期刊文献+
共找到564篇文章
< 1 2 29 >
每页显示 20 50 100
Hybrid treatment of varied orthodontic appliances for a patient with skeletal class II and temporomandibular joint disorders:A case report and review of literature 被引量:1
1
作者 Tong Lu Li Mei +2 位作者 Bao-Chao Li Zi-Wei Huang Huang Li 《World Journal of Clinical Cases》 SCIE 2024年第2期431-442,共12页
BACKGROUND The relation between orthodontic treatment and temporomandibular disorders(TMDs)is under debate;the management of TMD during orthodontic treatment has always been a challenge.If TMD symptoms occur during or... BACKGROUND The relation between orthodontic treatment and temporomandibular disorders(TMDs)is under debate;the management of TMD during orthodontic treatment has always been a challenge.If TMD symptoms occur during orthodontic treatment,an immediate pause of orthodontic adjustments is recommended;the treatment can resume when the symptoms are managed and stabilized.CASE SUMMARY This case report presents a patient(26-year-old,female)with angle class I,skeletal class II and TMDs.The treatment was a hybrid of clear aligners,fixed appliances and temporary anchorage devices(TADs).After 3 mo resting and treatment on her TMD,the patient’s TMD symptom alleviated,but her anterior occlusion displayed deep overbite.Therefore,the fixed appliances with TAD were used to correct the anterior deep-bite and level maxillary and mandibular deep curves.After the levelling,the patient showed dual bite with centric relation and maximum intercuspation discrepancy on her occlusion.After careful examination of temporomandibular joints(TMJ)position,the stable bite splint and Invisible Mandibular Advancement appliance were used to reconstruct her occlusion.Eventually,the improved facial appearance and relatively stable occlusion were achieved.The 1-year follow-up records showed there was no obvious change in TMJ morphology,and her occlusion was stable.CONCLUSION TMD screening and monitoring is of great clinical importance in the TMD susceptible patients.Hybrid treatment with clear aligners and fixed appliances and TADs is an effective treatment modality for the complex cases. 展开更多
关键词 Temporomandibular disorder skeletal class II Deep overbite Dual bite Invisible mandibular advancement appliance Case report
下载PDF
Biology of Hippo signaling pathway:Skeletal muscle development and beyond
2
作者 Shuqi Qin Chaocheng Li +5 位作者 Haiyan Lu Yulong Feng Tao Guo Yusong Han Yongsheng Zhang Zhonglin Tang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1825-1838,共14页
Global demand for farm animals and their meat products i.e.,pork,chicken and other livestock meat,is steadily incresing.With the ongoing life science research and the rapid development of biotechnology,it is a great o... Global demand for farm animals and their meat products i.e.,pork,chicken and other livestock meat,is steadily incresing.With the ongoing life science research and the rapid development of biotechnology,it is a great opportunity to develop advanced molecular breeding markers to efficiently improve animal meat production traits.Hippo is an important study subject because of its crucial role in the regulation of organ size.In recent years,with the increase of research on Hippo signaling pathway,the integrative application of multi-omics technologies such as genomics,transcriptomics,proteomics,and metabolomics can help promote the in-depth involvement of Hippo signaling pathway in skeletal muscle development research.The Hippo signaling pathway plays a key role in many biological events,including cell division,cell migration,cell proliferation,cell differentiation,cell apoptosis,as well as cell adhesion,cell polarity,homeostasis,maintenance of the face of mechanical overload,etc.Its influence on the development of skeletal muscle has important research value for enhancing the efficiency of animal husbandry production.In this study,we traced the origin of the Hippo pathway,comprehensively sorted out all the functional factors found in the pathway,deeply analyzed the molecular mechanism of its function,and classified it from a novel perspective based on its main functional domain and mode of action.Our aim is to systematically explore its regulatory role throughout skeletal muscle development.We specifically focus on the Hippo signaling pathway in embryonic stem cell development,muscle satellite cell fate determination,myogenesis,skeletal muscle meat production and organ size regulation,muscle hypertrophy and atrophy,muscle fiber formation and its transformation between different types,and cardiomyocytes.The roles in proliferation and regeneration are methodically summarized and analyzed comprehensively.The summary and prospect of the Hippo signaling pathway within this article will provide ideas for further improving meat production and muscle deposition and developing new molecular breeding technologies for livestock and poultry,which will be helpful for the development of animal molecular breeding. 展开更多
