be placed on the protection of cultivated land and ecological land,the establishment of ecological sources in desert areas,the reinforcement of the protection for existing ecological sources,and the construction of ecological corridors to enhance the stability of ecological network.This study provides valuable theoretical support and references for the future construction of ecological networks and regional land resource management decision-making.
基金funded by the Chinese Academy of Medical Science health innovation project(grant nos.2021-I2M-1-042,2021-I2M-1-058,and 2022-I2M-C&T-A-005)Tianjin Outstanding Youth Fund Project(grant no.20JCJQIC00230)CAMS Innovation Fund for Medical Sciences(CIFMS)(grant no.2022-I2M-C&T-B-012).
文摘Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.
基金the support of the Foundation of Natural Science Foundation of Shaanxi Province, Grant/ Award nos. 2023-JC-YB-361National Natural Science Foundation (Number 52104033)。
文摘In order to ensure the penetrability of double-cased perforation in offshore oil and gas fields and to maximize the capacity of perforation completion, This study establishes a dynamic model of double-cased perforation using ANSYS/LS-DYNA simulation technology. The combination of critical perforation parameters for double casing is obtained by studying the influencing factors of the jet-forming process,perforation depth, diameter, and stress changes of the inner and outer casing. The single-target perforation experiments under high-temperature and high-pressure(HTHP) conditions and ground full-scale ring target perforation tests are designed to verify the accuracy of numerical simulation results. The reduced factor is adopted as the quantitative measure of perforation depth and diameter for different types of perforation charge under different conditions. The results show that the perforation depth reduction increases with temperature and pressure, and the reduced factor is between 0.67 and 0.87 under HTHP conditions of 130℃/44 MPa and 137℃/60 MPa. Comparing the results of the numerical simulation and the full-scale test correction, the maximum error is less than 8.91%, and this numerical simulation has strong reliability. This research provides a basis for a reasonable range of double-cased perforation parameters and their optimal selection.
文摘The maintenance of safety and dependability in rail and road embankments is of utmost importance in order to facilitate the smooth operation of transportation networks.This study introduces a comprehensive methodology for soil slope stability evaluation,employing Monte Carlo Simulation(MCS)and Subset Simulation(SS)with the"UPSS 3.0 Add-in"in MS-Excel.Focused on an 11.693-meter embankment with a soil slope(inclination ratio of 2H:1V),the investigation considers earthquake coefficients(kh)and pore water pressure ratios(ru)following Indian zoning requirements.The chance of slope failure showed a considerable increase as the Coefficient of Variation(COV),seismic coefficients(kh),and pore water pressure ratios(ru)experienced an escalation.The SS approach showed exceptional efficacy in calculating odds of failure that are notably low.Within computational modeling,the study optimized the worst-case scenario using ANFIS-GA,ANFIS-GWO,ANFIS-PSO,and ANFIS-BBO models.The ANFIS-PSO model exhibits exceptional accuracy(training R2=0.9011,RMSE=0.0549;testing R2=0.8968,RMSE=0.0615),emerging as the most promising.This study highlights the significance of conducting thorough risk assessments and offers practical insights into evaluating and improving the stability of soil slopes in transportation infrastructure.These findings contribute to the enhancement of safety and reliability in real-world situations.
基金supported by the Third Xinjiang Scientific Expedition Program (2022xjkk1100)the Tianchi Talent Project
文摘The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover(LULC)to foster sustainable planning that is tailored to the region's unique resource endowments.However,existing LULC classification methods demonstrate inadequate accuracy,hindering effective regional planning.In this study,we established a two-level LULC classification system(8 primary types and 22 secondary types)for the Tuha Basin.By employing Landsat 5/7/8 imagery at 5-a intervals,we developed the LULC dataset of the Tuha Basin from 1990 to 2020,conducted the accuracy assessment and spatiotemporal evolution analysis,and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation(Markov-FLUS)model.The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types,respectively.Compared with the seven mainstream LULC products(GlobeLand30,Global 30-meter Land Cover with Fine Classification System(GLC_FCS30),Finer Resolution Observation and Monitoring of Global Land Cover PLUS(FROM_GLC PLUS),ESA Global Land Cover(ESA_LC),Esri Land Cover(ESRI_LC),China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset(CNLUCC),and China Annual Land Cover Dataset(CLCD))in 2020,our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features,thereby yielding high-quality data backups for land resource analyses within the basin.In 2020,unused land(78.0%of the study area)and grassland(18.6%)were the dominant LULC types of the basin;although cropland and construction land constituted less than 1.0%of the total area,they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami.Between 1990 and 2020,cropland and construction land exhibited a rapid expansion,and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond.In future scenario simulations,significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario,whereas the wetland area will decrease,suggesting the need for ecological attention under this development pathway.In contrast,the economic development scenario underscores the fast-paced expansion of construction land,primarily from the conversion of unused land,highlighting the significant developmental potential of unused land with a slowing increase in cropland.Special attention should thus be directed toward ecological and cropland protection during development.This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.