关键词 HIPPO skeletal muscle organ size MYOGENESIS C2C12 livestock animals
下载PDF
SWIR FluorescenceImaging In Vivo Monitoring and Evaluating Implanted M2 Macrophages in Skeletal Muscle Regeneration
3
作者 Mo Chen Yuzhou Chen +9 位作者 Sijia Feng Shixian Dong Luyi Sun Huizhu Li Fuchun Chen Nguyen Thi Kim Thanh Yunxia Li Shiyi Chen You Wang Jun Chen 《Engineering》 SCIE EI CAS CSCD 2024年第2期283-294,共12页
Skeletal muscle has a robust regeneration ability that is impaired by severe injury,disease,and aging.resulting in a decline in skeletal muscle function.Therefore,improving skeletal muscle regeneration is a key challe... Skeletal muscle has a robust regeneration ability that is impaired by severe injury,disease,and aging.resulting in a decline in skeletal muscle function.Therefore,improving skeletal muscle regeneration is a key challenge in treating skeletal muscle-related disorders.Owing to their significant role in tissue regeneration,implantation of M2 macrophages(M2MФ)has great potential for improving skeletal muscle regeneration.Here,we present a short-wave infrared(SWIR)fluorescence imaging technique to obtain more in vivo information for an in-depth evaluation of the skeletal muscle regeneration effect after M2MФtransplantation.SWIR fluorescence imaging was employed to track implanted M2MФin the injured skeletal muscle of mouse models.It is found that the implanted M2MФaccumulated at the injury site for two weeks.Then,SWIR fluorescence imaging of blood vessels showed that M2MФimplantation could improve the relative perfusion ratio on day 5(1.09±0.09 vs 0.85±0.05;p=0.01)and day 9(1.38±0.16 vs 0.95±0.03;p=0.01)post-injury,as well as augment the degree of skeletal muscle regencration on day 13 post-injury.Finally,multiple linear regression analyses determined that post-injury time and relative perfusion ratio could be used as predictive indicators to evaluate skeletal muscle regeneration.These results provide more in vivo details about M2MФin skeletal muscle regeneration and confirm that M2MФcould promote angiogenesis and improve the degree of skeletal muscle repair,which will guide the research and development of M2MФimplantation to improve skeletal muscle regeneration. 展开更多
关键词 In vivo Short-wave infrared skeletal muscle MACROPHAGE REGENERATION
下载PDF
Pickering emulsion transport in skeletal muscle tissue:A dissipative particle dynamics simulation approach
4
作者 Xuwei Liu Wei Chen +3 位作者 Yufei Xia Guanghui Ma Reiji Noda Wei Ge 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期65-75,共11页
Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex i... Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex intercellular interactions of deformable Pickering emulsions,has been surprisingly sparse.This gap in knowledge holds significant potential for enhancing vaccine efficacy.This study aims to address this by summarizing the process of lymph-node-targeting transport and introducing a dissipative particle dynamics simulation method to evaluate the dynamic processes within cell tissue.The transport of Pickering emulsions in skeletal muscle tissue is specifically investigated as a case study.Various factors impacting the transport process are explored,including local cellular tissue environmental factors and the properties of the Pickering emulsion itself.The simulation results primarily demonstrate that an increase in radial repulsive interaction between emulsion particles can decrease the transport efficiency.Additionally,larger intercellular gaps also diminish the transport efficiency of emulsion droplet particles due to the increased motion complexity within the intricate transport space compared to a single channel.This study sheds light on the nuanced interplay between engineered and biological systems influencing the transport dynamics of Pickering emulsions.Such insights hold valuable potential for optimizing transport processes in practical biomedical applications such as drug delivery.Importantly,the desired transport efficiency varies depending on the specific application.For instance,while a more rapid transport might be crucial for lymph-node-targeted drug delivery,certain applications requiring a slower release of active components could benefit from the reduced transport efficiency observed with increased particle repulsion or larger intercellular gaps. 展开更多
关键词 Pickering emulsion skeletal muscular cells Transport phenomena Dissipative particle dynamics Drug delivery
下载PDF
Catalpa bignonioides extract improves exercise performance through regulation of growth and metabolism in skeletal muscles
5
作者 Hoibin Jeong Dong-joo Lee +11 位作者 Sung-Pil Kwon SeonJu Park Song-Rae Kim Seung Hyun Kim Jae-Il Park Deug-chan Lee Kyung-Min Choi WonWoo Lee Ji-Won Park Bohyun Yun Su-Hyeon Cho Kil-Nam Kim 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第2期47-54,共8页
Objective:To evaluate the effects of Catalpa bignonioides fruit extract on the promotion of muscle growth and muscular capacity in vitro and in vivo.Methods:Cell viability was measured using the 3-(4,5-dimethylthiazol... Objective:To evaluate the effects of Catalpa bignonioides fruit extract on the promotion of muscle growth and muscular capacity in vitro and in vivo.Methods:Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Cell proliferation was assessed using a 5-bromo-2’-deoxyuridine(BrdU)assay kit.Western blot analysis was performed to determine the protein expressions of related factors.The effects of Catalpa bignonioides extract were investigated in mice using the treadmill exhaustion test and whole-limb grip strength assay.Chemical composition analysis was performed using high-performance liquid chromatography(HPLC).Results:Catalpa bignonioides extract increased the proliferation of C2C12 mouse myoblasts by activating the Akt/mTOR signaling pathway.It also induced metabolic changes,increasing the number of mitochondria and glucose metabolism by phosphorylating adenosine monophosphate-activated protein kinase.In an in vivo study,the extract-treated mice showed improved motor abilities,such as muscular endurance and grip strength.Additionally,HPLC analysis showed that vanillic acid may be the main component of the Catalpa bignonioides extract that enhanced muscle strength.Conclusions:Catalpa bignonioides improves exercise performance through regulation of growth and metabolism in skeletal muscles,suggesting its potential as an effective natural agent for improving muscular strength. 展开更多
关键词 Catalpa bignonioides skeletal muscle Cell proliferation MITOCHONDRIA Energy metabolism C2C12
下载PDF
Skeletal muscle as a molecular and cellular biomarker of disease progression in amyotrophic lateral sclerosis:a narrative review
6
作者 Peter H.King 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期747-753,共7页
Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target.Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis,there is ... Amyotrophic lateral sclerosis is a fatal multisystemic neurodegenerative disease with motor neurons being a primary target.Although progressive weakness is a hallmark feature of amyotrophic lateral sclerosis,there is considerable heterogeneity,including clinical presentation,progression,and the underlying triggers for disease initiation.Based on longitudinal studies with families harboring amyotrophic lateral sclerosis-associated gene mutations,it has become apparent that overt disease is preceded by a prodromal phase,possibly in years,where compensatory mechanisms delay symptom onset.Since 85-90%of amyotrophic lateral sclerosis is sporadic,there is a strong need for identifying biomarkers that can detect this prodromal phase as motor neurons have limited capacity for regeneration.Current Food and Drug Administration-approved therapies work by slowing the degenerative process and are most effective early in the disease.Skeletal muscle,including the neuromuscular junction,manifests abnormalities at the earliest stages of the disease,before motor neuron loss,making it a promising source for identifying biomarkers of the prodromal phase.The accessibility of muscle through biopsy provides a lens into the distal motor system at earlier stages and in real time.The advent of“omics”technology has led to the identification of numerous dysregulated molecules in amyotrophic lateral sclerosis muscle,ranging from coding and non-coding RNAs to proteins and metabolites.This technology has opened the door for identifying biomarkers of disease activity and providing insight into disease mechanisms.A major challenge is correlating the myriad of dysregulated molecules with clinical or histological progression and understanding their relevance to presymptomatic phases of disease.There are two major goals of this review.The first is to summarize some of the biomarkers identified in human amyotrophic lateral sclerosis muscle that have a clinicopathological correlation with disease activity,evidence of a similar dysregulation in the SOD1G93A mouse during presymptomatic stages,and evidence of progressive change during disease progression.The second goal is to review the molecular pathways these biomarkers reflect and their potential role in mitigating or promoting disease progression,and as such,their potential as therapeutic targets in amyotrophic lateral sclerosis. 展开更多
关键词 amyotrophic lateral sclerosis biomarkers clinicopathological correlation disease progression muscle biomarkers neurogenic atrophy neuromuscular junction non-coding RNAs presymptomatic stages skeletal muscle SOD1G93A mouse model