基金Supported by the Sichuan Province Regional Innovation Cooperation Project(21QYCX0048)Sinopec Science and Technology Department Project(P21048-3)。
文摘According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the process of hydrocarbon generation and expulsion,migration and accumulation,adjustment and transformation of deep oil and gas is restored by means of reservoine-forming dynamics simulation.The thermal evolution history of the Lower Cambrian source rocks in Tahe Oilfield reflects the obvious differences in hydrocarbon generation and expulsion process and intensity in different tectonic zones,which is the main reason controlling the differences in deep oil and gas phases.The complex transport system composed of strike-slip fault and unconformity,etc.controlled early migration and accumulation and late adjustment of deep oil and gas,while the Middle Cambrian gypsum-salt rock in inner carbonate platform prevented vertical migration and accumulation of deep oil and gas,resulting in an obvious"fault-controlled"feature of deep oil and gas,in which the low potential area superimposed by the NE-strike-slip fault zone and deep oil and gas migration was conducive to accumulation,and it is mainly beaded along the strike-slip fault zone in the northeast direction.The dynamic simulation of reservoir formation reveals that the spatio-temporal configuration of"source-fault-fracture-gypsum-preservation"controls the differential accumulation of deep oil and gas in Tahe Oilfield.The Ordovician has experienced the accumulation history of multiple periods of charging,vertical migration and accumulation,and lateral adjustment and transformation,and deep oil and gas have always been in the dynamic equilibrium of migration,accumulation and escape.The statistics of residual oil and gas show that the deep stratum of Tahe Oilfield still has exploration and development potential in the Ordovician Yingshan Formation and Penglaiba Formation,and the Middle and Upper Cambrian ultra-deep stratum has a certain oil and gas resource prospect.This study provides a reference for the dynamic quantitative evaluation of deep oil and gas in the Tarim Basin,and also provides a reference for the study of reservoir formation and evolution in carbonate reservoir of paleo-craton basin.
基金Under the auspices of National Natural Science Foundation of China (No.42176221,41901133)Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA19060205)Seed project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences (No.YIC-E3518907)。
文摘Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover change(LUCC)is crucial for guiding the healthy and sustainable development of coastal zones.System dynamic(SD)-future land use simulation(FLUS)model,a coupled simulation model,was developed to analyze land use dynamics in China's coastal zone.This model encompasses five scenarios,namely,SSP1-RCP2.6(A),SSP2-RCP4.5(B),SSP3-RCP4.5(C),SSP4-RCP4.5(D),and SSP5-RCP8.5(E).The SD model simulates land use demand on an annual basis up to the year 2100.Subsequently,the FLUS model determines the spatial distribution of land use for the near term(2035),medium term(2050),and long term(2100).Results reveal a slowing trend in land use changes in China's coastal zone from 2000–2020.Among these changes,the expansion rate of construction land was the highest and exhibited an annual decrease.By 2100,land use predictions exhibit high accuracy,and notable differences are observed in trends across scenarios.In summary,the expansion of production,living,and ecological spaces toward the sea remains prominent.Scenario A emphasizes reduced land resource dependence,benefiting ecological land protection.Scenario B witnesses an intensified expansion of artificial wetlands.Scenario C sees substantial land needs for living and production,while Scenario D shows coastal forest and grassland shrinkage.Lastly,in Scenario E,the conflict between humans and land intensifies.This study presents pertinent recommendations for the future development,utilization,and management of coastal areas in China.The research contributes valuable scientific support for informed,long-term strategic decision making within coastal regions.