下载PDF
Low skeletal muscle mass and high visceral adiposity are associated with recurrence of acute cholecystitis after conservative management:A propensity score-matched cohort study
7
作者 Yudai Koya Michihiko Shibata +5 位作者 Yuki Maruno Yoshitaka Sakamoto Shinji Oe Koichiro Miyagawa Yuichi Honma Masaru Harada 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第1期64-70,共7页
Background:Recurrent acute cholecystitis(RAC)can occur after non-surgical treatment for acute cholecystitis(AC),and can be more severe in comparison to the first episode of AC.Low skeletal muscle mass or adiposity hav... Background:Recurrent acute cholecystitis(RAC)can occur after non-surgical treatment for acute cholecystitis(AC),and can be more severe in comparison to the first episode of AC.Low skeletal muscle mass or adiposity have various effects in several diseases.We aimed to clarify the relationship between RAC and body parameters.Methods:Patients with AC who were treated at our hospital between January 2011 and March 2022 were enrolled.The psoas muscle mass and adipose tissue area at the third lumbar level were measured using computed tomography at the first episode of AC.The areas were divided by height to obtain the psoas muscle mass index(PMI)and subcutaneous/visceral adipose tissue index(SATI/VATI).According to median VATI,SATI and PMI values by sex,patients were divided into the high and low PMI groups.We performed propensity score matching to eliminate the baseline differences between the high PMI and low PMI groups and analyzed the cumulative incidence and predictors of RAC.Results:The entire cohort was divided into the high PMI(n=81)and low PMI(n=80)groups.In the propensity score-matched cohort there were 57 patients in each group.In Kaplan-Meier analysis,the low PMI group and the high VATI group had a significantly higher cumulative incidence of RAC than their counterparts(log-rank P=0.001 and 0.015,respectively).In a multivariate Cox regression analysis,the hazard ratios of low PMI and low VATI for RAC were 5.250(95%confidence interval 1.083-25.450,P=0.039)and 0.158(95%confidence interval:0.026-0.937,P=0.042),respectively.Conclusions:Low skeletal muscle mass and high visceral adiposity were independent risk factors for RAC. 展开更多
关键词 Acute cholecystitis Low skeletal muscle mass Recurrent acute cholecystitis SARCOPENIA Visceral adiposity
下载PDF
Temporal and spatial regulation of biomimetic vascularization in 3D-printed skeletal muscles
8
作者 Minxuan Jia Tingting Fan +3 位作者 Tan Jia Xin Liu Heng Liu Qi Gu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期597-610,共14页
In the intricate skeletal muscle tissue,the symbiotic relationship between myotubes and their supporting vasculature is pivotal in delivering essential oxygen and nutrients.This study explored the complex interplay be... In the intricate skeletal muscle tissue,the symbiotic relationship between myotubes and their supporting vasculature is pivotal in delivering essential oxygen and nutrients.This study explored the complex interplay between skeletal muscle and endothelial cells in the vascularization ofmuscle tissue.By harnessing the capabilities of three-dimensional(3D)bioprinting and modeling,we developed a novel approach involving the co-construction of endothelial and muscle cells,followed by their subsequent differentiation.Our findings highlight the importance of the interaction dynamics between these two cell types.Notably,introducing endothelial cells during the advanced phases of muscle differentiation enhanced myotube assembly.Moreover,it stimulated the development of the vascular network,paving the way for the early stages of vascularized skeletal muscle development.The methodology proposed in this study indicates the potential for constructing large-scale,physiologically aligned skeletal muscle.Additionally,it highlights the need for exploring the delicate equilibrium and mutual interactions between muscle and endothelial cells.Based on the multicell-type interaction model,we can predict promising pathways for constructing even more intricate tissues or organs. 展开更多
关键词 skeletal muscle VASCULARIZATION 3D bioprinting Cell interaction
下载PDF
PCLAF induces bone marrow adipocyte senescence and contributes to skeletal aging
9
作者 Lingqi Xie Yalun Cheng +6 位作者 Biao Hu Xin Chen Yuze An Zhuying Xia Guangping Cai Changjun Li Hui Peng 《Bone Research》 SCIE CAS CSCD 2024年第3期595-610,共16页
Bone marrow adipocytes(BMAds)affect bone homeostasis,but the mechanism remains unclear.Here,we showed that exercise inhibited PCNA clamp-associated factor(PCLAF)secretion from the bone marrow macrophages to inhibit BM... Bone marrow adipocytes(BMAds)affect bone homeostasis,but the mechanism remains unclear.Here,we showed that exercise inhibited PCNA clamp-associated factor(PCLAF)secretion from the bone marrow macrophages to inhibit BMAds senescence and thus alleviated skeletal aging. 展开更多
关键词 skeletal inhibited HOMEOSTASIS
下载PDF
Wet tissue adhesive polymeric powder hydrogels for skeletal muscle regeneration
10
作者 Mingyu Lee Daun Seo +6 位作者 Junggeon Park Sun Hong Lee Jin Jeon Woochan Kim Jangho Kim Hee Seok Yang Jae Young Lee 《Bioactive Materials》 SCIE CSCD 2024年第10期334-344,共11页
Volumetric muscle loss(VML)frequently results from traumatic incidents and can lead to severe functional disabilities.Hydrogels have been widely employed for VML tissue regeneration,which are unfortunately ineffective... Volumetric muscle loss(VML)frequently results from traumatic incidents and can lead to severe functional disabilities.Hydrogels have been widely employed for VML tissue regeneration,which are unfortunately ineffective because of the lack of intimate contact with injured tissue for structural and mechanical support.Adhesive hydrogels allow for strong tissue connections for wound closure.Nevertheless,conventional adhesive hydrogels exhibit poor tissue adhesion in moist,bleeding wounds due to the hydration layer at the tissue–hydrogel interfaces,resulting in insufficient performance.In this study,we developed a novel,biocompatible,wet tissue adhesive powder hydrogel consisting of dextran-aldehyde(dex-ald)and gelatin for the regeneration of VML.This powder absorbs the interfacial tissue fluid and buffer solution on the tissue,spontaneously forms a hydrogel,and strongly adheres to the tissue via various molecular interactions,including the Schiff base reaction.In particular,the powder composition with a 1:4 ratio of dex-ald to gelatin exhibited optimal characteristics with an appropriate gelation time(258 s),strong tissue adhesion(14.5 kPa),and stability.Dex-ald/gelatin powder hydrogels presented strong adhesion to various organs and excellent hemostasis compared to other wet hydrogels and fibrin glue.A mouse VML injury model revealed that the dex-ald/gelatin powder hydrogel significantly improved muscle regeneration,reduced fibrosis,enhanced vascularization,and decreased inflammation.Consequently,our wet-adhesive powder hydrogel can serve as an effective platform for repairing various tissues,including the heart,muscle,and nerve tissues. 展开更多
关键词 POWDER HYDROGEL Wet-adhesive skeletal muscle regeneration
原文传递
Schnurri-3 inhibition rescues skeletal fragility and vascular skeletal stem cell niche pathology in the OIM model of osteogenesis imperfecta
11
作者 Na Li Baohong Shi +16 位作者 Zan Li Jie Han Jun Sun Haitao Huang Alisha R.Yallowitz Seoyeon Bok Shuang Xiao Zuoxing Wu Yu Chen Yan Xu Tian Qin Rui Huang Haiping Zheng Rong Shen Lin Meng Matthew B.Greenblatt Ren Xu 《Bone Research》 SCIE CAS CSCD 2024年第3期675-688,共14页
Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that ... Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that OI reflects defects in the activity of bone-forming osteoblasts,it is currently unclear whether OI also reflects defects in the many other cell types comprising bone,including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. 展开更多
关键词 skeletal imperfect ENDOTHELIUM
下载PDF
Pannexins in the musculoskeletal system:new targets for development and disease progression
12
作者 Yan Luo Shengyuan Zheng +2 位作者 Wenfeng Xiao Hang Zhang Yusheng Li 《Bone Research》 SCIE CAS CSCD 2024年第2期255-269,共15页
During cell differentiation,growth,and development,cells can respond to extracellular stimuli through communication channels.Pannexin(Panx)family and connexin(Cx)family are two important types of channel-forming prote... During cell differentiation,growth,and development,cells can respond to extracellular stimuli through communication channels.Pannexin(Panx)family and connexin(Cx)family are two important types of channel-forming proteins.Panx family contains three members(Panx1-3)and is expressed widely in bone,cartilage and muscle.Although there is no sequence homology between Panx family and Cx family,they exhibit similar configurations and functions.Similar to Cxs,the key roles of Panxs in the maintenance of physiological functions of the musculoskeletal system and disease progression were gradually revealed later.Here,we seek to elucidate the structure of Panxs and their roles in regulating processes such as osteogenesis,chondrogenesis,and muscle growth.We also focus on the comparison between Cx and Panx.As a new key target,Panxs expression imbalance and dysfunction in muscle and the therapeutic potentials of Panxs in joint diseases are also discussed. 展开更多
关键词 skeletal DISEASES SYSTEM
下载PDF
Roles of N-cadherin in cerebral cortical development:cooperation with membrane trafficking and actin cytoskeletal regulation