基金funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grants No.AP14972032)NT is also supported by the Beatriu de Pinós programme and by AGAUR(Generalitat de Catalunya)grant 2021 SGR 00087.
文摘In this paper,we consider the numerical implementation of the 2D wave equation in isotropic-heterogeneous media.The stability analysis of the scheme using the von Neumann stability method has been studied.We conducted a study on modeling the propagation of acoustic waves in a heterogeneous medium and performed numerical simulations in various heterogeneous media at different time steps.Developed parallel code using Compute Unified Device Architecture(CUDA)technology and tested on domains of various sizes.Performance analysis showed that our parallel approach showed significant speedup compared to sequential code on the Central Processing Unit(CPU).The proposed parallel visualization simulator can be an important tool for numerous wave control systems in engineering practice.
基金Under the auspices of Humanities and Social Sciences Foundation of Soochow University(No.22XM2008)National Social Science Foundation of China(No.23BGL168)。
文摘As the most economically developed metropolitan area in China’s Yangtze River Delta,the rapid changing land use patterns of Suzhou-Wuxi-Changzhou(Su-Xi-Chang) metropolitan area have profound impacts on the ecosystem service value(ESV).Based on the patterns of land use change and the ESV change in Su-Xi-Chang metropolitan area from 2000 to 2020,we set up four scenarios:natural development scenario,urban development scenario,arable land protection scenario and ecological protection scenario,and simulated the impact of land use changes on the ESV in these scenarios.The results showed that:1) the area of built-up land in the Su-XiChang metropolitan area increased significantly from 2000 to 2020,and the area of other types of land decreased.Arable land underwent the highest transfer-out area,and was primarily converted into built-up land.The total ESV of Su-Xi-Chang metropolitan area increased initially then declined from 2000–2020,and the value of almost all individual ecosystem services decreased.2) Population density,GDP per area,night lighting intensity,and road network density can negatively impact the ESV.3) The total ESV loss under the natural development and urban development scenarios was high,and the expansion of the built-up land and the drastic shrinkage of the arable land contributed to the ESV decline under both scenarios.The total ESV under arable land protection and ecological protection scenarios increases,and therefore these scenarios are suitable for future land use optimization in Su-Xi-Chang.This study could provide a certain reference for land use planning and allocation,and offer guidance for the rational allocation of land resources.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1403603)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33030100)+2 种基金the National Natural Science Fund for Distinguished Young Scholar(Grant No.52325105)the National Natural Science Foundation of China(Grant Nos.12374098,11974021,and 12241406)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-084).
文摘MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations.Using the features of the Julia programming language,MicroMagnetic.jl supports CPU and various GPU platforms,including NVIDIA,AMD,Intel,and Apple GPUs.Moreover,MicroMagnetic.jl supports Monte Carlo simulations for atomistic models and implements the nudged-elastic-band method for energy barrier computations.With built-in support for double and single precision modes and a design allowing easy extensibility to add new features,MicroMagnetic.jl provides a versatile toolset for researchers in micromagnetics and atomistic simulations.
基金This work is supported by the NationalNatural Science Foundation of China(No.52075350)the Major Science and Technology Projects of Sichuan Province(No.2022ZDZX0001)the Special City-University Strategic Cooperation Project of Sichuan University and Zigong Municipality(No.2021CDZG-3).
文摘Regarding the spatial profile extraction method of a multi-field co-simulation dataset,different extraction directions,locations,and numbers of profileswill greatly affect the representativeness and integrity of data.In this study,a multi-field co-simulation data extractionmethod based on adaptive infinitesimal elements is proposed.Themultifield co-simulation dataset based on related infinitesimal elements is constructed,and the candidate directions of data profile extraction undergo dimension reduction by principal component analysis to determine the direction of data extraction.Based on the fireworks algorithm,the data profile with optimal representativeness is searched adaptively in different data extraction intervals to realize the adaptive calculation of data extraction micro-step length.The multi-field co-simulation data extraction process based on adaptive microelement is established and applied to the data extraction process of the multi-field co-simulation dataset of the sintering furnace.Compared with traditional data extraction methods for multi-field co-simulation,the approximate model constructed by the data extracted from the proposed method has higher construction efficiency.Meanwhile,the relative maximum absolute error,root mean square error,and coefficient of determination of the approximationmodel are better than those of the approximation model constructed by the data extracted from traditional methods,indicating higher accuracy,it is verified that the proposed method demonstrates sound adaptability and extraction efficiency.