13
作者 Shiho Ito Takeshi Kawauchi 《Neural Regeneration Research》 SCIE CAS 2025年第1期188-190,共3页
Cell adhesion plays pivotal roles in the morphogenesis of multicellular organisms.Epithelial cells form several types of cell-to-cell adhesion,including zonula occludens(tight junctions),zonula adhaerens(adherens junc... Cell adhesion plays pivotal roles in the morphogenesis of multicellular organisms.Epithelial cells form several types of cell-to-cell adhesion,including zonula occludens(tight junctions),zonula adhaerens(adherens junctions),and macula adhaerens(desmosomes).Although these adhesion complexes are basically observed only in epithelial cells,cadherins,which are the major cell adhesion molecules of adherens junctions,are expressed in both epithelial and non-epithelial tissues,including neural tissues(Kawauchi,2012).The cadherin superfamily consists of more than 100 members,but classic cadherins. 展开更多
关键词 CEREBRAL skeletal COOPERATION
下载PDF
The HIF-1α/PLOD2 axis integrates extracellular matrix organization and cell metabolism leading to aberrant musculoskeletal repair
14
作者 Heeseog Kang Amy L.Strong +15 位作者 Yuxiao Sun Lei Guo Conan Juan Alec C.Bancroft Ji Hae Choi Chase A.Pagani Aysel A.Fernandes Michael Woodard Juhoon Lee Sowmya Ramesh Aaron W.James David Hudson Kevin N.Dalby Lin Xu Robert J.Tower Benjamin Levi 《Bone Research》 SCIE CAS CSCD 2024年第2期289-301,共13页
While hypoxic signaling has been shown to play a role in many cellular processes,its role in metabolism-linked extracellular matrix(ECM)organization and downstream processes of cell fate after musculoskeletal injury r... While hypoxic signaling has been shown to play a role in many cellular processes,its role in metabolism-linked extracellular matrix(ECM)organization and downstream processes of cell fate after musculoskeletal injury remains to be determined.Heterotopicossification(HO)is a debilitating condition where abnormal bone formation occurs within extra-skeletal tissues.Hypoxia andhypoxia-inducible factor 1α(HIF-1α)activation have been shown to promote HO.However,the underlying molecular mechanisms bywhich the HIF-1αpathway in mesenchymal progenitor cells(MPCs)contributes to pathologic bone formation remain to beelucidated.Here,we used a proven mouse injury-induced HO model to investigate the role of HIF-1αon aberrant cell fate.Usingsingle-cell RNA sequencing(scRNA-seq)and spatial transcriptomics analyses of the HO site,we found that collagen ECM organizationis the most highly up-regulated biological process in MPCs.Zeugopod mesenchymal cell-specific deletion of Hif1α(Hoxa11-CreER^(T2);Hif1a^(fl/fl))significantly mitigated HO in vivo.ScRNA-seq analysis of these Hoxa11-CreER^(T2);Hif1a^(fl/fl)mice identified the PLOD2/LOXpathway for collagen cross-linking as downstream of the HIF-1αregulation of HO.Importantly,our scRNA-seq data and mechanisticstudies further uncovered that glucose metabolism in MPCs is most highly impacted by HIF-1αdeletion.From a translational aspect,a pan-LOX inhibitor significantly decreased HO.A newly screened compound revealed that the inhibition of PLOD2 activity in MPCssignificantly decreased osteogenic differentiation and glycolytic metabolism.This suggests that the HIF-1α/PLOD2/LOX axis linked tometabolism regulates HO-forming MPC fate.These results suggest that the HIF-1α/PLOD2/LOX pathway represents a promisingstrategy to mitigate HO formation. 展开更多
关键词 METABOLISM skeletal ABERRANT
下载PDF
HgaNets:Fusion of Visual Data and Skeletal Heatmap for Human Gesture Action Recognition
15
作者 Wuyan Liang Xiaolong Xu 《Computers, Materials & Continua》 SCIE EI 2024年第4期1089-1103,共15页
Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual andskeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data... Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual andskeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data,failing to meet the demands of various scenarios. Furthermore, multi-modal approaches lack the versatility toefficiently process both uniformand disparate input patterns.Thus, in this paper, an attention-enhanced pseudo-3Dresidual model is proposed to address the GAR problem, called HgaNets. This model comprises two independentcomponents designed formodeling visual RGB (red, green and blue) images and 3Dskeletal heatmaps, respectively.More specifically, each component consists of two main parts: 1) a multi-dimensional attention module forcapturing important spatial, temporal and feature information in human gestures;2) a spatiotemporal convolutionmodule that utilizes pseudo-3D residual convolution to characterize spatiotemporal features of gestures. Then,the output weights of the two components are fused to generate the recognition results. Finally, we conductedexperiments on four datasets to assess the efficiency of the proposed model. The results show that the accuracy onfour datasets reaches 85.40%, 91.91%, 94.70%, and 95.30%, respectively, as well as the inference time is 0.54 s andthe parameters is 2.74M. These findings highlight that the proposed model outperforms other existing approachesin terms of recognition accuracy. 展开更多
关键词 Gesture action recognition multi-dimensional attention pseudo-3D skeletal heatmap
下载PDF
Game-changing insights on vertebral skeletal stem cells in bone metastasis and therapeutic horizons
16
作者 QIUQIANG CHEN XIAOLEI ZHAO WENXUE MA 《Oncology Research》 SCIE 2024年第1期95-98,共4页
Greenblatt and his team have unveiled vertebral skeletal stem cells(vSSCs)as a critical player in the landscape of bone metastasis.This commentary delves into the transformative discoveries surrounding vSSCs,emphasizi... Greenblatt and his team have unveiled vertebral skeletal stem cells(vSSCs)as a critical player in the landscape of bone metastasis.This commentary delves into the transformative discoveries surrounding vSSCs,emphasizing their distinct role in bone metastasis compared to other stem cell lineages.We illuminate the unique properties and functions of vSSCs,which may account for the elevated susceptibility of vertebral bones to metastatic invasion.Furthermore,we explore the exciting therapeutic horizons opened by this newfound understanding.These include potential interventions targeting vSSCs,modulation of associated signaling pathways,and broader implications for the treatment and management of bone metastasis.By shedding light on these game-changing insights,we hope to pave the way for novel strategies that could revolutionize the prognosis and treatment landscape for cancer patients with metastatic bone disease. 展开更多
关键词 Vertebral skeletal stem cells(vSSCs) Stem cell research Metastasis Breast prostate and lung cancers Spinal metastasis Matthew Greenblatt Genetic expressions
下载PDF
Acupotomy ameliorates knee osteoarthritis-related collagen deposition and fibrosis in rabbit skeletal muscle through the TGF-β/Smad pathway
17
作者 Tingyao Hu Einar Khavaza +7 位作者 Chuxi Liang Longfei Xing Xilin Chen Yue Xu Weiwei Ma Farid Mokhtari Juan Lu Changqing Guo 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第3期376-385,共10页
Objective:To investigate the effects of acupotomy on skeletal muscle fibrosis and collagen deposition in a rabbit knee osteoarthritis(KOA)model.Methods: Rabbits(n=18)were randomly divided into control,KOA,and KOA+acup... Objective:To investigate the effects of acupotomy on skeletal muscle fibrosis and collagen deposition in a rabbit knee osteoarthritis(KOA)model.Methods: Rabbits(n=18)were randomly divided into control,KOA,and KOA+acupotomy(Apo)groups(n=6).The rabbits in the KOA and Apo groups were modeled using the modified Videman's method for 6 weeks.After modeling,the Apo group was subjected to acupotomy once a week for 3 weeks on the vastus medialis,vastus lateralis,rectus femoris,biceps femoris,and anserine bursa tendons around the knee.The behavior of all animals was recorded,rectus femoris tissue was obtained,and histomorphological changes were observed using Masson staining and transmission electron microscopy.The expression of transforming growth factor-β1(TGF-β1),Smad 3,Smad 7,fibrillar collagen types I(Col-I)and III(Col-III)was detected using Western blot and real-time polymerase chain reaction(RT-PCR).Results: Histological analysis revealed that acupotomy improved the microstructure and reduced the collagen volume fraction of rectus femoris,compared with the KOA group(P=.034).Acupotomy inhibited abnormal collagen deposition by modulating the expression of fibrosis-related proteins and mRNA,thus preventing skeletal muscle fibrosis.Western blot and RT-PCR analysis revealed that in the Apo group,Col-I,and Col-III protein levels were significantly lower than those in the KOA group(both P<.01),same as Col-I and Col-III mRNA levels(P=.0031;P=.0046).Compared with the KOA group,the protein levels of TGF-β1 and Smad 3 were significantly reduced(both P<.01),as were the mRNA levels of TGF-β1 and Smad 3(P=.0007;P=.0011).Conversely,the levels of protein and mRNA of Smad 7 were significantly higher than that in the KOA group(P<.01;P=.0271).Conclusion: Acupotomy could alleviate skeletal muscle fibrosis and delay KOA progress by inhibiting collagen deposition through the TGF-β/Smad pathway in the skeletal muscle of KOA rabbits. 展开更多
关键词 ACUPOTOMY Knee osteoarthritis skeletal muscle FIBROSIS Collagen deposition
下载PDF
Mitochondrial dysfunction in type 2 diabetes:A neglected path to skeletal muscle atrophy
18
作者 Jian-Jun Wu Hui-Min Xian +1 位作者 Da-Wei Yang Fan Yang 《World Journal of Orthopedics》 2024年第2期101-104,共4页