文摘Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone feature method based on conventional characteristics parameters to derive the full-state characteristics of fan.The application of the fan’s full-state characteristics in component-level model of turbofan engine enables zero-speed iterative simulation for ground start-up process and windmill simulation for windmill start-up process,thereby improving the simulation capability of sub-idle state during turbofan engine start-up.
基金supported by the lab-directed research&develop-ment(LDRD)program of Argonne National Laboratory and U.S.DOE Advanced Grid Modeling Program grant DE-OE0000875.
文摘Power system simulations that extend over a time period of minutes,hours,or even longer are called extendedterm simulations.As power systems evolve into complex systems with increasing interdependencies and richer dynamic behaviors across a wide range of timescales,extendedterm simulation is needed for many power system analysis tasks(e.g.,resilience analysis,renewable energy integration,cascading failures),and there is an urgent need for efficient and robust extendedterm simulation approaches.The conventional approaches are insufficient for dealing with the extendedterm simulation of multitimescale processes.This paper proposes an extendedterm simulation approach based on the semianalytical simulation(SAS)methodology.Its accuracy and computational efficiency are backed by SAS's high accuracy in eventdriven simulation,larger and adaptive time steps,and flexible switching between fulldynamic and quasisteadystate(QSS)models.We used this proposed extendedterm simulation approach to evaluate bulk power system restoration plans,and it demonstrates satisfactory accuracy and efficiency in this complex simulation task.
基金The 2023 Langfang Science and Technology Support Plan Project:Design and Implementation of Earthquake Disaster Emergency Support Decision System in the Beijing-Tianjin-Hebei Region(Project number:2023013134)。
文摘This study introduces an innovative approach by integrating AnyLogic simulation into emergency evacuation strategies to enhance security protocols.The research focuses on leveraging advanced computational models to simulate and optimize evacuation scenarios in various settings,including public venues,residential areas,and urban environments.By integrating real-world data and behavioral models,the simulation accurately represents human movements,decision-making processes,and traffic flow dynamics during evacuation scenarios.The study evaluates the effectiveness of various evacuation strategies,including route planning,crowd behavior,and emergency response coordination,using a scenario-driven approach within the AnyLogic simulation environment.Furthermore,this research contributes to the establishment of optimized emergency response protocols by systematically evaluating and refining evacuation plans.The research frameworks mentioned in the research imply the efficient use of the AnyLogic simulation model to be used in different sectors and fields to enhance the strategies for saving lives and implementing an efficient evacuation management system.
基金supported by Fudan Good Practice Program of Teaching and Learning(2019C003).
文摘Background:High-fidelity simulation has been demonstrated to make great progress in learning.However,there is still ongoing exploration on how to fully harness the advantages of this teaching method and enhance its effectiveness.This study conducted high-fidelity simulation in medical nursing based on the Healthcare Simulation Standards of Best Practice and evaluated its effect.Methods:The study was conducted from September 2019 to June 2020.A total of 82 undergraduate nursing students from a university in Shanghai participated in the high-fidelity simulation in medical nursing.The simulation design scale,educational practices in simulation scale,and students’satisfaction and self-confidence were used to evaluate the effect.Results:The mean score of simulation design scale was 4.06±0.63 with the mean scores of all dimensions being over 3.0.The mean score of educational practices in simulation scale was 4.14±0.56 with the mean scores of all dimensions being over 4.0.The mean scores of students’satisfaction and self-confidence were 4.07±0.72 and 3.89±0.58,respectively.Conclusion:Students reported high levels of simulation design and educational practices in simulation.They were also satisfied with learning and reported high levels of self-confidence.Some key points need to be considered so that the learning effects might be optimized.
基金supported by the National Natural Science Foundation of China(Grant Nos.42175099,42027804,42075073)the Innovative Project of Postgraduates in Jiangsu Province in 2023(Grant No.KYCX23_1319)+3 种基金supported by the National Natural Science Foundation of China(Grant No.42205080)the Natural Science Foundation of Sichuan(Grant No.2023YFS0442)the Research Fund of Civil Aviation Flight University of China(Grant No.J2022-037)supported by the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(Earth Lab)。
文摘The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.