Over the course of several decades,robust research has firmly established the significance of mitochondrial pathology as a central contributor to the onset of skeletal muscle atrophy in individuals with diabetes.Howev... Over the course of several decades,robust research has firmly established the significance of mitochondrial pathology as a central contributor to the onset of skeletal muscle atrophy in individuals with diabetes.However,the specific intricacies governing this process remain elusive.Extensive evidence highlights that individuals with diabetes regularly confront the severe consequences of skeletal muscle degradation.Deciphering the sophisticated mechanisms at the core of this pathology requires a thorough and meticulous exploration into the nuanced factors intricately associated with mitochondrial dysfunction. 展开更多
关键词 Mfn-2 Oxidative stress Mitochondria metabolism skeletal muscle atrophy DIABETES
下载PDF
Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction
19
作者 Said Hashemolhosseini Lea Gessler 《Neural Regeneration Research》 SCIE CAS 2025年第9期2464-2479,共16页
Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways... Skeletal muscles are essential for locomotion,posture,and metabolic regulation.To understand physiological processes,exercise adaptation,and muscle-related disorders,it is critical to understand the molecular pathways that underlie skeletal muscle function.The process of muscle contra ction,orchestrated by a complex interplay of molecular events,is at the core of skeletal muscle function.Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction.Within muscle fibers,calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force.Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling.The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis.Myogenic regulators coordinate the diffe rentiation of myoblasts into mature muscle fibers.Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability.Seve ral muscle-related diseases,including congenital myasthenic disorders,sarcopenia,muscular dystrophies,and metabolic myopathies,are underpinned by dys regulated molecular pathways in skeletal muscle.Therapeutic interventions aimed at preserving muscle mass and function,enhancing regeneration,and improving metabolic health hold promise by targeting specific molecular pathways.Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway,a critical regulator of myogenesis,muscle regeneration,and metabolic function,and the Hippo signaling pathway.In recent years,more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers,and at the neuromuscular junction.In fact,research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers.In this review,we will summarize and discuss the data on these two pathways,focusing on their concerted action next to their contribution to skeletal muscle biology.However,an in-depth discussion of the noncanonical Wnt pathway,the fibro/a dipogenic precursors,or the mechanosensory aspects of these pathways is not the focus of this review. 展开更多
关键词 canonical Wnt"Wingless-related integration site"pathway beta-catenin(CTNNB1) Hippo pathway MYOGENESIS MYOTUBE neuromuscular junction satellite cell skeletal muscle fiber transcriptional co-activator with PDZ-binding motif(TAZ) T-cell-specific transcription factor/lymphoid enhancer-binding factor(TCF/LEF) TEA domain family member(TEAD) transducin-like enhancer of split(TLE) yes-associated protein 1(YAP1)
下载PDF
Simple and effective method for treating severe adult skeletal class II malocclusion: A case report
20
作者 Li-Li Xie Dan-Yang Chu Xiao-Feng Wu 《World Journal of Orthopedics》 2024年第10期965-972,共8页
BACKGROUND Severe skeletal class II malocclusion is the indication for combined orthodontic and orthognathic treatment.CASE SUMMARY A woman with a chief complaint of a protruding chin and an inability to close her lip... BACKGROUND Severe skeletal class II malocclusion is the indication for combined orthodontic and orthognathic treatment.CASE SUMMARY A woman with a chief complaint of a protruding chin and an inability to close her lips requested orthodontic camouflage.The treatment plan consisted of extracting the right upper third molar,right lower third molar,left lower second molar,and left upper third molar and moving the maxillary dentition distally using a convenient method involving microimplant nail anchors,push springs,long arm traction hooks,and elastic traction chains.After 52 months of treatment,her overbite and overjet were normal,and her facial profile was favorable.CONCLUSION This method can be used for distal movement of the maxillary dentition and to correct severe skeletal class II malocclusion in adults. 展开更多
关键词 skeletal class II malocclusion Maxillary dentition Microimplant nail Simple and effective method Case report
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部